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Nonalcoholic fatty liver disease (NAFLD) is an expanding worldwide health

concern, and the underlying mechanisms contributing to its progression still

need further exploration. Neutrophil extracellular traps (NETs) are intricate

formations comprised of nuclear constituents and diverse antimicrobial

granules that are released into the extracellular milieu by activated neutrophils

upon various triggers, which play a pivotal part in the onset and advancement of

NAFLD. NETs actively participate in the genesis of NAFLD by fostering oxidative

stress and inflammation, ultimately resulting in hepatic fat accumulation and the

escalation of liver injury. Recent insights into the interaction with other hepatic

immune populations andmediators, such as macrophages and T regulatory cells,

have revealed several important mechanisms that can trigger further liver injury.

In conclusion, the formation of NETs emerged as an important factor in the

development of NAFLD, offering a promising target for innovative therapeutic

approaches against this debilitating condition. This comprehensive review seeks

to compile existing studies exploring the involvement of NETs in the genesis of

NAFLD and their influence on the immune response throughout the progression

of NAFLD.
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1 Introduction

NAFLD is the prevailing chronic liver ailment, distinguished by the excessive buildup

of lipids in the liver. The prevalence of NAFLD is on the rise primarily due to increasing

rates of obesity and metabolic syndrome (1). NAFLD activity score (NAS) and Non-

invasive scoring systems (NSS) are designed for clinical use to identify and evaluate

NAFLD progression (2–4). Progression stages have been broadly recognized and are

derived from simple fatty liver disease (steatosis) without specific hepatocellular

inflammation (5). NAFLD can advance into severe forms such as nonalcoholic

steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC) due to a diverse
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array of factors, encompassing lipotoxicity-induced endoplasmic

reticulum (ER) stress and mitochondrial dysfunction (6, 7),

activated Kupffer cells (KCs) (8), immune cell-mediated

inflammatory processes (9, 10), and gut microbiota (11–13).

Recent studies have highlighted the significant role of gut

microbiota in NAFLD. Whole-genome shotgun (WGS)

sequencing performed by Loomba et al. revealed that levels of

Escherichia coli and Bacteroides vulgatus (B. vulgatus) were

increased in patients with advanced fibrosis, while Eubacterium

rectale and B. vulgatus were increased in patients with mild/

moderated NAFLD (14). Mouries, et al. further found an initial

disruption of the intestinal epithelial barrier and gut vascular barrier

(GVB) in NASH (15). In recent years, NETs stimulation by

microorganisms such as adherent-invasive Escherichia coli (AIEC)

(16) and Entamoeba histolytica (E. histolytica) (17) has been

observed. One recent study found aberrant intestinal neutrophil

migration, increased bacterial translocation in the circulation, and

higher lipopolysaccharides (LPS) level in the visceral adipose tissue

(VAT) in interleukin-17 (IL-17) receptor-deficient (IL-17RA-/-)

mice fed with a HFD (18). These findings collectively suggest that

gut microbiota may influence the NETs in NAFLD. Nevertheless,

additional investigation is needed to directly confirm the effect of

gut microbiota on NETs in the development of NAFLD.

Over the past two decades, there has been an increasing

emphasis on investigating the influence of immune cells on the

development of NAFLD towards NASH-fibrosis. In the early 2000s,

studies began to highlight the importance of inflammatory

processes in the progression of NAFLD. For example, in an

article published in the journal Gastroenterology in 2002, Sanyal,

A. J. et al. showed that individuals diagnosed with NASH exhibited

elevated liver inflammation levels compared to those with steatosis

(19). Since then, numerous studies have investigated the

involvement of diverse immune cells and inflammatory agents in

the onset and advancement of NAFLD, and some investigations

have demonstrated the implication of macrophages, T cells, and

cytokines in the pathogenesis of hepatic inflammation and fibrosis

during NAFLD (20–25).

