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Association of genes in
hereditary metabolic
diseases with diagnosis,
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Wang2* and Gaohua Han1*
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Taizhou, China, 2Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu
University, Affiliated Hospital of Jiangsu University, Zhenjiang, China, 3Department of
Gastroenterology, Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu
University, Zhenjiang, China
Background: Aberrant metabolism is a major hallmark of cancers and hereditary

diseases. Genes associated with inborn metabolic errors may also play roles in

cancer development. This study evaluated the overall impact of these genes on

gastric cancer (GC).

Methods: In total, 162 genes involved in 203 hereditary metabolic diseases were

identified in the Human Phenotype Ontology database. Clinical and multi-omic

data were acquired from the GC cohort of the Affiliated Hospital of Jiangsu

University and other published cohorts. A 4-gene and 32-gene signature was

established for diagnosis and prognosis or therapeutic prediction, respectively,

and corresponding abnormal metabolism scores (AMscores) were calculated.

Results: The diagnostic AMscore showed high sensitivity (0.88-1.00) and

specificity (0.89-1.00) to distinguish between GC and paired normal tissues,

with area under the receiver operating characteristic curve (AUC) ranging from

0.911 to 1.000 in four GC cohorts. The prognostic or predictive AMscore was an

independent predictor of overall survival (OS) in five GC cohorts and a predictor

of the OS and disease-free survival benefit of postoperative chemotherapy or

chemoradiotherapy in one GC cohort with such data. The AMscore adversely

impacts immune biomarkers, including tumor mutation burden, tumor

neoantigen burden, microsatellite instability, programmed death-ligand 1

protein expression, tumor microenvironment score, T cell receptor clonality,

and immune cell infiltration detected bymultiplex immunofluorescence staining.

The AUC of the AMscore for predicting immunotherapy response ranging from

0.780 to 0.964 in four cohorts involving GC, urothelial cancer, melanoma, and

lung cancer. The objective response rates in the low and high AMscore

subgroups were 78.6% and 3.2%, 40.4% and 7%, 52.6% and 0%, and 72.7% and

0%, respectively (all p<0.001). In cohorts with survival data, a high AMscore was

hazardous for OS or progression-free survival, with hazard ratios ranged from

5.79 to 108.59 (all p<0.001). Importantly, the AMscore significantly improved the
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prediction of current immune biomarkers for both response and survival, thus

redefining the advantaged and disadvantaged immunotherapy populations.

Conclusions: Signatures based on genes associated with hereditary metabolic

diseases and their corresponding scores could be used to guide the diagnosis

and treatment of GC. Therefore, further validation is required.
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1 Introduction

Gastric cancer (GC) is one of the most prevalent and fatal

cancers worldwide, ranking fifth in terms of morbidity and third in

mortality of cancers (1). Aberrant metabolism, a major hallmark of

cancer driven by metabolic reprogramming, is closely linked to GC

initiation, progression, and drug resistance, and cancer stem cells

(2–4). Many oncogenic signaling pathways, such as Hippo, Myc,

and the receptor tyrosine kinase/phosphoinositide 3-kinase/Akt1

cascade promote metabolic gene expression and improve the

activity of metabolic enzymes. Conversely, select metabolites not

only serve as substrates for energy and biomass generation but can

also act as potent signaling modulators by an epigenetic mechanism

and even regulate protein production directly (2, 5, 6).

In the past 20 years, the development and application of

modern experimental technologies and next-generation

sequencing have uncovered not only the metabolic heterogeneity

and plasticity of cancers but also novel metabolic signaling involved

in cancer biology. Specifically, the extracellular tumor

microenvironment (TME), with the depletion of certain nutrients,

forces cancer cells to sustain themselves and their progression by

inducing a diverse set of metabolic adaptations (6). There is growing

appreciation that the metabolism of the stromal cells within the

TME, such as endothelial cells, adipocyte, fibroblasts, and myeloid

derived suppressor cells, can mediate cancer development (2, 6, 7).

Aberrant metabolism is also a major feature of some inherited

human disorders with an inborn error in metabolic pathways. There

is increasing evidence regarding the association between congenital

metabolic errors and increased risk of cancer development. For

example, hyperhomocysteinemia/homocystinuria, which is

characterized by an increased level of toxic homocysteine in the

plasma due to an inborn error in the metabolic pathways of sulfur-

containing amino acids, has close clinical ties with various cancer

types (8). Gaucher disease, characterized by enlargement of the

internal organs owing to lysosomal storage defection caused by a

congenital enzyme acid b-glucosidase deficiency, is strongly

correlated with different types of cancers (9). Although the

clinical phenotype of these hereditary metabolic diseases is an

indicator of some cancers, the relationship between cancer and

the genes participating in congenital metabolic errors remains

unclear. In addition, few studies have focused on the metabolism
02
of cancer cells themselves rather than the entire TME, including

stromal cells.

