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López-Fandiño R, Molina E and
Lozano-Ojalvo D (2023) Intestinal
factors promoting the development
of RORgt+ cells and oral tolerance.
Front. Immunol. 14:1294292.
doi: 10.3389/fimmu.2023.1294292

COPYRIGHT
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Intestinal factors promoting
the development of RORgt+

cells and oral tolerance

Rosina López-Fandiño*, Elena Molina
and Daniel Lozano-Ojalvo

Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
The gastrointestinal tract has to harmonize the two seemingly opposite functions

of fulfilling nutritional needs and avoiding the entry of pathogens, toxins and

agents that can cause physical damage. This balance requires a constant

adjustment of absorptive and defending functions by sensing environmental

changes or noxious substances and initiating adaptive or protective mechanisms

against them through a complex network of receptors integrated with the central

nervous system that communicate with cells of the innate and adaptive immune

system. Effective homeostatic processes at barrier sites take the responsibility for

oral tolerance, which protects from adverse reactions to food that cause allergic

diseases. During a very specific time interval in early life, the establishment of a

stable microbiota in the large intestine is sufficient to prevent pathological events

in adulthood towards a much larger bacterial community and provide tolerance

towards diverse food antigens encountered later in life. The beneficial effects of

the microbiome are mainly exerted by innate and adaptive cells that express the

transcription factor RORgt, in whose generation, mediated by different bacterial

metabolites, retinoic acid signalling plays a predominant role. In addition, recent

investigations indicate that food antigens also contribute, analogously to

microbial-derived signals, to educating innate immune cells and instructing the

development and function of RORgt+ cells in the small intestine, complementing

and expanding the tolerogenic effect of the microbiome in the colon. This review

addresses the mechanisms through which microbiota-produced metabolites

and dietary antigens maintain intestinal homeostasis, highlighting the

complementarity and redundancy between their functions.

KEYWORDS

food allergy, oral tolerance, RORgt+ cells, regulatory T cells, ILC3s, retinoic acid,
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1 Introduction

Food allergy is a prevalent disorder that has rapidly increased in the last 30 years,

particularly in Westernized, developed societies (1). In its most common manifestation, it

is an exacerbated type 2 innate and adaptive response to innocuous dietary antigens that

eventually leads to IgE-mediated reactions to food components eliciting the release of
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inflammatory substances from basophils and mast cells (2, 3).

Genetic features that cause deficient barrier functions or

alterations in genes involved in Th2 responses are among the risk

factors for allergy development (4), but they cannot explain

its exponential increase, that rather points at environmental

factors (5–7). Alterations in the intestinal microbiota or dysbiosis

is central to most of these factors, a notion that expands and

complements the hygiene hypothesis, originally postulated by

Strachan in 1989 (8).

Oral tolerance, which is considered the default, homeostatic

state whose failure leads to food allergy, is an active process of

immune unresponsiveness to orally ingested antigens that protects

from adverse reactions to food, locally in the gut but also

systemically (9–13). Mechanistic studies in animal models of food

allergy have provided abundant data supporting that tolerance is the

outcome of a regulatory response, rather than the result of immune

ignorance resulting from anergy, which designates T cell

unresponsiveness to the antigen, or deletion, which denotes

apoptosis of antigen-specific T cells (14–18). In this respect,

induced regulatory T cells (Tregs) are considered essential for

establishing peripheral tolerance to foreign antigens (19–21).

Induced Tregs are complementary to thymus-derived Tregs,

whose T cell receptor (TCR) repertoire is biased towards

autoantigen recognition to maintain self-tolerance, although,

according to some studies, the TCR repertoire of colonic thymic

Tregs is sufficiently broad to recognize intestinal antigens and to

maintain tolerance to them (22). Furthermore, it has been claimed

that, when peripheral induction of Tregs is hampered, thymus-

derived Tregs compensate to maintain the total intestinal Treg

numbers and strengthen homeostatic capabilities (23, 24).

Nevertheless, it is generally recognized that induced Tregs

represent the majority of intestinal Tregs (25, 26). In the allergic

state, induced Tregs are specialized in exerting the distinct

functional role of controlling Th2 inflammation at mucosal

surfaces through multiple suppressive mechanisms (19–21), while

in the default tolerance state, it has been hypothesized that, at least

in mice, their IL-2-sequestering action causes naïve CD4+ T cells to

differentiate into a complex set of hyporesponsive T cells, lacking

canonical T helper cell lineage markers and inflammatory functions,

but having the potential to become peripheral Tregs themselves (27).

The establishment of a stable microbial community in the large

intestine is a dynamic process that coincides with the maturation of

the immune system and the generation of Tregs, responsible, not

only for immune irresponsiveness to commensal microorganisms,

but also for protection against food allergy (28–30). The intestinal

mucosa, the main site of interaction between dietary antigens, the

microbiota, and immune cells, is essential in the development and

maintenance of tolerance, as it constitutes a distinctive environment

that promotes the development and function of induced Tregs. This

review addresses the mechanisms through which microbiota-

produced metabolites and dietary antigens maintain homeostasis,

highlighting the complementarity and redundancy between their

functions and paying particular attention to recent reports that

uncover new processes that mediate immune protection at

barrier sites.
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2 Intestinal microbiome
and allergic disease

Several reports have demonstrated that the intestinal

microbiota of children with food allergy is different from that of

their non-allergic counterparts (31–33). Studies in animals have

also allowed stablishing associations between an intestinal

microbiota imbalance and food allergy. In the cholera toxin

mouse model of sensitization to food proteins, the development

of an allergic status parallels microbial alterations and the re-

establishment of tolerance regenerates a healthy microbiota (34).

Mice genetically susceptible to develop food allergy have a

characteristic microbiota that transmits this susceptibility when

transferred to germ-free mice (14) and, conversely, faeces from

healthy infants protect mice from allergy induced by mucosal

adjuvants (32, 33). Furthermore, dysbiosis in food allergy is also

associated with high Th2 and IgE responses to commensal bacteria,

showing an extensive breakdown of oral tolerance that goes beyond

sensitization to food antigens (32). However, it has not yet been

determined whether dysbiosis precedes and plays a role in the

pathogenesis of allergy, or whether it is a consequence of the allergic

process itself.

Microbiota maturation in humans is characterized by a high

alpha diversity and dominance of genera within the Firmicutes

phyla, to which commensal Clostridiales belong (35), and numerous

reports point at Clostridiales as beneficial in the avoidance of food

allergy. A Clostridia-containing microbiota is protective towards

pathogen infections (36). It also stimulates the intestinal production

of IL-22 by RORgt+ cells (37), that comprises ILC3s (a group of

innate lymphoid cells that include LTi cells, involved in the

development of lymph nodes, Peyer’s Patches and isolated

lymphoid follicles) and T cells (gdT, iNKT and Th17 cells) (38).