Neutrophils, a subset of leukocytes, serve as part of the primary

line of defense in the immune system, tasked with protecting the

body from infections and illnesses by engaging in the destruction of

pathogens like viruses, bacteria, and fungi (26–28) through

phagocytosis, degranulation, and NETosis (29, 30). Brinkmann,

V. et al. first proposed the term “NETs” in 2004, marking the

beginning of a new era (31). NETs are reticulated extracellular

formations consisting of chromatin, granular proteins, and

histones. During NAFLD, hepatic lipid accumulation can prompt

an inflammatory reaction, inducing neutrophil activation and

subsequent NETs release. NETs can initiate additional

inflammation and attract other immune cells to the liver, such as

macrophages and T regulatory cells (Treg), ultimately contributing

to NASH-HCC development (32, 33). In the context of these

studies, our research team observed that NETs foster

inflammation and facilitate the progression of hepatocellular

carcinoma in NASH, providing a novel strategy that targets NETs

for chronic liver disease therapy. Within this comprehensive review,

we begin by consolidating the research regarding the involvement of
Frontiers in Immunology 02
NETs at various phases of NAFLD advancement, especially their

interaction with the immune microenvironment during NAFLD

progression. Finally, we conclude by discussing the potential

therapeutic approaches targeting NETs to fight NAFLD.
2 NETs in immune defense

NETs released by activated neutrophils were first reported in

2004 as a physical barrier that helps trap and degrade virulent

pathogens and kill bacteria. Deoxyribonuclease1 (DNase1)

treatment abolished NETs formation, which is consistent with the

observation that NETs are primarily composed of DNA (31). In the

subsequent year, the same research team discovered that granular

proteins but not histones facilitated the destruction of both yeast-

form and hyphal cells of Candida albicans in the antimicrobial

action of NETs (34). As a foremost innate immune responder to

inflammation and tissue injury, neutrophils are considered crucial

in bolstering immune surveillance. The synergy between NETs and

neutrophil elastase (NE), histones, or other constituents enhances

the efficacy of antimicrobial capabilities. This immune defense

process is called “NETosis.” Along with eliminating bacteria,

NETs also contribute to fighting viruses and fungi (35–40).

NETs are involved in anti-inflammatory functions and have

been shown to be relevant in trapping and killing Staphylococcus

aureus (41). In 2014, Schauer C. et al. reported that aggregated

NETs limit chronic inflammation by degrading cytokines and

chemokines through binding with proteases (42). In 2019, Ribon

M. et al. proposed that NETs exert anti-inflammatory actions in

rheumatoid arthritis via complement component 1q (C1q) and

human cationic antibacterial protein (LL-37) (43).

The liver is the most critical organ responsible for maintaining

normal host homeostasis. During sepsis-related organ injury, it

relies on various cell types, including KCs, hepatocytes, B cells, and

neutrophils, to carry out pivotal functions in combating bacterial

infections (44, 45). The bacteria are captured and removed by

resident KCs, which are localized in the liver sinusoids (46, 47).

Subsequently, neutrophils migrate and accumulate in the infected

area, where they interact with platelets and release neutrophil

extracellular traps to capture and clear bacteria (48).

Excessively expressed NETs have been observed to contribute to

inflammation within the liver (49–51). In this review, we will discuss

how NETs regulate inflammatory response during NAFLD

progression (Figure 1). Prior research has revealed that NETs fulfill a

dual function, participating in both pro- and anti-inflammatory

processes. Hence, it becomes imperative to comprehend their

formation and function under both typical and pathological

circumstances to devise precise therapeutic approaches for NAFLD.
3 NETs in the pathophysiological
progression of NAFLD

As of July 2023, there are over 5000 publications in the PubMed

database that pertain to the exploration and comprehension of the

various roles of NETs. Since 2018, the study of the potential
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significance of NETs in the progression of NAFLD has been steadily

gaining prominence (Table 1). The collective discoveries across

various stages of NAFLD suggest that NETs actively contribute to

pro-inflammatory processes, hastening the advancement of

the disease.
3.1 NETs in steatosis

As a central part of the innate immune response, neutrophil

infiltration in the liver has a notable role in promoting NAFLD

progression. Myeloid cells lacking p38 mitogen-activated kinases

p38g and p38d (p38g/d) demonstrate resistance to high-fat diet-

induced steatosis in association with reduced neutrophil infiltration

in the liver. Conversely, wild-type mice with excessive neutrophil

infiltration experience enhanced steatosis development (59). The

generation of NETs is one of the critical strategies of neutrophils

during an inflammatory response; however, whether NETs

participate in the development of steatosis is yet to be fully explored.