In this study, we screened hub genes in hereditary metabolic

diseases to construct an abnormal metabolism score (AMscore) for

both GC diagnosis and prognosis or therapeutic prediction. The

diagnostic AMscore displayed excellent sensitivity and specificity in

discriminating between GC and normal tissues. The prognostic or

predictive AMscore was a strong indicator of both prognosis and

the benefit of adjuvant chemotherapy. Moreover, this AMscore was

associated with the TME and could efficiently predict the therapy

response and survival outcomes of immunotherapy using immune

checkpoint inhibitors (ICIs).
2 Methods

2.1 Genes

Two hundred three hereditary diseases characterized by metabolic

abnormalities were identified in the Human Phenotype Ontology

database (https://hpo.jax.org/app/; Supplementary Table S1). One

hundred sixty-two genes, whose aberrant alterations have been

verified to cause these diseases, were selected (Supplementary Table S2).
2.2 GC patients

For diagnostic AMscore construction, GC patients with paired

normal and tumor tissues were selected from the Affiliated Hospital

of Jiangsu University (AHJU) (10–13), The Cancer Genome Atlas

(TCGA) (14), GSE54129 (15), and GSE103236 (16) cohorts

(Supplementary Table S3). For the prognostic or predictive

AMscore construction, GC patients were selected from the Asian

Cancer Research Group (ACRG) (17), AHJU (10–13), TCGA (14),

GSE15459 (18), and GSE84437 (19) cohorts (Supplementary Table

S4). The patient enrollment criteria for all cohorts included the

following: 1) pathological diagnosis of normal or GC tissues, 2)

available transcriptome data, and 3) no prior history of anticancer

therapies before sampling. The ethics committee of AHJU approved

the research protocol, and all patients from AHJU provided written

informed consent.
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2.3 Immunotherapy patients

Four immunotherapy cohorts were used (Supplementary Table

S5), including a cohort of metastatic GC (NCT.02589496) treated

with second-line pembrolizumab (20), a cohort of metastatic

urothelial cancer (UTC; IMvigor210) treated with second-line

atezolizumab (21), a cohort of advanced melanoma (CA209-038

or NCT.01621490) treated with first-line or second-line nivolumab

(22), and a cohort of advanced non-small-cell lung cancer (NSCLC;

GSE135222) treated with antibodies of programmed cell death

receptor-1 (PD-1) or its ligand PD-L1 (23).
2.4 Multi-omic data

In the AHJU GC cohort, whole exome sequencing (WES),

transcriptome sequencing and T cell receptor (TCR)-b CDR3

sequencing were performed. The corresponding genome data and

TCR data were stored in the Genome Sequence Archive for Human

(https://ngdc.cncb.ac.cn/gsa-human/) with the identifier of

HRA001647. The corresponding transcriptome were stored in the

European Genome-phenome Archive (https://ega-archive.org/) with

the identifier of EGAD00001004164. Multi-omic data from previously

published cohorts were acquired and preprocessed as described

elsewhere (24). Classic immune indices, such as microsatellite

instability (MSI), tumor mutation burden (TMB), and tumor

neoantigen burden (TNB) have been previously defined and

determined (10–13).
2.5 The diagnostic AMscore construction

Based on a random forest model (25), the importance of the

expression of targeted genes in distinguishing between normal and

tumor tissues was evaluated in TCGA and validated in AHJU.

Important genes with significant differential expression between

normal and tumor tissues in both TCGA and AHJU were selected.

The receiver operating characteristic (ROC) curve and the area

under the ROC curve (AUC) were used to evaluate the diagnostic

power of each gene. Based on the optimal threshold of maximum

ROC curve values, gene expression was dichotomized into high (1)

and low (0) levels. The diagnostic AMscore was constructed by

binary logistic regression using the forward selection (conditional)

method based on gene expression levels. The formula was as

follows:

AMscore   =   intercept   +   sum   (expression   level   of   each   gene  

�corresponding   regression   coefficient)
2.6 The prognostic or predictive
AMscore construction

In cohorts with survival data, the optimal cutoff value to define

high and low gene expression with the most significant survival
Frontiers in Immunology 03
difference was determined using the Survminer R package. Gene

expression was converted to either 1 (high) or 0 (low) (26). Genes

with significant prognostic roles were evaluated using univariate

Cox proportional hazards models. The most powerful prognostic

genes were further determined using least absolute shrinkage and

selection operator (LASSO) Cox regression models. The AMscore

model was constructed based on the corresponding regression

coefficients. The formula was as follows:

AMscore   =   sum   (expression   level   of   each   gene  

�   corresponding   coefficient)

Considering the heterogeneous effects of the same gene by tumor

type, different gene signatures have been established for different tumor

types. In cohorts without survival data, binary logistic regression was

used to construct the AMscore to predict therapy response.
2.7 Multi-omic sequencing in the
AHJU cohort

