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The dual role of interleukin-6 in
Crohn’s disease pathophysiology

Ala’ Alhendi and Saleh A. Naser*

Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine,
University of Central Florida, Orlando, FL, United States
Interleukin-6 (IL-6) is a key mediator cytokine of the immune response as well as

a regulator of many physiological and pathological processes. In Crohn’s disease

(CD), cytokine imbalance rules the intestinal microenvironment and leads to

chronic inflammation of the gut. Pro-inflammatory cytokines are generally

upregulated in inflammatory bowel disease (IBD) including TNFa and IL-6.

Consequently, drugs that target these cytokines have been long sought and

approved. Despite the short-term success in treating CD patients with anti-

TNFa, many patients stopped responding to treatment, which made IL-6 an

alternative target to alleviate inflammation in these patients. IL-6 has long been

approached as part of the therapeutic strategies to treat CD and other

inflammatory disorders. Clinical trials of CD patients have targeted IL-6

signaling in different mechanisms: blocking IL-6, neutralizing IL-6 receptor (IL-

6R), or trapping the soluble IL-6/IL-6R complex. These trials have faced

challenges and side effects in patients with gastrointestinal perforations and

ulcers, for example, all of which highlight the dual role of IL-6 during intestinal

inflammation and the need for this cytokine for intestinal tissue integrity. IL-6 is

involved in a complex of upstream regulators and downstream signaling

cascades and maintaining a physiological level of IL-6 in the blood and in the

intestine is key for achieving health and homeostasis. In this review, we describe

IL-6 biology and signaling and its involvement in intestinal health and

inflammation. We also discuss the current strategies for targeting IL-6

pathways in CD patients, as well as molecular regulators representing potential

therapeutic targets for IL-6 attenuation.
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Introduction

Inflammatory bowel disease (IBD) is a group of debilitating chronic inflammatory

intestinal disorders that consists of ulcerative colitis (UC) and Crohn’s disease (CD), where

inflammation dynamics differ between the two subtypes (1). CD is characterized by

intermittent flares and repeated remissions. Flares are usually characterized by moderate

to severe inflammatory episodes of debilitating symptoms, which then progress to cause

intestinal epithelial damage and mucosal dysfunction leading to serious complications like
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strictures, fistulas, and ulcer formation. Multiple genetic and

environmental factors play a role in the pathogenesis of CD (2,

3). Regardless of the underlying cause of CD, pathophysiology in

CD patients is ruled by the loss of balance between pro-

inflammatory and anti-inflammatory cytokines secreted primarily

by Th1/Th17 helper T cells and regulatory T cells, respectively. The

upregulated pro-inflammatory cytokines include IFNg, TNFa, IL-6,
and IL-1. In contrast, inflammation-resolving cytokines such as IL-

10 and TGFb are often downregulated (1, 4).

Among key inflammatory cytokines involved in CD, IL-6 is a

significant contributor to the inflammation and pathogenesis in

IBD (5). IL-6 production and signaling are upregulated in inflamed

mucosa and plasma of IBD patients, and the increase is more

pronounced in patients with CD compared to UC patients (6, 7).

While the IL-6 physiological plasma level is approximately 1.6 pg/

ml, it can increase up to 32.7 ng/ml in CD patients (6, 8). IL-6

excessive production in IBD patients originates from peripheral

blood mononuclear cells (PBMCs) and intestinal lamina propria

mononuclear cells (LPMCs) (9, 10). Generally, IL-6 is secreted by

intestinal epithelia, intestinal smooth muscle cells, CD4+ T cells,

and macrophages (8, 11). IL-6 is essential in sustaining a chronic

inflammation in IBD mainly by promoting CD4 T-cell resistance to

apoptosis. This is achieved by a STAT3-dependent upregulation of

anti-apoptotic proteins bcl-2 and bcl-xL in T cells, promoting their

longevity and the consequent perpetuation of chronic inflammation

(12, 13).