Peptidylarginine deiminase 4 (PAD4) is essential for the

formation of NETs, as PAD4-/- neutrophils lose the ability to

form NETs (60). Two constituents of the DNase1 family, DNase1

and DNase1 like 3 (DNase1L3), have been identified as contributors

to NETs formation both in vitro and in vivo (61). Aberrant lipid
Frontiers in Immunology 03
accumulation resulting in lipotoxicity is considered to be a crucial

event in hepatic steatosis progression. Elevated production of free

fatty acid (FFA) represents a significant hallmark of NAFLD (62,

63). Inhibition of fatty acid synthase (FASN) in human primary

liver microtissues prevents the development of steatosis (64). Our

research has demonstrated that free fatty acids (FFAs), such as

linoleic acid (LA) and palmitic acid (PA) but not oleic acid (OA),

induce the formation of NETs in vitro. However, inhibiting NETs

through DNase1 or using PAD4 knockout mice did not prevent the

increase in FFAs, which suggests that NETs formation is not a

causative factor of steatosis but rather an outcome of lipid

accumulation (32). Nevertheless, the mechanism under this

circumstance still requires further exploration. By employing gas

chromatography–mass spectrometry (GC-MS) to examine

peripheral blood from individuals, researchers discovered that F6

(furanoid F-acid F6) instigates NETs formation through activating

ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal

kinase), and AKT (protein kinase B) kinases. On the other hand,

other common fatty acids such as PA, palmitoleic acid (PO), stearic

acid, and OA induce NETs formation by activating ERK, JNK, but

not AKT kinase (65). Additionally, in response to lLPS) stimulation,

neutrophils release NETs via toll-like receptor 4 (TLR4)-JNK axis

activation (66). Thus, it is possible that steatosis induces NETs

formation through these distinct pathways.
FIGURE 1

NETs regulate inflammatory response during NAFLD progression. (Steatosis) Myeloid cells with p38g/d deficiency are resistant to HFD-induced
steatosis. F6 induces NETs formation through activating ERK, JNK, and AKT signaling pathways. However, FFAs induce NETs formation by activating
ERK, JNK, but not AKT kinase. IL-17RA-/- mice fed with HFD have experienced decreased intestinal neutrophil migration, indicating gut microbiota
may be a potential modulator of NETs formation during NAFLD. (NASH-fibrosis) In the progression of NASH-fibrosis, S1PR2 functions as a catalyst
for NETs formation, and silencing S1PR2 can mitigate hepatic fibrosis and inflammation. NETs generation fosters the differentiation of Treg and
facilitates the advancement of HCC. NETs entice MDMs, subsequently reshaping the inflammatory milieu within NASH. Neutrophils activate HSC by
inducing the production of ROS and MPO. ABX treatment may inhibit NETs formation during liver fibrosis. IL-17 and IL-22 produced by neutrophils
promote liver fibrosis development through TGF-b signaling. (Cirrhosis) NETs markers exhibit a marked increase in patients with liver cirrhosis and
portal vein thrombosis. During liver cirrhosis, NETs formation assumes a role in promoting coagulation. IL-22 and IL-17 production from neutrophils
potentially promote NETs formation through STAT3 signaling during NAFLD. (HCC) Neutrophils expressing CXCR2 infiltrate in the course of NASH-
HCC development, and a combined therapy involving PD-1 antibodies and CXCR2 inhibitor (AZD5069) reshapes the behavior of TANs. HCC cells
internalize NETs, leading to elevated COX2 levels through activation of TLR4/9. FFA, free fatty acid; F6, furanoid F-acid F6; ERK, extracellular signal-
regulated kinase; JNK, c-Jun N-terminal kinase; AKT, protein kinase B; IL-17RA, interleukin-17 (IL-17) receptor; S1PR2, specific G protein-coupled
S1P receptor 2; ABX, antibiotics; IL-17, interleukin-17; IL-22, interleukin-22. STAT3, signal transducer and activator of transcription 3; MDMs,
monocyte-derived macrophages; TAT, thrombin-antithrombin complex; PVT, portal vein thrombosis; HCC, hepatocellular carcinoma; ROS, reactive
oxygen species; MPO, myeloperoxidase; CSF-1, colony stimulating factor 1; XCR1, X-C motif chemokine receptor 1; DC, dendritic cells; PD-1,
programmed death protein-1; CXCR2, CXC chemokine receptor 2; TANs, tumor-associated neutrophils; COX2, cyclooxygenase-2; IL-1a/b,
interleukin-1a/b.
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3.2 NETs in NASH