WES and transcriptome sequencing in the AHJU cohort have been

described previously (10–13). Sequencing of TCR-b CDR3 regions in

genomic DNA (gDNA) was performed from 26 tissue samples, on

which transcriptome sequencing was also conducted. Briefly, gDNA

was cut into 200–250-bp fragments andmultiplex primers were used to

obtain the maximum coverage of a heterogeneous set of target

sequences of the V and J families. Then, 151bp paired-end

sequencing was performed using the Illumina HiSeq3000 platform

(Illumina, USA). MiXCR55 (https://github.com/milaboratory/mixcr/)

was used to identify CDR3 protein sequences. TCR diversity was

estimated using the Shannon entropy index, and TCR clonality was

defined as 1-Pielou’s evenness.
2.8 Multiplex immunofluorescence staining

In the AHJU cohort, mIF staining was performed on eight tissue

samples with available transcriptome data, using the PANO 7-plex

IHC kit (Panovue, Beijing, China). Primary antibodies against CD8

(CST70306, Cell Signaling Technology, USA), CD56 (CST3576),

pan-CK (CST4545), CD68 (BX50031, Biolynx, China), and HLA-

DR (ab92511, Abcam, UK) were sequentially applied to FFPE tissue

slides. Anti-S100 (ab52642) was used to distinguish between the

stroma and epithelial parenchyma (27). Imaging was performed

using ‘the Leica Bond RX automated staining instrument and

‘Akoya Vectra Polaris spectral quantitative pathological analysis

system. Indica ‘Labs HALO software was used to identify the cell

types and determine the density of positively stained cells for

different markers in the tumor parenchyma and matrix.
2.9 Statistical analysis

For comparisons between groups, c2 test, Fisher’s exact

probability test, paired or unpaired t-test, and Mann–Whitney
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U test were used as needed. The Kaplan–Meier method and log-

rank test were used for survival analysis. The independent

prognostic role of the AMscore was determined using

mul t ivar ia te Cox propor t iona l hazard mode l s , wi th

calculations of hazard ratios (HRs) and their 95% confidence

intervals (CIs). The ROC and AUC were used to evaluate the

predictive power of AMscore for the objective response rate

(ORR) of immunotherapy. A two-sided p<0.05 was considered

statistically significant. Statistical and drawing tools included R

(version 3.6.1), R Bioconductor packages, and SPSS (version

19.0; Chicago, IL, USA).
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3 Results

3.1 Genes in hereditary metabolic diseases
are biomarkers for GC diagnosis

After random forest screening (Figures 1A, B) and differential

expression testing (Figures 1C, D), 16 genes were used for logistic

regression analysis based on the transcriptome data of AHJU and

TCGA. Finally, four genes were included in the model to construct

the diagnostic AMscore in the combined AHJU and TCGA cohort,

using the following formula:
A B

D

E

F

G

C

FIGURE 1

Construction and validation of the diagnostic AMscore. (A): The importance of gene expression associated with abnormal metabolism to distinguish
normal and tumor tissues was evaluated by a random forest model in TCGA. (B): Important genes in A were further validated in AHJU. (C, D): The
important genes in B with differential expressions (paired t-test) between normal (N) and tumor (T) tissues in both TCGA (C) and AHJU (D) were
selected. (E): Diagnostic score, constructed by a logistic regression based on the expression of genes in (C, D), between normal and tumor tissues
(paired t-test). (F): The receiver operating characteristic curve (ROC) of diagnostic score to determine tumor tissues in the combined TCGA and
AHJU cohort. (G): The ability of diagnostic score to determine tumor was further validate in TCGA, AHJU, GSE54129 and GSE103236 cohorts,
respectively. TCGA, The Cancer Genome Atlas; AHJU, Affiliated Hospital of Jiangsu University; AUC, the areas under the ROC. * p<0.05; ** p<0.01;
*** P<0.001; **** p<0.0001.
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Amscore   =  −23:74   +   21:002  �   expression   level   of  ALG3   +   3:26  �  

expression   level   of   PGM2L1   +   19:603  �   expression   level   of   SLC39A8   +3:285  �  

expression   level   of  TMEM199

The AMscore was significantly higher in GC tissues than in

paired normal tissues (p<2.22e-16; Figure 1E), with an AUC of

0.991 (sensitivity: 0.93, and specificity: 0.98) for predicting GC in

the combined AHJU and TCGA cohorts (Figure 1F). For validation,

the diagnostic AUC of the AMscore was also favorable in separate

TCGA (AUC: 1.000, sensitivity: 1.00, and specificity: 1.00), AHJU

(AUC: 0.978, sensitivity: 0.88, and specificity: 0.97), GSE54129

(AUC: 0.911, sensitivity: 0.89, and specificity: 1.00), and

GSE103236 (AUC: 0.978, sensitivity: 1.00, and specificity: 0.89)

cohorts (Figure 1G).
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3.2 Genes in hereditary metabolic diseases
are biomarkers for GC prognosis

After univariate Cox analysis (Figure 2A), 48 genes with a

significant prognostic impact on overall survival (OS) in both ACRG

and TCGA cohorts were included in the LASSO regression model

(Figure 2B). Finally, 32 genes were included in the model to construct

the prognostic or predictive AMscore in the combined ACRG and

TCGA cohorts; the corresponding regression coefficients are shown in

Supplementary Table S6. The OS was significantly shorter in the high

AMscore subgroup than in the low AMscore subgroup in the

combined ACRG and TCGA cohorts (Figure 2C), as well as in the

separate ACRG (Figure 2D) and TCGA (Figure 2E) cohorts. Moreover,
A

B

D

E

C

FIGURE 2

Construction of the prognostic or predictive AMscore. (A): Genes associated with prognosis of gastric cancer in both the ACRG and TCGA cohorts.
(B): LASSO coefficient profiles of the fractions of the genes in A in the combined ACRG and TCGA cohort. (C–E): AMscore and overall survival in the
combined ACRG and TCGA cohort (C) and in the individual ACRG (D) and TCGA (E) cohorts, respectively. ACRG, Asian Cancer Research Group;
TCGA, The Cancer Genome Atlas.
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the prognostic role of the AMscore was further validated in the AHJU,

GSE15459, and GSE84437 cohorts (Figures 3A–C). Importantly, the

multivariate Cox models showed that the AMscore was an

independent predictor of OS in all GC cohorts included in our

survival analysis (Figures 3D–H).