IL-22 targets intestinal epithelial cells (IECs) stimulating the

production of antimicrobial peptides (AMPs) and mucus and

helping to maintain and repair barrier integrity, which may

reduce allergen uptake (39). However, the induction of factors

that contribute to barrier function by Clostridia colonization does

not provide full protection against food allergy (37). This effect

rather arises from the ability of Clostridiales to increase in the

number and function of colonic Tregs, as demonstrated in rodents

colonized with these microorganisms (25, 26, 32, 33, 37, 40, 41).

However, the observation that the generation of Tregs in mice

occurs during a very specific time interval in early life, which

coincides with weaning, and that it is sufficient to prevent

pathological events in adulthood towards a much larger bacterial

community and to provide tolerance towards diverse food antigens

encountered later in life, points at a complex mechanism in which

particular bacteria or Treg antigen-specificity may not be the

determining factors (42–44). Thus, whereas there is a consensus

that appropriate intestinal microbial stimuli during early life are

critical for inducing a protective immunoregulatory network, it is

controversial whether this stems from a sufficient level of microbial

diversity (45–47) or from defined immunomodulatory bacterial

species (32).
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2.1 Foxp3+RORgt+ Tregs

Clostridiales are renowned for their ability to promote a

tolerogenic environment through the induction of a particular

subset of Tregs bearing the transcription factor RORɣt, which
constitutes the major subset of colonic Tregs in the mouse and

has also been found in human colon and peripheral blood (48–53).

Foxp3+RORgt+ Tregs can also be generated by a specific, but wide,

diversity of other bacteria (46, 53). These cells were proved to be

functionally suppressive in vitro and in vivo (48, 51, 53, 54). In mice,

colonic Tregs expressing RORɣt inhibit Th2 responses, avoiding the
production of IL-4 and IgE (52). The involvement of

Foxp3+RORgt+ Tregs in the mediation of oral tolerance in food

allergy is further sustained by the finding that their frequency is

reduced within peripheral blood mononuclear cells of allergic

human patients and mice, despite normal frequencies of

circulating RORɣt+ effector T cells, and by the enhanced

susceptibility of mice with depleted Rorc (which encodes RORgt)
expression to suffer vigorous anaphylactic responses (32). These

findings open new perspectives for reinforcing oral tolerance

through bacteriotherapy or faecal microbiota transplants (55).

Interestingly, the function of Foxp3+RORgt+ Tregs is not

restricted to intestinal health, since it has been recently found that

colonic RORgt+ Tregs accumulate in injured muscles, under the

influence of local inflammatory mediators, where they promote

tissue regeneration through the control of local IL-17

production (56).

Despite the opposing primary regulatory and proinflammatory

roles initially attributed to Foxp3 and RORgt, respectively the

hallmark transcription factors of Tregs and Th17 cells, CD4+T

cells that co-express Foxp3 and RORgt and produce IL-17 (albeit at

lower levels than proinflammatory Th17 cells) constitute a distinct,

stable cell lineage, rather than an intermediate subset during Treg

and Th17 cell differentiation (48–50, 53, 54, 57). Moreover, recent

studies indicate that Foxp3+RORgt+ Tregs are developmentally and

functionally closely related to a homeostatic type of Th17 cells (58).

The existence of protective Th17 cells responsible for the

maintenance of epithelial barrier integrity underscores that RORgt
and IL-17 are not per se determinants of pathogenicity, that rather

depends on the in vivo environment and the presence of specific

factors (59, 60). Whereas Foxp3+RORgt+ Tregs are regarded as

induced Tregs, by virtue of the lack of expression of Helios or

Neuropilin-1 (52), it has been claimed that thymus-derived Tregs

can also acquire RORgt expression, particularly under

proinflammatory conditions (61).

TGF-b regulates the differentiation of Foxp3+, RORgt+ or

double positive cells depending on its local concentration and on

the existence of a proinflammatory environment, in a tightly

controlled balance that is critical for immune homeostasis (59)

(Figure 1A). High local concentrations of TGF-b favour the

induction of Foxp3, which restrains the proinflammatory RORgt
function, unless the cytokines IL-6, IL-21 and IL-23 stimulate the

development of non-homeostatic Th17 cells (48, 49). Nevertheless,

mice deficient in IL-6 have been described to develop significantly

less Foxp3+RORgt+ cells than their IL-6-sufficient counterparts (52).
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Interestingly, TGF-b produced by Tregs themselves, under the

influence of immunomodulatory commensal bacteria, promotes

RORgt expression in nascent Tregs by exerting a specific non-

redundant role with respect to TGF-b produced by cells of the

innate immunity or by non-immune cells (85). Furthermore, once

Foxp3+RORgt+ Tregs have differentiated from naïve CD4+ T cells

and have acquired gut homing properties in the mesenteric lymph

nodes (MLNs), TGF-b produced by eosinophils residing in close

contact with them in the intestinal lamina propria drives their

recruitment and expansion in the affected tissue (86). The

proliferation and maintenance of Foxp3+RORgt+ Tregs in the

lamina propria also depends on costimulatory signals by antigen

presenting cells (APCs), mainly through ICOS and CD28, and likely

on continuous MHCII-driven stimulation (24, 88) (Figure 1B).

The vitamin A metabolite retinoic acid (RA) promotes the

generation of Foxp3+ Tregs and Foxp3+RORgt+ Tregs over Th17

cells in vivo (52). The most prevalent form of RA (all-trans RA)

binds to retinoic acid receptors (RARs), which form heterodimers

with retinoid x receptors (RXRs), working as nuclear receptors or

ligand inducible transcription factors through the recognition of

specific sequences designated retinoic acid response elements

(RAREs) in the regulatory regions of several target genes (89). In

the presence of TGF-b, RA may facilitate Foxp3+ Treg cell

generation through several direct and indirect, non-mutually

exclusive, mechanisms (64, 90), while it promotes the expression

of intestinal homing receptors, a4b7 and CCR9, on Tregs to place

them in the tissue where they are most needed (73) (Figure 1B). RA

has been reported to enhance TGF-b-signalling by increasing

Smad3 expression and phosphorylation (91). Indirectly, RA drives

the differentiation of a more stable and complete Treg cell lineage in

vitro, as compared with TGF-b alone, by releasing the STAT3-

mediated IL-6 inhibition via the blockade of the expression of the

IL-6 receptor (65, 66). In addition, in vitro and in vivo experiments

showed that RA can hinder cytokine production by memory

(CD44hi) CD4+ T cells (IL-21, IFN-g, and, mainly, IL-4) (64),

interfering with the ability of these cytokines to inhibit TGF-b-
induced Treg conversion (92). In this respect, CCAAT/enhancer-