NASH represents a progressed stage of NAFLD, displaying a

robust correlation with both inflammation and metabolic

disturbances. Neutrophil infiltration in NASH was identified

decades ago (67). NETs, one of the key features of neutrophils,

have emerged as modulators of chronic inflammation and

subsequently promote the progression of cancers (68–70). In

2018, our research team initially documented the occurrence of

NETs formation in NASH, noting elevated leve ls of

myeloperoxidase (MPO)-associated DNA (MPO-DNA), a

hallmark of NETs, in the serum of preoperative NASH patients.

To investigate further, we utilized STAM mice, a NASH mouse

model created by neonatal streptozotocin (STZ) injection followed

by a high-fat diet (HFD) regimen (71). In this established NASH

model, we found that NETs formation was accompanied by

increased neutrophil infiltration and inflammatory cytokines.
Frontiers in Immunology 04
NETs regulate the inflammatory environment in NASH by

recruiting monocyte-derived macrophages (MDMs). Our study

provides fundamental evidence that the formation of NETs is a

vital factor in driving the advancement of NASH, bridging the gap

between steatosis and NASH.

Additionally, our research team discovered that NETs serve as a

link between adaptive and innate immunity via promotion of

regulatory T cell differentiation and function (33). In this

investigation, a murine model was subjected to a western diet to

induce a NASH phenotype, unveiling a direct relationship between

heightened Treg activity and the generation of NETs. Moreover, the

inhibition of Treg led to the prevention of NASH liver development.

This fascinating discovery is dependent on the mitochondrial

oxidative phosphorylation (OXPHOS) pathway in naïve CD4

positive T cells with TLR4 mediating metabolic reprogramming.

NETs exhibit a vital role in the induction of hypercoagulability in

NASH patients. In this study, plasma samples obtained from both
TABLE 1 The involvement of NETs in the development of NAFLD.

Year Immune responses Phenotype Study model

Innate Adaptive

2018 (32) Neutrophils infiltration ↑
Macrophage infiltration ↑

N/A • MPO ↑
• H3Cit ↑
• Tumor formation ↑

STAM mouse model

2019 (52) Neutrophils infiltration ↑ • CD4+ T cells ↓
• CD8+ T cells ↓
• T cell exhaustion ↑

• H3Cit-DNA ↑
• Tumor formation ↑

STAM mouse model

2020 (53) Neutrophils infiltration ↑ N/A • MPO ↑
• H3Cit ↑
• S1P ↑
• NETosis ↑
• Neutrophil spontaneous apoptosis ↓
• Liver fibrosis ↑

MCD-HFD mouse model

2021 (33) Neutrophils infiltration ↑
Macrophage infiltration ↑
DC ↑

• CD4+ T cells ↓
• Treg ↑
• B cells ↑

• H3Cit ↑
• OXPHOS ↑
• Tumor formation ↑

STAM and WD mouse models

2021 (54) N/A N/A • MPO ↑
• H3Cit ↑
• TAT ↑

HCC and cirrhosis patients

2022 (55) N/A N/A • MPO ↑
• H3Cit ↑
• NE ↑
• TAT ↑

Liver cirrhosis patients with PVT

2022 (56) N/A N/A • TAT ↑
• CT ↓
• Coagulation ↓
• Thrombin and fibrin formation ↑

NASH patients

2022 (57) N/A N/A • MPO ↑
• H3Cit ↑
• NE ↑
• Platelet ↑
• NETs/IL-1b/IL-17A colocalization ↑