IL-6 is a versatile cytokine that plays a pivotal role in the shift

between intestinal homeostasis and inflammation. In the

gastrointestinal tract, IL-6 exhibits diverse functions that range

from maintaining the intestinal epithelium integrity and mucosal

barrier function to the modulation of immune response against

environmental microbes (8).
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The biology of IL-6

IL-6 was first discovered as a soluble factor secreted by helper T

cells to induce antibody production and release by B cells. It was

originally termed B-cell stimulatory factor-2 (BSF-2) or B-cell

differentiation factor (BCDF) (14). IL-6 is a pleiotropic cytokine

that regulates diverse tissues and physiological processes (Figure 1).

It plays a crucial role in immune functions during various stages,

from mediating myelopoiesis to activating and differentiating

immune cells like macrophages, T cells, and B cells while also

facilitating the trafficking of neutrophils to sites of infection. In the

liver, IL-6 is needed for tissue regeneration after injury and acute

phase protein production during inflammation. Moreover, IL-6

induces fever during infection, activates VEGF-mediated

angiogenesis, modulates bone and cartilage remodeling, plays a

role in neural cell proliferation and differentiation, and regulates

iron and lipid metabolism (5, 11, 15, 16).
IL-6 signaling

IL-6 functions through specific receptors located on target cells.

IL-6 receptor (IL-6R) is limited to hemopoietic cells, hepatocytes,

and some epithelial cells (11, 17). IL-6R is found bound to cell

membranes of these particular cells or secreted in a soluble form in

biological fluids. The soluble form of the receptor can be generated

from the enzymatic cleavage of the membrane-anchored form by

ADAM-17 metalloproteinase (also known as TNFa-cleavage
enzyme (TACE)) or by the alternative splicing of IL-6R mRNA (18).

Activation of IL-6 signaling requires the binding of IL-6 with

IL-6R (a-receptor) and glycoprotein 130 (gp130, also known as the

b-receptor) (19). The functional complex of IL-6/IL-6R/gp130 has
FIGURE 1

Physiological role of IL-6. IL-6 plays an essential role in most tissues including the liver, immune cells, skin, neural tissue, reproductive system, blood
vessels, bone, cartilage, and intestines. Generated by Biorender.com.
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been illustrated using X-ray crystallography to be a hexamer of two

proteins of each of IL-6, IL-6R, and gp130. The congregation of this

hexameric complex activates gp130-associated Janus kinases

(JAKs). JAKs in turn phosphorylate tyrosine residues on the

cytoplasmic tail of gp130 and recruit STATs (Signal Transducer

and Activator of Transcription) to specified phosphorylated

residues. JAKs proceed to phosphorylate and activate these

STATs, which then dimerize and translocate into the nucleus to

modulate gene expression of target genes (11). IL-6 signaling is

either classic viamembrane-bound IL-6R or trans via soluble IL-6R

(Figure 2) (20). While classic signaling affects a limited variety of

cells, trans-signaling is almost universal, affecting all gp130-

expressing cells. The ubiquitous distribution of gp130 around the

body allows a larger group of IL-6-responsive cells (21). Trans-

signaling, via the circulating IL-6 and its receptor, is believed to be

the reason for the chronic inflammation effect of IL-6. It was

deemed responsible for activating cells that lack a membrane-

bound IL-6R like endothelial cells to produce chemokines needed

for the recruitment of mononuclear immune cells. Recruitment of

these cells via trans-signaling and not through the classic pathway

was specifically responsible for inflammation in the air-pouch

model of inflammation in mice (22). In addition to the JAK/

STAT signaling axis, both classic and trans-signaling modes

activate other intracellular pathways like MAPK/ERK and PKB/

AKT as demonstrated in Figure 3 (23).
IL-6 signaling in intestinal homeostasis

As shown earlier in Figure 1, IL-6 leads to specialized functions

in the intestine, which are essential for maintaining intestinal

barrier integrity, microbial defense, immune homeostasis, and cell

differentiation and survival.