3.3 Genes in hereditary
metabolic diseases involve
broad biological processes

In the ACRG cohort, differentially expressed genes were

identified between the high (upper quartile) and low (lower

quartile) subgroups of the prognostic or predictive AMscore,
Frontiers in Immunology 06
based on the criteria of adjusted p-value<0.05, and log2(fold

change)>1 (Figures 4A, B). Gene set enrichment analysis

(GSEA) was performed using NetworkAnalyst 3.0 (https://

www.networkanalyst.ca/) based on Gene Ontology (GO) terms of

biological processes. We found that the enriched GO terms in the

high AMscore group could be divided into three main sections (1):

metabolic processes involving glucose, fats, amino acids, proteins,

and others (2); cell proliferation involving DNA replication, DNA

damage response and repair, the cell cycle, and so on (3); immune

activities involving immune organ development, immune cell

differentiation and activation, immune response, and so on

(Figures 4C; Supplementary Table S7). These results suggest that

tumors with high AMscore have a growth and survival advantage in

the TME of GC.
A

B

D

E

F

G

H

C

FIGURE 3

Validation of the prognostic or predictive AMscore. (A–C): The prognostic role of AMscore in the AHJU, GSE15459 and GSE84437 cohorts. (D–H): in
multivariate Cox regression models, AMscore was an independent predictor for overall survival in the ACRG (D), TCGA (E), AHJU (F), GSE15459 (G)
and GSE84437 (H) cohorts, respectively. ACRG, Asian Cancer Research Group; AHJU, Affiliated Hospital of Jiangsu University; TCGA, The Cancer
Genome Atlas.
frontiersin.org

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://doi.org/10.3389/fimmu.2023.1289700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1289700
3.4 The prognostic or predictive AMscore
and the benefit of postoperative adjuvant
therapy in GC

Because our GSEA indicated an association between the

AMscore and DNA repair, a crucial mechanism by which tumor

cells resist chemotherapy (CT) or chemoradiotherapy (CRT) (28),

we investigated the impact of the AMscore on the benefit of

postoperative CT/CRT in GC in the ACRG cohort, which has

detailed treatment information. In patients treated with

postoperative CT/CRT, CT, or CRT, the AMscore remained a

strong prognostic predictor for both disease-free survival (DFS)

and OS (Supplementary Figure S1). Importantly, adjuvant CT/CRT,

CT, or CRT significantly improved DFS in patients with a low

AMscore but not in those with a high AMscore (Figure 5). Similar

results were observed in patients with a low AMscore, and

substantially decreased benefits for CT (p=0.089), CRT (p=0.095),

and CT/CRT (p=0.014) were observed in patients with a high

AMscore (Supplementary Figure S2).
Frontiers in Immunology 07
3.5 The prognostic or predictive AMscore
and classic immune biomarkers

Given the potential influence of AMscore on immune activity

indicated by our GSEA, the relationship between AMscore and

classic immune biomarkers was explored. A significantly negative

correlation was found between the AMscore and TMB in the

ACRG, AHJU, NCT.02589496, and TCGA cohorts (Figure 6A).

TNB was detected in 84 samples from TCGA and was also

negatively correlated with the AMscore (Figure 6B). Regarding

the microsatellite status, the MSI subtype of GC had a

significantly lower AMscore than the microsatellite stable (MSS)

subtype in all cohorts (Figure 6C). In the NCT.02589496 cohort,

PD-L1 expression determined using a combined positive score

(CPS) was detected by immunohistochemistry. The AMscore was

negatively correlated with PD-L1 CPS (r=-0.47, p=0.002;

Figure 6D), and a significantly lower AMscore was observed in

the subgroup with a CPS≥5 (Figure 6E). Moreover, the TMEscore,

an index previously developed to evaluate the TME of GC (24), was
A B

C

FIGURE 4

Transcriptome features associated with the prognostic or predictive AMscore. (A): Volcano plot for differentially expressed genes (DEGs) between
high and low AMscore subgroups. (B): Heatmap for top 40 DEGs between high and low AMscore subgroups. (C): Selected Gene Ontology (GO)
terms for biological process in the gene set enrichment analysis of DEGs (1): metabolism-associated terms (2); DNA repair- and cell cycle-associated
terms (3): immunity-associated terms.
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also calculated to show a significantly negative correlation with the