NASH and hepatitis patients

2023 (58) Neutrophil infiltration ↑
Macrophage infiltration ↑

• CD4+ T cells ↓
• CD8+ T cells ↑

• MPO ↑
• H3Cit ↑
• NE ↑

MCD-HFD and HFHC-NASH mouse models
N/A, data not available; MPO-DNA, myeloperoxidase associated DNA; H3Cit-DNA, histone H3 associated DNA; S1P, sphingosine 1-phosphate; MCDHF, methionine/choline deficient diet-
high fat diet; DC, dendritic cells; OXPHOS, oxidative phosphorylation; WD, western diet; STAM, stelic animal model, HCC, hepatocellular carcinoma; NE, neutrophil elastase; CT, coagulation
time; TAT, thrombin-antithrombin; PVT, portal vein thrombosis; IL-6, interleukin-6; IL-1b, interleukin-1b; HFHC, high fat and high cholesterol diet.
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NASH patients and healthy donors underwent assessment, and

NETs isolated from NASH patients showed a higher level of

procoagulant activity and pro-inflammatory factors than those

from healthy controls (56). A recent publication revealed that

changes in linoleic acid and g-linolenic acid (GLA) are

responsible for initiating the formation of NETs in an early

NASH mouse model, suggesting that fatty acids play a crucial

role in regulating NETs formation in the context of NASH (58).
3.3 NETs in NASH-fibrosis

Hepatic fibrosis plays a critical role in determining the mortality

rates of NASH patients and is also linked to the long-term

prognoses of individuals diagnosed with NAFLD (72, 73). A

prominent factor during NASH-fibrosis development is hepatic

stellate cell (HSC) activation (74, 75). The interaction between

neutrophils and HSC in liver fibrosis has been studied for years.

For example, increased infiltration of neutrophil-derived IL-17A

exhibits advanced liver fibrosis through promoting HSC activation

(76, 77). Neutrophils activate HSCs through reactive oxygen species

(ROS) and MPO production (78, 79). However, our understanding

of the role of NETs during liver fibrosis is still limited, and the role

of NETs in modulating the interaction between neutrophils and

HSC is a promising direction for future research.

MPO serves as a central element and inflammatory enzyme

within neutrophils. MPO-deficient neutrophils led to an inability to

form NETs, underscoring the essential role of MPO in NETs

formation (80). Within the NASH-fibrosis experimental

framework triggered by a high-fat diet lacking methionine and

choline, the deficiency of MPO in knockout mice led to a notable

decline in fibrosis. This finding implies a potential contribution of

NETs to the advancement of NASH-fibrosis (81).

Specific G protein-coupled S1P receptor 2 (S1PR2) acts as a

stimulator of Sphingosine 1-phosphate (S1P), another key

responder of inflammation. A recent study shows that

knockdown of SIPR2 can decrease liver inflammation and fibrosis

by inhibiting NETs formation (53). The presence of S1PR1 has been

identified as essential for the recruitment of neutrophils (82).

Considerable research has been carried out on the involvement of

S1P receptors in both adaptive and innate immunity and its

influence on various immune cell types, such as T cells, B cells,

NK cells, macrophages, dendritic cells, and neutrophils (83–88).

Although few studies directly explain the immune response

involving NETs and liver fibrosis, the impact of NETs on

immune responses could be one of the reasons for the

progression of liver fibrosis.
3.4 NETs in cirrhosis

Liver cirrhosis is the irreversible end stage of chronic fatty liver

disease. The pathophysiologic diagnosis of liver cirrhosis is

characterized by hepatocellular dedifferentiation, fibrous scarring,

HSC activation, and increased collagen deposition (89, 90).

Cirrhosis can be classified into two clinical stages: compensated
Frontiers in Immunology 05
and decompensated, also known as asymptomatic and symptomatic

stages. According to the U.S. Department of Veterans Affairs,

patients with compensated cirrhosis with conditions such as HCC

or advanced decompensated cirrhosis are considered eligible for

liver transplantation.

The increased prevalence of bacterial infection in individuals

diagnosed with cirrhosis has been established for over three decades

(91–93). Early studies have shown that liver cirrhosis patients have

compromised neutrophil recruitment, resulting in impaired

immune response (94, 95). Changes in neutrophils, such as

impaired NADPH oxidase activity and reduced MPO release,

could explain the increased vulnerability to bacterial infections in

individuals with decompensated cirrhosis (96). Interleukin-22 (IL-

22) facilitates the development of cirrhosis to HCC through Signal

transducer and activator of transcription 3 (STAT3) signal

activation (97). Neutrophils have been shown to be one of the

sources for IL-22 production (98), and IL-22 secreted from T cells

can recruit neutrophils to peripheral tissues (99). Moreover, IL-22

and IL-17 production from neutrophils promote NETs formation

(100, 101). The association between NETs and IL-22 during

NAFLD is unclear. New investigations have been conducted to

elucidate the involvement of NETs in liver cirrhosis. Markers of

NETs formation, MPO-DNA and citrullinated histone H3 (H3Cit)

associated DNA (H3Cit-DNA), were significantly elevated in

patients with cirrhotic livers compared to healthy controls (54).