binding protein (C/EBP), a family of transcription factors whose

expression is upregulated by RA, was shown to ensure a stable

induction of Tregs by conferring resistance towards inhibitory

cytokines in both mouse and human systems (93). The

observation that RA abrogates the suppressive activity of IL-4 on

Foxp3 transcription underscores its role in favouring tolerance in

Th2-mediated diseases (94). Furthermore, RA increases specific IgA

responses at the expense of specific IgE responses in sensitized mice

and decreases IgE production by human B cells (95). Nevertheless,

RA, in in vitro experiments in the absence of TGF-b, rather than
suppressing Th2 development, has been shown to enhance Th2

responses, what has been speculated to be a factor in sensitization to

food allergens through non-oral routes (96).

Noteworthy, RA signalling has a direct effect on RORgt+ cells,

since RA stimulation increases binding of RAR and RXR to the

promoter region of the gene Rorc, thereby initiating its expression

(81). In fact, the normal metabolism of RA by IECs, stromal cells

and mucosal DCs has been identified as the stimulus that tilts the
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balance in favour of Foxp3+RORgt+ Tregs (38). Moreover, RA

controls LTi cell maturation upstream of the transcription factor

RORgt, which may explain why vitamin A deficiency in the foetus

diminishes the size of secondary lymphoid organs (81). Similarly,

RA/RAR signalling in RORgt is needed for a proper development of

LTi cells and, in general, ILC3s in adult mice (82). RA inhibits IL-

17A production by gd T cells and enhances the production of IL-22

by gd T cells and ILC3s in vitro, as well as in vivo, during intestinal

inflammation in the mouse (97). Thus, vitamin A deficiency during

early life hinders oral tolerance in mice, partially due to intestinal

epithelium immaturity (98). As a result, absence of vitamin A in the

adult promotes ILC2s, and likely allergic responses, as a tool to face

barrier challenges deriving from less lymphoid tissue and reduced

production of IgA and IL-22 (82, 99). As mentioned, IL-22 is

important in tissue repair and maintenance of the mucosal barrier,

but its production needs to be tightly regulated, because it is also

highly expressed in several different chronic inflammatory

conditions (38). Interestingly, RA also induces the production of

IL-22 binding protein, a soluble inhibitory IL-22 receptor (IL-22R)

that favours its inactivation, by lamina propria DCs in the small and

large intestine of mice, as well as by human monocyte-derived

immature DCs (100).
Frontiers in Immunology 04
In vitro, most cells generated from naïve T cells using the

classical Treg generating conditions simultaneously express the

transcription factors Foxp3 and RORgt (48), suggesting that

studies that have referred to Tregs induced TCR-triggering of

naïve T cells with TGF-b and IL-2 as solely Foxp3+ cells did not

discriminate between the two populations by appropriate staining

for RORgt (101). Addition of IL-6, which opens the RORgt
differentiation pathway, further drives co-expression of Foxp3 and

RORgt (102), but this effect is transient and expression of Foxp3

subsequently declines (101). As in the in vivo situation, RA

contributes to expand and stabilize the phenotype of double

positive cells induced by TGF-b in vitro (48, 52, 101).

While RORgt expression in Tregs has been implicated in the

maintenance of intestinal homeostasis, the mechanism through

which these cells exert superior suppressive properties than

Foxp3+RORgt- Tregs is not yet clear (54). Foxp3+RORgt+ Tregs are

characterized by a memory phenotype (CD44hiCD62Llo), with high

levels of expression of Icos (ICOS), Ctla4 (CTLA-4), Il10 (IL-10) and

Irf4 (IRF4) (52, 54), as well as genes that confer specificity for

mucosal tissues (54). In addition, they exhibit full demethylation of

the Treg-specific demethylated region and substantial demethylation

of other Treg-associated epigenetically-regulated genes, such as
BA

FIGURE 1

(A) Mucosal DCs, that take up antigens in the lamina propria and migrate to the MLNs to activate naïve T cells, are functionally specialized in the
differentiation of Tregs by virtue of their ability to produce high levels of active TGF-b and RA (62, 63). RA facilitates Foxp3+ Treg generation, induced
by microbial and food antigens uptaken via GAPs, through several direct and indirect mechanisms (64–66). The relative proportions of TGF-b, RA,
IL-10 and IL-27 contribute to the induction of Foxp3-IL-10+, Foxp3+or Foxp3+RORgt+ Tregs that exhibit different resistance to inflammation (67–69).
RORgt-expressing APCs, such as ILC3s and/or Thetis cells specifically enforce the RORgt+ Treg population (70–72). RA also promotes the expression
of intestinal homing receptors (a4b7 and CCR9) on Tregs upon activation (73). (B) Cells that express RALDH constitutively, such as IECs and lamina
propria and MLN stromal cells, act as a primary supply of RA that promotes its own synthesis by DCs (74, 75). Mucin-2, secreted by goblet cells, also
imprints in DCs the transcription and activation of RALDH and the secretion of IL-10 and TGF-b (76). GM-CSF, produced by macrophages under the
stimulus of RA (75), as well as by RORgt+ cells, mainly ILC3s, induces RALDH activity and the release of TGF-b by DCs and IL-10 by macrophages
(77). Macrophages sense microbial cues and release IL-1b that drives ILC3s to produce GM-CSF (77) and IL-2, which further contributes to Treg
generation (78). Additional signals, such as IL-4 and TLR ligands also synergize with RA and GM-CSF in DC education (75, 79, 80). RA has a direct
stimulatory effect on RORgt+ cells, favouring the secretion of IL-22 by ILC3s in response to IL-1b, which stimulates the production of AMPs and
mucus and maintains and restores barrier integrity (81, 82). Once Tregs have migrated to the lamina propria, IL-10 released by macrophages and
DCs promotes the expansion of Foxp3+, and Foxp3-IL-10+ cells (69) and sustains their own production of IL-10 (83, 84). TGF-b produced by Tregs
themselves or by eosinophils is likewise important to drive the expansion of Foxp3+RORgt+ cells (85, 86). The proliferation and maintenance of
Foxp3+RORgt+ cells in the lamina propria also depends on costimulatory signals and MHC-II-driven stimulation by APCs (24) and on TLR signalling
on Tregs themselves (32, 87). Created with BioRender.com.
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Ctla4, Tnfrsf18 (GITR), and Ikzf4 (Eos) and, therefore, possess a

stable phenotype and functional specialization to fight inflammation

at intestinal sites (54). The role of Rorc expression itself remains to be

clarified, since inactivation of STAT3, as well as inactivation of c-Maf

or impairment of TGF-b signalling, unlike inactivation of RORgt,
have been shown to take part in the function of Foxp3+RORgt+ Tregs
(103). IRF4 and STAT3, transcription factors critical for Th2 and