AMscore in all cohorts (Figure 6F). Finally, TCR sequencing was

conducted in the AHJU cohort, and high TCR clonality indicated

superior clonal expansion of TCR and a potentially strong immune

response (29). The AMscore was also negatively correlated with

TCR clonality (Figure 6G).
Frontiers in Immunology 08
3.6 The prognostic or predictive AMscore
and immune cell infiltration

mIF was performed in the AHJU cohort to quantify the density

of infiltrating immune cells in the TME (Figure 7A). The effective

infiltration score (EIS), defined as the number of immune cells in
A D

E

C F

B

FIGURE 5

The prognostic or predictive AMscore and the benefit of adjuvant chemotherapy or chemoradiotherapy in the ACRG cohort. (A–C): Disease-free
survival (DFS) benefit was significant in the AMscore low subgroup for CT/CRT (A), CT (B), and CRT (C), respectively. (D–F): DFS benefit was not
significant in the AMscore high subgroup for CT/CRT (D), CT (E), and CRT (F), respectively. ACRG, Asian Cancer Research Group; CT, chemotherapy;
CRT, chemoradiotherapy.
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the tumor parenchyma divided by the total number of immune cells

in TME, was used to evaluate the mobilization of immune cells from

the stromal tumor edge into the tumor parenchyma, which is

crucial for antitumor immunity (12, 13, 27). The AMscore was

significantly positively correlated with the EIS of CD8+ T cells

(Spearman r=0.88, p=0.007) but significantly negatively correlated

with the EIS of M1 macrophages (r=-0.74, p=0.046) and NK cells

(r=-0.74, p=0.046). The AMscore was also correlated with the EIS of

M2 macrophages (r=0.45, p=0.27) and the CD56bright subtype of

NK cells (r=-0.64, p=0.096), and the significance of these results

may be limited by the small sample size (Figure 7B). The xCell

algorithm (30) was used to evaluate the abundance of other TME

cells based on the transcriptome data of the ACRG and TCGA. The

AMscore was also significantly positively correlated with the

abundance of adipocytes, endothelial cells, and fibroblasts, but
Frontiers in Immunology 09
significantly negatively correlated with the abundance of Th1 cells

(Figures 7C, D).
3.7 The prognostic or predictive AMscore
and immunotherapy outcomes

In the immunotherapy cohorts of GC, UTC, melanoma, and

NSCLC, the AUCs of the AMscore for predicting therapy response

were 0.952, 0.780, 0.851, and 0.964, respectively (Figures 8A–D),

which were generally better than those of classic biomarkers

(Supplementary Figure S3). The ORRs of low versus high

AMscore in these four cohorts were 78.6% vs. 3.2%, 40.4% vs.

7.0%, 52.6% vs. 0%, and 72.7% vs. 0%, respectively (all p<0.001;

Figures 8A–D). OS was available in the UTC and melanoma
A B

D E

F G

C

FIGURE 6

The prognostic or predictive AMscore and immune biomarkers. (A): Correlation between AMscore and tumor mutation burden (TMB). (B):
Correlation between AMscore and tumor neoantigen burden (TNB) in the TCGA cohort. (C): AMscore according to microsatellite status; (D):
Correlation between AMscore and PD-L1 combined positive score (CPS). (E): AMscore according to PD-L1 CPS level. (F): Correlation between
AMscore and TMEscore. (G): Correlation between AMscore and T cell receptor (TCR) clonality in the AHJU cohort. ACRG, Asian Cancer Research
Group; AHJU, Affiliated Hospital of Jiangsu University; TCGA, The Cancer Genome Atlas. MSI, microsatellite instability; MSS, microsatellite stability.
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cohorts, and patients with a high AMscore presented significantly

shorter OS than those with a low AMscore in both cohorts (HR =

5.79, 95% CI: 4.30-7.78, and HR = 108.58, 95% CI: 6.44-1831.88,

respectively, both p<0.0001; Figures 8E, F). A similar result was

found for progression-free survival (PFS) in the NSCLC cohort (HR

= 8.12, 95% CI: 2.32-28.49, p=0.0002; Figure 8G). In the melanoma

cohort, subgroup analysis showed that the ORRs of low versus high

AMscore were 66.7% vs. 0% and 40% vs. 0% for the first-line and

second-line immunotherapy, respectively (Supplementary Figures

S4A, B). And significant OS superiority still were observed for

patients with a low AMscore regardless of treatment lines

(Supplementary Figures S4C, D).

The combined role of the AMscore and classic immunotherapy

biomarkers was investigated (Table 1). In all the MSI, high TMB,

and PD-L1 CPS≥5 subsets of the GC cohort, patients with a low

AMscore showed an ORR of 100%, and those with a high AMscore

had an ORR of 0%. A low AMscore still displayed significant

superiority over a high AMscore in terms of ORR, even in the
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MSS (66.7% vs. 3.3%, p<0.001), low TMB (50.0% vs. 3.7%, p=0.002),

and PD-L1 CPS<5 (50.0% vs. 0%, p<0.001) subsets. This huge

response advantage in the low-AMscore subgroup, independent of

other biomarkers, was further validated in the UTC, melanoma, and

NSCLC cohorts, regardless of stratification according to TMB,

TNB, PD-L1 expression on tumor cells, PD-L1 expression on

immune cells (IC), or immune phenotype. Moreover, a huge

survival advantage in the low AMscore subgroup was observed in

all cohorts in all stratifications according to classic biomarkers

(Supplementary Figures S5, S6).
4 Discussion

Abnormal metabolism is a common phenotype in cancers and

hereditary diseases. Genes responsible for inborn metabolic errors

may also play important roles in cancer development. However, in

contrast to abnormal hereditary metabolism, which is usually
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FIGURE 7