Additionally, in cases of liver cirrhosis with portal vein thrombosis

(PVT), NETs have been shown to enhance procoagulant activity

(55). Elevated NETs levels in cirrhotic livers with PVT may act as a

link to malignancy in HCC (102).
3.5 NETs in NASH-HCC

The role of NETs in HCC, the most common form of primary

liver cancer, is becoming increasingly recognized. Our previous

research has indicated that the invasion of neutrophils and the

creation of NETs play a role in the progression of HCC within the

context of NASH (32). We observed macrophage infiltration at

eight weeks in the STAM NASH mouse model, whereas neutrophil

infiltration was observed at five weeks. Notably, the number of KCs

decreased at an early age, potentially being replaced by infiltrating

macrophages. This observation aligns with recent studies reporting

a decrease in KCs during NASH, subsequently replaced by

infiltrating lipid-associated macrophages (LAMs) (9, 103, 104).

Collectively, these reports suggest that NETs may interact with

macrophages and contribute to the development of NASH-HCC.

However, the association between NETs and other immune cells

requires further investigation.

Cancer cells induce NETs formation, stimulating cancer cell

invasion and migration (105, 106) through activation of various

pathways (107, 108). NETs-DNA promotes cancer metastasis by

interacting with the protein coiled-coil domain containing 25

(CCDC25) (109). In the NASH-HCC mouse model, there was an

observed reduction in CD4+ and CD8+ T cells, accompanied by

elevated levels of PD-L1 and indicators of T cell exhaustion (52).

Furthermore, NETs interact with regulatory T cells (Treg) and
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promote their activity by modulating the metabolic reprogramming

of naive CD4+ T cells. Depletion of Treg has been shown to prevent

the development of HCC in NASH (33), further demonstrating a

potential mechanism by which NETs in NAFLD interact with other

immune cells. Additionally, the internalization of NETs by HCC

cells increased COX2 expression through Toll-like receptors TLR4

and TLR9 activation (110).

Research has indicated a correlation between heightened

oxidative stress and inflammation with the formation of NETs in

individuals suffering from liver cirrhosis and HCC. The buildup of

NETs in the liver can trigger liver injury and foster fibrosis,

ultimately leading to cirrhosis and elevating the risk of HCC. A

recent study shows that CXCR2-positive neutrophils infiltrate

NASH-HCC models , and anti-PD-1/CXCR2 inhibi tor

combination therapy reprograms tumor-associated neutrophils

(TANs). However, it still needs to be examined whether or not

NETs participate in this process (111).
4 Potential therapeutic targeting of
NETs in NAFLD

Therapeutic targeting of NETs in NAFLD is an active area of

research. NETs have been implicated in the transformation of

NAFLD to its more severe form, NASH, and have been shown to

be associated with liver fibrosis, cirrhosis, and HCC. Several

potential therapeutic strategies are being explored for targeting

NETs in NAFLD, including:
4.1 Anti-inflammatory agents

In a clinical investigation, asthma patients undergoing daily

treatment with inhaled corticosteroids (ICS) displayed notably

reduced mean plasma NETs level compared to patients who either

did not use ICS or only used them infrequently (112). Studies have

revealed that the antioxidant drug resveratrol (RESV) can effectively

reduce the generation of NETs by neutrophils in individuals afflicted

with severeCOVID-19 infection (113). Thisfinding reveals a potential

role for RESV in mitigating the development and accumulation of

NETs in the liver. During a preclinical investigation, the combination

ofDNase1with hydroxychloroquine (HCQ) or aspirin, a nonsteroidal

anti-inflammatorydrug (NSAID), exhibited a remarkable inhibitionof

HCC metastasis in a murine model (110). Moreover, in a rat model

with hepatic fibrosis elicited by thioacetamide (TAA) administration,

the experimental groups treated with low-dose aspirin, high-dose

aspirin, and enoxaparin exhibited a significantly reduced liver

fibrosis score when compared to the untreated group (114).
4.2 NETs-degrading enzymes