Th17 cell differentiation respectively, are used by Tregs to specifically

suppress Th2 and Th17 responses (104). For its part, the

transcription factor c-Maf plays a critical role in the differentiation

and activity of Foxp3+RORgt+ Tregs in the intestine, where it also

helps to regulate the abundance of Th17 cells, induce IL-10

expression, and limit IgA responses to maintain the composition

of the microbiota (105). TGF-b derived from Foxp3+RORgt+ Tregs

was shown to restrain mast cell and IgE responses and, thus,

diminish the susceptibility to food allergy (85). On the other hand,

the transcription factor Blimp-1, preferentially expressed on

Foxp3+RORgt+ Tregs, restrains the production of Th17 cytokines

by these cells and maintains their suppressive function (106).

Of note, the TCR repertoire of Foxp3+RORgt+ Tregs is largely

unique compared with other colonic T cell subsets, which suggests

that TCR specificity may be sufficient to mediate their development

(57). Analyses of the TCRs of colonic Tregs showed that this

population is strongly shaped by antigens derived from

commensal bacteria (25). Generation of these cells occurs mainly

in the distal MLN, which drains the caecum and the proximal colon,

likely after commensal antigen uptake via bacteria outer membrane

vesicles or goblet cell-associated antigen passages (GAPs) (44, 107).

These observations reinforce the concept that this Treg lineage is

central for preventing excessive Th2 responses towards commensal

bacteria that would otherwise compromise the integrity of the

microbiota, in particular the niche of border-dwelling bacteria

and their beneficial metabolic function (108).

CD103+ DCs cells, that take up antigens in the lamina propria

and migrate to the MLNs to activate naïve T cells, have been

proposed to be specialized in the initiation of Treg cell responses by

virtue of their ability to produce high levels of active TGF-b and RA

(62, 63) (Figure 1A). In particular, CD103+CD11b- conventional

type-1 DCs cells have been reported to display the highest

retinaldehyde dehydrogenase (RALDH, the enzyme that oxidises

retinal to RA) activity in the MLNs (109, 110). However, it was

observed that both CD103+ and CD103- DCs are redundant in

promoting Treg differentiation (79, 111). Furthermore, under the

influence of RA, that enhances actomyosin contractibility, lamina

propria CD103+CD11b+ conventional type-2 DCs, with a mature

proinflammatory phenotype, transmigrate into the intestinal

epithelium to become immature intraepithelial DCs with

tolerogenic properties further imprinted by RA itself and Mucin-2

(112). These observations point at a strong influence of

environmental factors within the intestinal mucosa in DC

education, but also suggest that other cell types may regulate Treg

generation. Indeed, in vivo depletion of conventional DCs does not

compromise Treg differentiation, implying the involvement of other

APCs with pre-determined features (70). ILC3s are able to present

antigens through MHCII to prevent the microbiota-dependent
Frontiers in Immunology 05
expansion of pro-inflammatory Th17 cells (113). Interestingly,

deletion of MHCII in RORgt expressing cells resulted in failure to

induce RORgt+ Tregs, calling into question the role of conventional

DCs in this process (70–72). Recently, ILC3s were found necessary

and sufficient to enforce the RORgt+ Treg population through a

mechanism linked to an abundant expression of MHCII, CCR7-

mediated migration to MLNs and activation of latent TGF-b (70,

71). Of note, a positive correlation between ILC3s and RORgt+

Tregs was also established in the human intestine (71). As

mentioned, the efficient differentiation of RORgt+ ILC3s depends

on RA (99), which also regulates their gut homing properties (114).

However, another study proposed that ILC3 do not contribute to

mucosal tolerance, but rather a novel lineage of RORgt+ APCs with
a hybrid phenotype between DCs and thymic epithelial cells, which

were termed Thetis cells (Figure 1A). Thetis cells are enriched in the

MLN of mice at the specific time interval in early life that coincides

with Treg differentiation, as well as in the MLN of human foetal

samples (72). These studies reveal a sophisticated cross-regulation

between RORgt-expressing cells in homeostasis that deserves

further investigation.
2.2 Bacterial-derived triggers for
Treg generation

The pathway underlying how specific intestinal commensal

bacterial taxa stimulate the induction of colonic Foxp3+RORgt+

Tregs is thought to involve, in addition to microbial antigens and

RA, bacterial fermentation products or metabolites, but has yet to

be fully elucidated (52, 65, 115, 116). Short chain fatty acids

(SCFAs) are thought to be required for their generation (40, 117,

118), although, according to some authors, there is no correlation

between any SCFA and RORgt frequency, other Treg parameters or

protection against food allergy, suggesting that they may play an

indirect or subsidiary role (32, 53, 116).

The main mechanism by which SCFAs, mainly butyrate and to

a lesser extent propionate, mediate their effects is histone

deacetylase (HDAC) inhibition, that leads to epigenetic

modification, loosened chromatin structure and activation of the

expression of a wide range of genes (119). The involvement of G-

protein coupled receptors (GPCRs), that sense SCFAs on the

surface of IECs or immune cells is controversial, with reports

indicating that the effects of SCFA are either dependent (120–

122) or independent on their interaction with GPCRs (115, 117,

123, 124). Inhibitors of HDAC trigger RA-dependent

transcriptional activation pathways. SCFAs, particularly butyrate,

upregulate Aldh1a1 (RALDH1) expression and increase RA

conversion and active TGF-b production in human and mouse

intestinal cell lines (115, 123, 124). Butyrate induces the expression

of Il10 and Aldh1a2 (RALDH2) in murine colonic macrophages

and DCs, enhancing their ability to promote the differentiation of

naïve T cells into Foxp3+ and Foxp3-IL-10+ Tregs (121), and it also

induces colonic Foxp3+RORgt+ Tregs in a DC-depending manner

(52). In addition to indirect effects through APCs, SCFAs directly

modulate mouse colonic Tregs, increasing their suppressive activity,
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proliferation capacity and Foxp3 and Il10 expression through

HDAC inhibition (120). Butyrate enhances histone H3 acetylation

in the Foxp3 promoter and stabilizes Foxp3 expression increasing its

function (125). Of note, the positive action of SCFAs on epithelial

barrier function and integrity through their effects on tight junction

proteins and Mucin-2 secretion could also play an additional

beneficial role in food allergy (126). Specifically, signalling

through GPCR43 regulates colonic ILC3 proliferation and IL-22

production, which favours the expression of mucus-associated

proteins and AMPs (127). Mucin-2, the main gel-forming mucin

secreted by goblet cells, conditions IECs in mice to express

tolerogenic factors, while it also increases the transcription and

activation of Aldh1a2 and the secretion of IL-10 and TGF-b by

DCs (76).