The prognostic or predictive AMscore and immune cell infiltration. (A): Typical photomicrograph for multiple-immunofluorescence staining of
surface markers of immune cells in the AHJU cohort. 1: CD8; 2: CD56; 3: HLA-DR (red) and CD68 (green); and 4: reconstructed image including all
markers. (B): Correlation between AMscore and the effective infiltration scores of immune cells in the AHJU cohort. (C, D): Correlation between
AMscore and the abundances of other cells estimated based on transcriptome in the ACRG (C) and TCGA (D) cohorts.
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caused by defects in a single or a few genes (Table S1), cancer

metabolism is more complicated and involves polygenes and

various metabolic pathways, which require a comprehensive

evaluation based on omics. Thus, this study established gene

signatures and generated corresponding scores to evaluate the

overall role of genes involved in hereditary metabolic diseases in

the diagnosis, prognosis, and treatment outcomes of GC.

In this study, a diagnostic signature and a prognostic or

predictive signature were established. Interestingly, these two

signatures were completely different. The potential explanations

included: genes play disparate roles during different phases of

cancer (31); carcinogenesis and cancer progression may be driven

by different genes (32); metabolic genes play a dynamic role in

cancer through metabolic reprogramming (2). Furthermore, only 4

genes in the diagnostic signature and up to 32 genes in the

prognostic or predictive signature indicated that an increasing

number of metabolic genes were gradually activated during

cancer development.

Our diagnostic AMscore robustly distinguished between GC

and normal tissues in the different cohorts. In its signature, both
Frontiers in Immunology 11
ALG3 and SLC39A8 play central roles because of their large

regression coefficients. Of these, ALG3, encoding alpha-1,3-

mannosyltransferase, is associated with nitrogen-linked

glycosylation, which regulates various cellular processes, including

cell recognition, signal transduction, and cell-matrix interactions

(33). Defects in ALG3 have been associated with a congenital

disorder of glycosylation type Id characterized by severe

neurological involvement (34). Recently, increasing evidence has

revealed that ALG3 overexpression promotes carcinogenesis, tumor

proliferation, metastasis, and radio resistance and impairs

antitumor immunity in several cancers (35–38). The other gene,

SLC39A8, encodes the zinc ion transporter ZIP8, which mediates

the cellular uptake of divalent metal ions, including zinc, iron,

manganese, and cadmium, and is therefore essential for the growth,

development, and normal function of tissues and organs (39).

Interestingly, SLC39A8 defects are associated with another

congenital disorder, glycosylation type IIn (40). Recently,

abnormal SLC39A8 expression has been reported to increase

cancer risk and impact the clinical outcomes of several cancers,

partly through ferroptosis-related mechanisms (41–43).
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FIGURE 8

The prognostic or predictive AMscore and immunotherapy outcomes. (A–D): The receiver operating characteristic curve (ROC) for response
prediction and the objective response rate by AMscore in the immunotherapeutic gastric cancer (GC; A), urothelial cancer (UTC; B), melanoma (C),
and non-small-cell lung cancer (NSCLC; D) cohorts, respectively. (E–G): AMscore level significantly stratified overall survival in the
immunotherapeutic UTC (E) and melanoma (F) cohorts, and progression-free survival in the NSCLC cohort (G). AUC: the areas under the ROC.
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TABLE 1 Immunotherapy response by the prognostic or predictive AMscore stratified by classic immune biomarkers.

Biomarker Response AMscore P value

Low (%) High (%)

In the GC cohort (NCT.02589496)

Microsatellite status

MSS No 3 (33.3) 29 (96.7) <0.001

Yes 6 (66.7) 1 (3.3)

MSI No 0 (0.0) 1 (100.0) 0.014

Yes 5 (100.0) 0 (0.0)

Tumor mutation burden*

Low No 3 (50.0) 26 (96.3) 0.002

Yes 3 (50.0) 1 (3.7)

High No 0 (0.0) 4 (100.0) 0.001

Yes 8 (100.0) 0 (0.0)

PD-L1 combined positive score (CPS)

<5 No 3 (50.0) 25 (100.0) <0.001

Yes 3 (50.0) 0 (0.0)

≥5 No 0 (0.0) 2 (100.0) 0.002

Yes 8 (100.0) 0 (0.0)

In the urothelial cancer cohort (IMvigor210)

Tumor mutation burden*

Low No 70 (70.7) 113 (94.2) <0.001

Yes 29 (29.3) 7 (5.8)

High No 14 (33.3) 33 (89.2) <0.001

Yes 28 (66.7) 4 (10.8)

Tumor neoantigen burden*

Low No 71 (71.7) 132 (95.0) <0.001

Yes 28 (28.3) 7 (5.0)

High No 13 (31.0) 14 (77.8) 0.001

Yes 29 (69.0) 4 (22.2)