Enzymes that can break down NETs, such as DNase1, have been

used for treatment of NETs formation for decades. In a mouse

model of necrotizing fasciitis, Group A Streptococcus (GAS)
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expressing DNase (Sda1) has been identified as a contributor to

bacterial virulence. Sda1 effectively breaks down NETs both in vitro

and in vivo (115). Studies have demonstrated that DNase exhibits

therapeutic potential in animal models of NASH-HCC (32).
4.3 Anticoagulants

Medications that inhibit blood clotting, including heparin and

warfarin, have been found to decrease NETs formation and enhance

liver function in mouse models of NAFLD (116, 117). In a rat model

administered with chronic carbon tetrachloride (CCl4) to establish

liver fibrosis, low molecular weight (LMW)-heparin and dalteparin

sodium significantly ameliorated hepatic fibrogenesis (118).

Additionally, in prothrombotic factor (F) V Leiden mutant mice,

C57BL/6 wild-type mice, and warfarin-treated mice exposed to

CCL4, experimental results showed that warfarin effectively reduced

hydroxyproline content and fibrosis score (119). Moreover, in a

cirrhotic Wistar rats model, notable reductions in liver fibrosis,

HSC activation, and desmin expression were found in the

enoxaparin treated group (120). Consistently, rivaroxaban

(RVXB), an oral anticoagulant, also dramatically reduced HSC

activation and intrahepatic microthrombosis in CCL4-induced

cirrhosis rat model (121). Along with these preclinical studies, the

first clinical trial was established in 2012. In this trial, 70 patients

with advanced cirrhosis were randomly assigned to two groups,

with or without enoxaparin treatment. No patients in the

enoxaparin group had PVT (122). Although no direct evidence

has shown that enoxaparin limits NETs accumulation, it provides a

potential direction for further exploration of its role in

NETs formation.
4.4 Vitamins

Vitamin C is an essential vitamin for human health. A previous

study has shown that vitamin C-deficient neutrophils do not

undergo NETosis (123). In this study, L-gulono-g-lactone oxidase

(Gulo)-/- mice, which are deficient in vitamin C synthesis, undergo

decreased neutrophil apoptosis even without a hypoxic

environment. Similar results were found in sepsis mouse models

where NETs formation was dramatically decreased in vitamin C-

deficient mice (124, 125). In contrast to the role of vitamin C in

NETs format ion , another s tudy showed that 1 , 25-

dihydroxyvitamin D3 can induce NETs formation and the mRNA

levels of NETs-related markers (126). In this study, NETs

demonstrated a potential protective role during infections by

sequestrating the spread of pathogens.
4.5 Probiotics, prebiotics and synbiotics

Numerous studies have demonstrated that an imbalance in gut

microbiota can disrupt the homeostasis of the intestinal system,

thereby increasing the risk of advanced NAFLD (127–132). The
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activation of NETs by microbiota has been reported previously

(133). NETs can be stimulated in a rat model of LPS-induced sepsis,

and the disruption of NETs has been shown to ameliorate intestinal

injury (134). Depletion of microbiota through antibiotics (ABX, a

mixture of Ampicillin, Streptomycin,Metronidazol and Vancomycin)

treatment was associated with a decrease in NETs formation (135).

Thesefindingssuggest thatgutmicrobiota-targeted treatments, suchas

the use of PPS, hold promise as potential interventions to limit NETs

formation during NAFLD (136, 137). Although PPS exhibit positive

effectsonguthomeostasis, theirdirect impact onNETsduringNAFLD

remains unclear. In mouse bone marrow–derived neutrophils

(BMDNs) and human promyelocytic cell line HL-60, the probiotic

L. rhamnosus strain GG (LGG) has been found to inhibit NETs

formation, potentially by suppressing ROS and phagocytosis (138).

Nevertheless, these potential therapeutic strategies are currently in

the preliminary stages of research, necessitating further investigations

to determine their effectiveness and safety in human populations.