Primary bile acids, generated from cholesterol in the liver and

released in the intestine to aid nutrient absorption, are processed by

the microbiota to generate secondary bile acids. Both act as

signalling molecules on cells of the innate and adaptive immunity

(128). Some secondary bile acids increase the induction of

Foxp3+RORgt+ T cells in vitro by acting on DCs to decrease their

immunostimulatory properties (129). In addition, specific bile acid

metabolites enhance Treg differentiation in vivo through epigenetic

modification that causes loose chromatin structure in the Foxp3

gene (130, 131). Similarly, it was found that bile acids generated in

response to diet and biotransformed by certain bacteria induce

colonic Foxp3+RORgt+ T cells via their interaction with the vitamin

D receptor (VDR), which is highly expressed in colonic IECs, DCs

and Tregs (116). VDR and the principal receptor for bile acids,

farnesoid X receptor (FXF), form heterodimers with RXRs or RARs

to function as ligand-induced transcription factors in target genes,

and interaction between nuclear signalling by vitamin D or bile

acids and RA has been documented (132). Bile acids have been

found to stimulate a RARE response in DCs via FXR-RAR

interactions (133) and, conversely, RA has been reported to

upregulate FXR pathway genes and to modulate hepatic

homeostasis and lipid metabolism (134). In this regard, it would

be interesting to determine the crosstalk between FXF, RARs and

RXRs and whether their respective ligands can activate the others’

pathway to stimulate oral tolerance.

In addition to SCFAs and bile acids, indole-containing

molecules, produced by the microbiota at the expense of dietary

tryptophan, modulate the intestinal Treg compartment by the

activation of aryl hydrocarbon receptors (AhRs) present in several

immune cells, which act as ligand-activated transcription factors

(135). Both the depletion of tryptophan from the environment and

the increase in its metabolites polarize CD4+ T cells to a Treg

phenotype (136). AhRs are key regulators in the development of

RORgt+ ILC3s and Th17 cells and in IL-22 production, as well as in

promoting Treg homing and function (137, 138). Moreover, AhRs

are highly expressed in intestinal Tregs, helping to regulate

Foxp3+RORgt+ Treg homeostasis (139, 140).

Additional factors from commensal bacteria may promote

tolerance through classical innate immune response pathways.

Toll Like Receptors (TLRs), which are the main receptors that

recognize structurally conserved molecules derived from

commensal bacteria, trigger immune responses by causing
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myeloid differentiation primary response gene 88 (MyD88)

signalling. MyD88, which also works as an adaptor for the IL-1b
receptor family, leads to a variety of functional outputs, including

the activation of nuclear factor kB (NF-kB) that works as a central
node of inflammatory pathways (141). Whereas the contribution of

conserved bacterial molecular patterns in the generation of Foxp3+

Tregs and Foxp3+RORgt+ Tregs was discarded in experiments with

MyD88-deficient mice (26, 52), other studies have recognized the

role of the TLR/MyD88 axis in promoting Treg formation. MyD88

signalling contributes to DC education, as mucosal DCs from

MyD88-deficient mice express low levels of RALDH enzymes

(80). Thus, cell surface polysaccharides can promote Treg

generation in the intestine through the induction of TGF-b from

lamina propria DCs via TLR2, as described for Clostridium

butyricum and Bifidobacterium bifidum (142, 143). TLR ligands

educate Aldh1a2 expression and RALDH activity in APCs (74, 79,

111, 144). Furthermore, TLR/MyD88 sensing of the commensal

microbiota by intestinal macrophages elicits the production of IL-

1b, which activates ILC3s to produce granulocyte-macrophage

colony stimulating factor (GM-CSF) that further promotes

Aldh1a2 expression in intestinal DCs (77), as well as IL-2, which

contributes to maintain Treg cells and oral tolerance (78)

(Figure 1B). In addition, the microbiota can provide TLR signals

to CD4+ T cells in the absence of APCs. Thus, the molecule

polysaccharide A (PSA) from Bacteroides fragilis induces Tregs

that produce IL-10 and TGF-b by signalling directly on CD4+ T

cells through TLR2 (145). PSA also potently boosts Treg function

through TLR2 signalling on CD4+Foxp3+ Tregs themselves (146).

Enhancement of the expression of Foxp3 and, consequently, of the

suppressive capacity of Tregs has been reported for agonists of

TLR2, 4 and 5 (147), and RA further synergizes with TLR2 directly

on T cells to increase the production of IL-10 (148). Direct sensing

of bacteria by nascent Tregs induces RORgt+ expression, promotes

IgA immunity and regulates the commensal flora avoiding dysbiosis

by the MyD88 pathway (32, 87).

On the other hand, nociceptor neurons, important components

of the intestinal nervous system, exhibit TLRs and respond to

microbial stimulation to regulate inflammation (149). In this

respect, the induction of colonic Foxp3+RORgt+ Tregs by selected

microbiota correlates with the downregulation of neuronal

transcripts, including Il6 expression, both in vitro and in vivo

(150). This indicates a functional connection between microbial

signals delivered by Foxp3+RORgt+ Treg inducers and neuronal

activity that results in diminished neuronal density and function,

which, through IL-6, regulates Treg numbers and phenotype,

including the RORgt proportion (151).

In Foxp3-deficient mice, unrestrained MyD88-driven

proinflammatory signals lead to multisystem inflammatory

diseases, emphasising that a critical function of Tregs is to control

inflammation by inducing tolerance to stimuli from commensal

bacteria (152). However, a paradox arises, as signalling through the

common TLR adaptor MyD88 alerts the immune system to danger

from pathogens, triggering Th1-driven inflammatory reactions

through NF-kB, that can inhibit the suppressive capacity of Tregs

(141). The positive effect of TLR activation on the differentiation of

Tregs may be part of a negative feedback loop to restrain
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inflammation, as postulated for thymus-derived Tregs (153).