PD-L1 expression on immune cells (IC)

IC0 No 21 (65.6) 49 (96.1) <0.001

Yes 11 (34.4) 2 (3.9)

IC1 No 32 (65.3) 60 (95.2) <0.001

Yes 17 (34.7) 3 (4.8)

IC2 No 30 (50.8) 37 (86.0) <0.001

Yes 29 (49.2) 6 (14.0)

PD-L1 expression on tumor cells (TC)

TC0 No 67 (60.4) 118 (92.9) <0.001

Yes 44 (39.6) 9 (7.1)

(Continued)
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In the model of prognostic or predictive AMscore, many genes

presented an appreciable coefficient, indicating a joint metabolic

effect on clinical outcomes. CBS, the largest coefficient contributor,

encodes cystathionine beta-synthase, which catalyzes the

conversion of homocysteine to cystathionine, a critical step in the

generation of hydrogen sulfide (H2S). Defects in this gene can cause

homocystinuria due to cystathionine beta-synthase deficiency (44).

Because of the close relationship between homocystinuria and

cancer, CBS plays a significant pathogenetic role in cancer and is

linked to metastasis and multidrug resistance owing to the

important regulatory effect of H2S on mammalian biology,
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physiology, and pathophysiology (45). However, contradictory

findings have been reported in different cancers, indicating a

cancer type-dependent role of CBS (45).

Our prognostic or predictive signature involved many

metabolic activities that contributed to various biological

processes, especially those associated with therapy resistance and

anticancer immunity, as suggested in the GSEA according to

AMscore levels. Consistent with these results, we further found

that the prognostic or predictive AMscore determined the benefit of

postoperative adjuvant CT/CRT in GC, which lacks biomarkers,

and therefore has the potential to improve patient selection for this
TABLE 1 Continued

Biomarker Response AMscore P value

Low (%) High (%)

TC1 No 4 (44.4) 8 (100.0) 0.012

Yes 5 (55.6) 5 (0.0)

TC2 No 12 (60.0) 20 (90.9) 0.019

Yes 8 (40.0) 2 (9.1)

Immune phenotype

Inflamed No 20 (52.6) 23 (95.8) <0.001

Yes 18 (47.4) 1 (4.2)

Desert No 15 (62.5) 40 (88.9) 0.014

Yes 9 (37.5) 5 (11.1)

Excluded No 30 (56.6) 55 (91.7) <0.001

Yes 23 (43.4) 5 (8.3)

In the melanoma cohort (NCT.01621490)

Tumor mutation burden*

Low No 7 (53.8) 14 (100.0) 0.006

Yes 6 (46.2) 0 (0.0)

High No 2 (33.3) 11 (100.0) 0.006

Yes 4 (66.7) 0 (0.0)

Tumor neoantigen burden*

Low No 4 (80.0) –

Yes 1 (20.0) –

High No 5 (35.7) 25 (100.0) <0.001

Yes 9 (64.3) 0 (0.0)

In the NSCLC cohort (GSE135222)

Tumor mutation burden*

Low No 2 (33.3) 16 (94.1) 0.002

Yes 4 (66.7) 1 (5.9)

High No 0 (0.0) 1 (100.0) 0.046

Yes 3 (100.0) 0 (0.0)
fro
*Based on the optimal threshold of TMB/TNB for the maximum ROC curve values, the patients were dichotomized into high and low subgroups.
GC, gastric cancer; NSCLC, non-small-cell lung cancer.
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therapy. We also revealed that the AMscore had a negative impact

on TMB, TNB, and MSI, together with a significant enrichment of

DNA repair signaling in the high AMscore group in GSEA,

suggesting that tumors with a high AMscore are genome-stable.

In addition, a significant negative correlation was observed between

the AMscore and PD-L1 CPS. Energy status and specific metabolic

pathways have been verified to dictate PD-L1 protein levels (46, 47).

Furthermore, the AMscore was also correlated with immune cell

infiltration, and a high AMscore indicated impaired anticancer

immunity, characterized by decreased EIS of M1 macrophages

and NK cells. Interestingly, a high AMscore correlated with a

high EIS of CD8+ T cells, indicating the aberrant metabolism of

this critical immune cell. Recent studies have focused on targeting T

cell metabolism to unleash T cell activity (48). In addition, the

metabolism of stromal cells in the TME plays a pivotal role in tumor

progression and maintenance (49). We also showed that the

AMscore positively correlated with stromal cells such as

adipocytes, endothelial cells, and fibroblasts.