Exploring immune system modulation to reduce the formation and

accumulation ofNETs and addressing the root causes of inflammation

and oxidative stress may present novel therapeutic avenues for

individuals with NAFLD. It is important to note that while targeting

NETs inNAFLD is an important avenue of research, themanagement

of NAFLD requires a comprehensive approach that addresses the

underlying causes of oxidative stress and inflammation, such as

obesity, insulin resistance, and poor dietary habits.
5 Future perspectives

Targeting NETs in NAFLD holds promise for improving its

management and preventing progression to more severe forms like

NASH and cirrhosis. Further laboratory studies and clinical trials are

needed to develop new drugs that specifically target NETs formation

in NAFLD. These drugs could be used alone or in combination with

existing therapeutic strategies to improve liver health and reduce the

risk of liver cirrhosis and HCC (139, 140). As our understanding of

the role of NETs in NAFLD improves, personalized medicine

approaches may gain wider acceptance. These may involve genetic

and biomarker-based approaches to identify patients at high risk of

developing NAFLD and tailoring therapeutic strategies accordingly

(141–143). Combining multiple therapeutic strategies, such as anti-

inflammatory agents (114), NET-degrading enzymes (115),

anticoagulants (116), immune modulation, and vitamin C (125)

may also provide synergistic benefits and enhance the efficacy of

NETs-targeted therapies. To assess the effectiveness and safety of

NETs-targeted therapies in human populations, extensive clinical

trials on a large scale are necessary. These trials should be rigorously

designed, randomized, controlled, and inclusive of participants at

different stages of NAFLD (10). NETs-targeted therapies should be

integrated with existing therapies for NAFLD, such as lifestyle

modifications, weight loss, and medications to improve insulin

sensitivity to maximize their therapeutic benefits. Overall, the

future of NET-targeted therapies for NAFLD holds great promise,

and further research in this area could transform the treatment of

chronic liver diseases and improve the health outcomes of millions of

individuals worldwide.
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NETs play a complex role in the pathogenesis of NAFLD. While

they are critical to the body’s defense against infection and

inflammation, their excessive formation and accumulation can

contribute to liver damage and disease progression, potentially

resulting in liver failure. Additional investigations are essential to

fully elucidate the precise mechanisms through which NETs impact

the development of NAFLD and to identify effective strategies for

targeting NETs in NAFLD. This pursuit may involve exploring new

drugs, personalized medicine approaches, and combination

therapies, as well as their integration with existing treatments.

To comprehensively understand the mechanism of NETs in

NAFLD, it is essential also to examine their role in other common

liver diseases. This broader perspective can contextualize our current

knowledge of NETs in NAFLD amidst liver-related conditions. For

example, a previous study demonstrated that acute alcohol

consumption reduces LPS-induced NETs formation during alcohol

hepatitis (AH) in mice (144). The effect may be dependent on the

elevated levels of IL-6. In other sterile liver inflammation scenarios,

such as ischemia/reperfusion (I/R) injury, NETs formation is induced

by damage-associated molecular patterns (DAMPs), activating TLR4

and TLR9 signaling pathways (145).

Furthermore, the imbalance of the gut-liver axis (GLA) during

NAFLD has been known for years (146). Previous studies have

shown that microorganisms can stimulate the formation of NETs

(16, 17). Therefore, gaining insights into the connection between

gut microbiota and NETs in NAFLD represents a promising

avenue for research. This exploration provides an opportunity

to develop new microbiota-based therapies, such as PPS

treatment. The potential benefits of probiotics in delaying

NAFLD development through the modulation of the LPS/TLR4

signaling pathway have been examined (147). Moreover,

investigations into prebiotics and synbiotics in the context of

NAFLD (148, 149) suggest that combining the benefits of gut

microbiota treatments with NETs inhibition may offer a novel

approach to mitigate NAFLD severity.

Finally, the interplay between NETs and other immune cells in

the development of NAFLD needs deeper exploration. Reports have

highlighted interactions between NETs and Treg, along with

elevated levels of dendritic cells (DCs) and B cells during NAFLD

(33). Emerging evidence also suggests an increased infiltration of

macrophages in NAFLD (32, 33, 58, 103). These ongoing

investigations imply that NETs may influence a complex network

within the immune environment during NAFLD. A more thorough

understanding of these interactions may pave the way for

innovative therapeutic strategies aimed at managing NAFLD and

its complications through immune response modulation.
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