Eventually, the outcome of MyD88 signalling in terms of Treg

development is likely context-specific: under the influence of low

levels of proinflammatory cytokines, it would contribute to the

maintenance of homeostasis by actively promoting Tregs, while an

excessive inflammatory environment would otherwise favour the

development of Th1 or Th17 cells. This underlines the need for

strict regulation of cytokine expression for homeostatic effects to be

properly manifested. Interestingly, RA exerts an autocrine effect on

DCs, inducing the negative regulator SOCS3, which acts as a

negative feedback loop to suppress TLR-induced release of pro-

inflammatory cytokines, which, otherwise, would antagonize Treg

generation (154). Furthermore, given that commensal and

pathogenic microorganisms share molecular patterns, the switch

from tolerance to immunity was suggested to be provided by a

microbiota-independent signal by CD4+ T cells through CD40L on

tolerogenic DCs (155). This abrogates Foxp3+RORgt+ Treg

induction and increases Th1 and Th17 cells when it is necessary

to boost immune responses (155).

The finding that, in mice, the phenotype of colonic

Foxp3+RORgt+ Tregs is strain-dependent, quantitatively induced

by the mother during a very early and short window, stably

maintained throughout adulthood and passed on for multiple

generations, led Ramanan et al. to postulate that the influence of

the microbiome was under the control of a non-microbial element.

According to these authors, the maternal transfer of IgA through

the milk leads, depending on its level, to a differential coating of

intestinal bacteria, changing their stimulatory capacity to induce

Foxp3+RORgt+ Tregs. In adulthood, IgA and Foxp3+RORgt+ Tregs
regulate each other in a negative feedback loop, while the transfer of

IgA and plasma cells to the mammary gland transmits the

phenotype to the progeny (156).
3 Tolerogenic immune responses to
dietary antigens

Whereas the colon harbours the highest density and abundance

of antigens from the microbiota, the small intestine holds the

greatest load of dietary antigens. In the small intestine, the site of

food absorption, is where oral sensitization to dietary proteins and

amplification of allergic reactions take place and, therefore, where

tolerance to foods is mainly sustained (18). As compared with distal

lymph nodes, the small intestine draining lymph nodes

preferentially give rise to tolerogenic responses to food, by virtue

of their differential stromal and APC gene signatures and

compartmentalized absorption and drainage, which results in

differential nutrient exposure (157). Foxp3+RORgt+ Tregs have

been found in the small intestinal lamina propria of mice, where

Foxp3 is expressed by 17-20% of CD4+ T cells (49) and,

approximately, 68% of Foxp3+ cells express RORgt at steady-state
versus 72% in the colonic lamina propria (52). Bacteria are more

numerous in the ileum, where they can regulate allergic responses to

dietary antigens. In particular, the presence in the ileum of the

clostridial species Anaerostipes caccae was related with protection
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against food allergy (33). Nevertheless, it is unlikely that the bacteria

that colonize the small intestine, much less abundant, exert direct

effects and, without underestimating the role played by immune

cells migrating from the colon to the MLNs or by metabolites or

cytokines produced by bacteria in the large intestine, it is generally

recognised that the induction of Tregs in the small intestine is

basically independent of interactions with the microbiome (26).

As mentioned, Foxp3+RORgt+ Tregs that confer sustained

tolerance emerge throughout a defined interval, during which

dietary antigens are delivered to the colonic immune system. This

developmental window opens at the time when the concentration of

epidermal growth factor (EGF) present in breast milk undergoes a

temporal decrement that allows goblet cells in the large intestine to

form GAPs. GAPs favour the transfer of luminal antigens to the

colonic lamina propria and the expansion of long-lived

Foxp3+RORgt+ Tregs that promote long-term oral tolerance to

commensal bacteria and food antigens, even those encountered

for the first time later in life (42, 44, 158). Closure of colonic GAPs

restricts the passage of luminal antigens, ending the developmental

window for the expansion of Tregs, although the responsible factor

is controversial (44). The microbiota has been reported to inhibit

colonic GAP formation due to goblet cell sensing of bacterial

molecular patterns, through TLRs, in adult mice (159). Thus, not

only the superior functional features of Foxp3+RORgt+ T cells, but

also the length of the period of time during which they expand, have

been suggested to depend on the properties of the bacteria

responsible for their generation (158). In the small intestine,

however, due to the lower expression of TLRs in goblet cells, the

microbiota does not inhibit GAP formation (159). This allows a

continuous generation of Tregs after weaning, although these cells

have a limited lifespan and undergo rapid turnover when animals

are deprived of food antigens (88, 158). These observations may

provide an explanation why continuous allergen exposure is

required to maintain tolerance after a certain age and stimulate

the investigation of the beneficial cues that promote the right

conditions for antigen encounter.

Important questions are whether the tolerogenic effect of

Foxp3+RORgt+ Tregs is allergen-specific and whether these cells

depend on the microbiota for their generation. Indeed,

Foxp3+RORgt+ Tregs specific to food antigens can be generated

in the small intestine (52). Furthermore, a local microbiota-

independent induction of these cells has been reported in the

small intestine of germ-free mice despite depletion in the colon,

showing that they do not differentiate exclusively under the

influence of microbial signals (160). Foxp3+RORgt+ Tregs

developed in the small intestine by dietary proteins in the absence

of commensal microbiota suppress Th2-driven immune

responses to food, although they are more transient than

colonic Tregs (88). Another issue is whether it is possible to

promote their stable generation later in life, through the

induction of intestinal tolerogenic factors and the regulation of

GAP formation and antigen delivery. In this regard, several studies

have shown that Foxp3+RORgt+ Tregs continue to develop after

weaning and that commensal bacteria can induce them in adult

mice (32, 52, 53).
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3.1 Hydrolysed food proteins
and dietary epitopes

In mice, hydrolysed egg white proteins were shown to offer long

lasting desensitization to egg allergy, more effectively than treatment

with the intact allergen, through the upregulation of Tfgb1 (TGF-b),
Il10, Il17 (IL-17), Foxp3, and Rorc in the small intestinal lamina

propria, PPs, and MLNs, and the development of Foxp3+ cells that

simultaneously expressed RORgt (34, 161). Furthermore, mice

exhibited an enhanced expression of genes associated with

epithelial integrity, such as Il22 (IL-22) and Il22ra2 (IL-22R), in the

duodenum, and Muc2 (Mucin-2) in the colon, as well as Aldh1a1,

Aldh1a2, and Csf2 (GM-CSF) in intestinal lymphoid and non-

lymphoid tissues, indicating that food protein hydrolysates exert

protective barrier functions and provide tolerizing signals to DCs

via the activation of RALDH enzymes (34). While dietary antigens

had been shown to induce the expression of RORgt and Foxp3 in

naïve CD4+ T cells specific for that antigen transferred to mice (52,

88), no previous reports had shown the role of food peptides in the

resolution of food allergy through the enhancement of vitamin A

metabolism and the development of Tregs bearing the transcription

factor RORgt. Remarkably, in humans, an association between

successful immunotherapy against aeroallergens and the induction

of genes involved in RA metabolic pathway has recently been

observed (162).