Recently, immunotherapy represented by ICIs has been a major

breakthrough in GC therapy. In the first-line treatment of

metastatic GC, five pivotal phase III trials, CheckMate 649,

ATTRACTION-4, ORIENT-16, RATIONALE305, and

KEYNOTE-859, showed that the combination of ICIs with

chemotherapy significantly prolonged PFS and/or OS compared

to chemotherapy alone in patients with positive or high PD-L1

expression and in the entire population (50). However, the survival

benefit of immunotherapy is still disputed in patients with low or

negative PD-L1 expression, which was not found in a post-hoc

analysis (51). In some trials, such as the CheckMate 649 (52) and

ORIENT-16 (53), the survival benefit in the entire population

appeared to mainly come from patients with high PD-L1

expression, whose proportions were unusually high (60% and

61%, respectively). Although PD-L1 seems to be an appropriate

predictor of immunotherapy, PD-L1 alone is not sufficient to meet

the increasing pursuit of therapeutic efficacy. Therefore, other

classic biomarkers, such as TMB and MSI, are also used for

clinical decisions. However, these current biomarkers have

limitations, including a lack of standard testing, the impact of

intra-tumor heterogeneity, inconsistent efficacy association

between trials and cancers, and applicability limited to a minority

(53). Novel biomarkers are needed to improve existing strategies for

patient selection to increase therapeutic efficacy and decrease

ineffective treatment. In this study, the AMscore was shown to be

a robust predictor of both immunotherapy response and survival in

GC and other tumors. Importantly, the AMscore improved the

predictive capability of the current biomarkers. In particular, an

ORR of 100% was observed in patients with a co-occurrence of low

AMscore and MSI, high TMB or PD-L1 CPS≥5 in the GC and

NSCLC cohorts included in our study. More notably, the AMscore

screened out patients with favorable treatment outcomes from the

disadvantaged groups defined by current biomarkers, thus

redefining the advantaged and disadvantaged groups. These

promising results demonstrate the close relationship between

metabolism, immunity, and the effectiveness of immunotherapy.

This study had some limitations. First, many genes in our

signatures have unclear roles in cancer biology, although they
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provide novel targets for further research. Second, the specificity

of our diagnostic AMscore to separate GC from other cancers was

not investigated in this study, which is still a challenge faced by

existing diagnostic biomarkers. Third, only the ACRG cohort with

sufficient data was used to investigate the association of the

AMscore with the adjuvant therapy benefit of GC; more such

cohorts are needed. Moreover, a few patients in the cohorts

included in this study received first-line immunotherapy,

especially in combination with chemotherapy, which has been the

standard treatment for GC and some other cancers. Besides, the

stronger combination of chemotherapy, targeted therapy, and

immunotherapy has been tested in GC (50). Therefore, the

predictive role of the AMscore needs investigated in these

therapies. Finally, our results require prospective validation.

In conclusion, this study revealed a strong association of genes

in hereditary metabolic diseases with the diagnosis, prognosis, and

therapeutic outcomes of GC and showed the potential for the use of

related gene signatures and corresponding scoring to guide clinical

practice. Further validation is necessary and future research should

focus on specific hub genes.
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SUPPLEMENTARY FIGURE 1

The prognostic or predictive AMscore and prognosis of patients treated by

adjuvant chemotherapy or chemoradiotherapy. (A–C): Overall survival

stratified by AMscore levels in patients treated by adjuvant CT/RCT (A), CT
(B) or RT (C), respectively. (D–F): Disease-free survival stratified by AMscore

levels in patients treated by adjuvant CT/RCT (D), CT (E) or RT (F), respectively.
CT: chemotherapy; CRT: chemoradiotherapy.

SUPPLEMENTARY FIGURE 2

The prognostic or predictive AMscore and the overall survival benefit of

adjuvant chemotherapy or chemoradiotherapy in the ACRG cohort. (A–C):
Overall survival (OS) benefit was significant in the AMscore low subgroup for

CT/CRT (A), CT (B), and CRT (C), respectively. (D–F): Compared with the
results in the AMscore low subgroup, OS benefit was substantially decreased

in the AMscore high subgroup for CT/CRT (D), CT (E), and CRT (F),
respectively. ACRG: Asian Cancer Research Group; CT: chemotherapy;

CRT: chemoradiotherapy.

SUPPLEMENTARY FIGURE 3

Immunotherapy response prediction by classic biomarkers. (A–D): The
receiver operating characteristic curve for response prediction by classic

biomarkers in the immunotherapeutic gastric cancer (A), urothelial cancer
(B), melanoma (C), and non-small-cell lung cancer (D) cohorts, respectively.
TMB: tumor mutation burden; TNB: tumor neoantigen burden; MSI:

microsatellite instability; CPS: combined positive score; IP: immune
phenotype; IC: immune cells; TC: tumor cells.

SUPPLEMENTARY FIGURE 4

Subgroup analysis in the melanoma cohort. (A, B): Overall response rates
according to AMscore in the first-line (A) and second-line immunotherapy

(B). (C, D): Overall survival according to AMscore in the first-line (C) and

second-line immunotherapy (D).

SUPPLEMENTARY FIGURE 5

Overall survival of immunotherapy stratified by the prognostic or predictive

AMscore according to TMB or TNB levels. (A, B): the gastric cancer cohort;
(C–E): the urothelial cancer (C), melanoma (D; all TNB low samples were also

AMscore low), and non-small-cell lung cancer (E) cohorts, respectively. TMB:

tumor mutation burden; TNB: tumor neoantigen burden.

SUPPLEMENTARY FIGURE 6

Overall survival of immunotherapy stratified by the prognostic or predictive

AMscore according to immune phenotype and PD-L1 expression in urothelial
cancer. (A): immune phenotype. (B): PD-L1 expression on immune cells (IC).

(C): PD-L1 expression on tumor cells (TC).
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