Ex vivo studies confirmed that the hydrolysate upregulated

Aldh1a1 in IECs, which, in turn, conditioned DCs to overexpress

Aldh1a2 and Tgfb1, to release IL-6 and IL-10, and to promote the

generation of TGF-b-secreting Foxp3+RORgt+ cells from CD4+ T

cells (163). TLR stimulation is a possible mechanism through which

food peptides enhance RALDH activity on murine DCs (164). Food

protein hydrolysates can activate TLRs depending on peptide size

and sequence (165), which may explain why intact proteins are less

suited than hydrolysed proteins to generate Foxp3+RORgt+ Tregs,

even after having undergone an in vivo digestion process (34). Thus,

hydrolysates confer specific properties on DCs by means of the

upregulation of tolerance-promoting mediators downstream of

TRL signalling, such as Aldh1a2, Tgfb1, Il10, Il27 (IL-27), Il33

(IL-33), Jag2 and Dll4 (coding for the Notch ligands Jagged2 and

Delta4 respectively) and Tnfsf4 (OX40L) (164). IL-27 supports the

differentiation of Foxp3- Tregs and their IL-10 production (166). IL-

33, released by DCs under the influence of the epithelial alarmin IL-

33 itself as well as TLR ligands (167), promotes RA signalling in

CD4+ T cells, enhancing TGF-b-mediated differentiation of Tregs

and favouring their accumulation and maintenance (168). This

mechanism likely represents a feedback loop by which alarmins

limit inflammatory damage at barrier tissues. For its part, Notch

signalling on CD4+ T cells, depending on the ligand, enhances

Foxp3 expression in vitro and helps to maintain Tregs in vivo (169).

In particular, the Notch family ligands Jagged1 and Jagged2

promote TGF-b signalling and Foxp3 transcription, while

concomitant OX40L-OX40 interaction delivers survival signs,

allowing Treg expansion (170).

These effects are similar to those exerted by RA, since regulation

of DCs through RA also requires MyD88, the adaptor protein

conventionally associated with TLR signalling (74, 80). In addition,
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RA induces Tlr1 (TLR1) and Tlr2 (TLR2) mRNA in DCs and

therefore contributes to sensitize DCs to TLR ligands (74).

However, unlike RA (79), the hydrolysates significantly

upregulate Il10, possibly because TLR signalling on DCs enhances

IL-10 independently of the induction of RALDH activity (154, 171).

Accordingly, DCs conditioned with the hydrolysate enhance Foxp3

expression in cocultured CD4+T cells and, in line with their high

expression of Il27 and Il10, they also increase the level of Foxp3-IL-

10+ cells, depending on the concentration of exogenous TGF-b
(164). Interestingly, a singular phenotype of Foxp3-IL-10-CD4+ T

cells effective against Th2 responses in food allergy was claimed to

be induced by DC differentiated in the presence of RA and exposed

to TLR stimulation (67), illustrating that the modulation of RA, IL-

10, and IL-27 levels by TLR ligands may modify the balance of Treg

subsets with different properties (68, 69). IL-10 produced by TLR-

stimulated DCs and macrophages plays additional homeostatic

roles as it helps to expand Tregs in the lamina propria, once these

cells have been generated and have acquired gut homing properties

in the MLNs (172). Foxp3+ Tregs need to respond to IL-10 to

sustain IL-10 production and restrain Th17 responses (83).

Similarly, although IL-10 is not essential to induce Foxp3-IL-10+

Tregs in vivo, it is crucial to maintain the production of IL-10 and

preserve their regulatory activity (84) (Figure 1B).

As indicated, signalling by commensal bacteria on TLRs

expressed on Tregs may directly control immune responses in the

absence of APCs. Consequently, incubation of CD4+ T cells from

naïve mice in the presence of hydrolysate, without DCs, upregulated

Aldh1a1, Aldh1a2, Tgfb1, and Il6 expression and induced RALDH

activity through TCR stimulation (164). Although information

regarding RALDH expression and subsequent production of RA

by CD4+ T cells is very scarce, it has been reported that allogenic,

and likely other types of stimulation, increase RALDH activity in

conventional CD4+ Tregs, and in particular in Tregs, delivering

resistance to cytotoxic agents and immunological tolerance (173).

Noteworthy, since nociceptor neurons express and can be triggered

via TLRs, it is possible that they also sense food antigens in a way

similar to how they sense signals from the microbiota (174).

Noteworthy, unlike the case of sensitized mice, the

administration of hydrolysates to naïve mice does not modify the

expression of enzymes involved in the generation of RA, which

implies the absence of effects on vitamin A metabolism under

homeostatic conditions (34). Accordingly, it was found that a

Th2-skewed environment is favourable to the induction of a

Foxp3+RORgt+ phenotype (163, 164). These observations are

consistent with the positive effect that certain Th2 mediators,

such as IL-4 or IL-13, exert, in synergy with RA, GM-CSF, and

TLR ligands, on the activation of Aldh1a2 expression and on the

suppression of the production of pro-inflammatory cytokines by

DCs, contributing to promote Tregs (75, 175). Other regulatory

cells, albeit of innate origin, ILCregs, are not found at the steady

state in nasal tissues of human subjects or lungs of mice, but rather

during Th2 inflammation, because their transformation from ILC2s

is promoted by the upregulation of RALDH enzymes in airway

epithelial cells (176). These cells are induced during

immunotherapy in humans in response to RA and mediate

tolerance to aeroallergens, helping to restore epithelial integrity
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and suppress Th2 responses (162). Likewise, RA enhances the in

vitro TGF-b-driven conversion of memory Th2 cells into Tregs that,

once adoptively transferred, suppress proliferation and cytokine

production by Th2 memory cells and allergen-specific IgE

production (177).

It is well known that a Th2 environment has a role in impairing

Treg-driven tolerance in allergic disease by restraining Treg

generation and function (20) or by driving Treg reprogramming

to a Th2 (178) or a Th17 (179) phenotype. However, IL-4 has also

been reported to positively regulate Foxp3+ Treg stability and

function in the course of Th2 inflammation processes in vivo.

Tregs from IL-4-deficient mice exhibit decreased persistence and

granzyme expression, indicating that IL-4 supports Treg

suppressive capacities (180). Similarly, the absence of IL-4

receptor responsiveness on Foxp3+ Tregs exacerbates airway

inflammation in asthmatic mice (181). Notably, C/EBP functions

mainly in the presence of IL-4 and IFN-g, conferring resistance to

these inhibitory cytokines during Treg generation (93).

TLR ligands, together with other signals, such as TGF-b,
condition DCs to express indoelamine 2,3-dioxygenase (IDO), an

enzyme that catabolizes tryptophan into different metabolites, such

as kynurenines, that activate AhRs (182). The IDO-driven

immunomodulatory capacity can be extended between different

murine and human DC subtypes. Thus, under the influence of TLR

ligands, the subset of conventional type-1 DCs that expresses IDO

can induce this ability in co-cultured non-tolerogenic conventional

type-2 DCs by activating AhRs (whose expression is also stimulated

by TLR-signalling) through the action of L-kynurenine (183). All

together, these results show that food antigens may work,

analogously to microbial driven signals to stimulate cells of the

innate and adaptive immune system and promote mucosal

tolerance at different levels.

Another possible mechanism of action of immunomodulatory

peptides to counteract food allergy involves interference with the

activation of formyl peptide receptors (FPRs). Among them, FPR3,

expressed intracellularly in DCs and whose interaction with

allergens polarizes naïve CD4+ T cells to a Th2 phenotype, can be

antagonized by peptide ligands (184). Very recently, it was found

that peptides derived from ovalbumin bind and activate caspases 3

and 7 in small intestinal IECs to release a non-lytic 13 kDa N-

terminal fragment of Gasdermin D that induces the expression of

MHCII and supports IEC antigen-presenting ability to convert

naïve CD4+ T cells into Foxp3-IL-10+ cells (185). However,

whereas there seems to be an optimal peptide length and

sequence to induce tolerance through this mechanism, these

aspects require further investigation.

b-hexosaminidase, a conserved enzyme among the

Bacteroidetes phylum, as well as a minimal peptide epitope

composed of 9 amino acids, were identified as bacterial antigens

that drive the differentiation and regulatory function of Foxp3–

CD8aa+CD4+ intraepithelial lymphocytes (CD4IELs), that work,

together with Tregs, in the maintenance of intestinal homeostasis

(186, 187). Interestingly, CD4IELs also depend on RA and TGF-b
signalling for their development and can derive from Tregs that lose
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Foxp3 upon migration to the epithelium (188). Similarly, dietary

proteins promote, by themselves, clonal selection and epithelial

adaptation of CD4+ T and Tregs in the small intestine, a process

that is further boosted by signals from the microbiota (18).

On the other hand, food peptides can influence intestinal

homeostasis by reinforcing barrier function, supressing

inflammatory responses and stimulating mucin-2 secretion from

goblet cells (189). Moreover, the microbiota, in different locations of

the intestine, is shaped by the availability of dietary protein and

protein fragments, which may indirectly influence the mucus

barrier (190). This suggests that, in addition to providing DC and

CD4+ T cell education, peptides could also drive tolerogenic

responses by helping to regulate GAP formation and healthy

antigen delivery (191).
4 Concluding remarks

Intestinal mucosal immune responses that lead to oral tolerance

depend on a multifaceted and sophisticated network of non-

immune and immune mechanisms. We have tried to present the

complexity involved in maintaining homeostasis in intestinal

tissues, where the same actors play different roles in different

contexts, as exemplified by factors that may mediate anti- or pro-

inflammatory effects depending on whether they take part of a

health or disease situation. The most active drivers of intestinal

tolerance, Tregs, exhibit functional plasticity to adapt to specific

environments and inflammatory conditions by acquiring different

migratory and suppressive mechanisms to avoid uncontrolled

inflammatory responses against food and commensal microbiota.

Among Tregs, induced CD4+ T cells coexpressing Foxp3 and

RORgt are crucial for the maintenance of homeostasis in the

intestine, probably acting in cooperation with other Foxp3+ or

Foxp3- suppressive CD4+ T cells. The impact of Foxp3+RORgt+

Tregs extends beyond their site of generation, illustrating that issues

such as the antigen specificity or Treg cross-reactivity are

open questions.

In addition, in the intestinal lamina propria there are unique

populations of immune cells also expressing the lineage-defining

transcription factor RORgt, such as ILC3s, gdT, and Th17 cells,

which exert passive tolerance roles through the enforcement of the

mucosal barrier system, while RORgt+ APCs have been deemed

responsible for the induction of RORgt-expressing Tregs. The

functional interactions among RORgt+ cells in oral tolerance

induction and allergy prevention or therapy, although mainly

illustrated in mouse models, underscore the importance of

strategies to promote their expansion. The microbiome induces

the expression of colonic RORgt cells that are particularly well

suited to fight the aberrant type 2 responses typical of food allergy.

Certain food antigens can correspondingly favour the development

of tolerizing RORgt+ cells in the small intestine, specially under Th2

predominant conditions. This immunomodulatory capacity is

closely linked to their ability to convert vitamin A into RA, which

appears as an essential factor in governing intestinal homeostasis.
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5. Cabieses B, Uphoff E, Pinart M, Antó JM, Wright J. A systematic review on the
development of asthma and allergic diseases in relation to international immigration:
the leading role of the environment confirmed. PLoS One (2014) 9(8):e105347.
doi: 10.1371/journal.pone.0105347

6. Pacheco SE, Guidos-Fogelbach G, Annesi-Maesano I, Pawankar R, D' Amato G,
Latour-Staffeld P, et al. Climate change and global issues in allergy and immunology. J
Allergy Clin Immunol (2021) 148(6):1366–77. doi: 10.1016/j.jaci.2021.10.011

7. Sozener ZC, Ozturk BO, Cerci P, Turk M, Akin BG, Akdis M, et al. Epithelial
barrier hypothesis: Effect of the external exposome on the microbiome and epithelial
barriers in allergic disease. Allergy (2022) 77(5):1418–49. doi: 10.1111/all.15240

8. Strachan DP. Hay fever, hygiene, and household size. BMJ (1989) 299
(6710):1259–60. doi: 10.1136/bmj.299.6710.1259

9. Berin MC, Shreffler WG. Mechanisms underlying induction of tolerance to foods.
Immunol Allergy Clin N Am (2016) 36(1):87–102. doi: 10.1016/j.iac.2015.08.002

10. Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and
cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol (2016)
137(4):984–97. doi: 10.1016/j.jaci.2016.02.004

11. Tordesillas L, Berin MC. Mechanisms of oral tolerance. Clin Rev Allergy
Immunol (2018) 55(2):107–17. doi: 10.1007/s12016-018-8680-5
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