Under physiological conditions, IL-6 is needed for mucin

production and to maintain a balanced intestinal epithelial

permeability. Gut microbiota stimulates the intraepithelial

lymphocytes (IELs) to release IL-6, which is needed to maintain

the mucosal barrier integrity. This was proven by the disrupted tight

junctions, paracellular permeability, and mucous layer seen in the
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intestines of IL-6−/−mice. The absence of IL-6 in mice led to thinner

intestinal mucous layers and increased intestinal paracellular

permeability accompanied by reduced expression of tight junction

proteins like claudin-1. IL-6, acting through the activation of

STAT3, increases the expression of claudin-1 and MUC-2 in

vitro. It is alternatively suggested that IL-6 can be protective in an

indirect way by supporting the elimination of microbes and

restoring the health of intestinal cells, making claudin-1 and

MUC-2 more available (24).

Moreover, IL-6 is essential for epithelial cell proliferation and

maintenance of the stem cell niche, which is needed for wound

healing after intestinal injury (25). Blocking IL-6R or neutralizing

IL-6 in the intestine reduces the stem cell population, cell

proliferation, and crypt budding. This autocrine IL-6 activity in

the intestinal crypts was achieved via the STAT3/Wnt signaling

axis, which regulates crypt homeostasis (26).
IL-6 signaling during inflammation
and intestinal dysfunction
and restoration

IL-6 contributes to the damage of the intestinal epithelial barrier

integrity during inflammatory conditions by increasing intestinal

permeability. Claudin-2, a tight junction protein responsible for

increasing the permeability of epithelial layers to small ions

(cations), is a well-established marker of intestinal permeability

and a direct target of IL-6 signaling. Functionally, claudin-2

expression is reflected in the electrical resistance of the epithelial

barrier indicating its permeability to cations (27). IL-6 damage to

the intestinal barrier is manifested by upregulation of claudin-2

expression, reduction in the transepithelial electrical resistance

(TEER), and increased intestinal epithelial layer permeability to

small molecules like urea in cultured Caco-2 cells (28, 29).

Clinically, upregulated claudin-2 is a predominant feature of the

inflamed intestinal mucosa of CD patients and participates in leak

flux (exudative) diarrhea, which is also seen in patients with

ulcerative colitis (27, 30). Analysis of colonic biopsies from mild
FIGURE 2

The two main modes of IL-6 signaling: classic and trans-signaling. Classic IL-6 signaling affects a limited number of cells that inherently express the
membrane-anchored form of IL-6R and the signaling component, gp130. In contrast, trans-signaling affects cells that lack a membrane expression of IL-6R
but have gp130. Both modes of signaling require the presence of a hexamer of two of each: IL-6, IL-6R, and gp130. Generated by Biorender.com.
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to moderate CD patients proved an impairment of tight junctions

and increased apoptosis in CD compared to controls. This was in

conjunction with the upregulated leaky tight junction protein,

claudin-2 (31). Interestingly, the upregulation of claudin-2 by IL-

6 was achieved by different signaling pathways in two separate

studies, with the final result being the same. In one study, claudin-2

expression was upregulated via MAPK/ERK and PI3K/AKT

pathways and with the action of the transcription factor Cdx2

(28). Claudin-2 expression also was dependent on JNK kinase

activation and the subsequent phosphorylation of the

transcription factor AP-1, which binds onto the claudin-2

promoter (29). Other tight junction proteins like occludin and

claudin-1 are also modulated by IL-6 as has been demonstrated in a

rat model of chronic stress where IL-6 levels increase

consequentially. The spike in IL-6 is accompanied by a decrease

in these junctional proteins and a following increase in the intestinal

paracellular permeability. These changes are attributed to the
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increase of methylation at the H3K9 histone site of both occludin

and claudin-1 promoters and the reduction in glucocorticoid

receptor (GR) binding to these sites. In vitro treatment of Caco-2/

BBE cells with IL-6 also decreased occludin and claudin-1

expression, and this was reversed when H3K9 methylation was

specifically blocked using UNC0638 (a H3K9 methylation

inhibitor) (32). Moreover, the intestines of IL-6-wild-type mice

are more vulnerable to sepsis and have increased paracellular and

transcellular transport in response compared to mice lacking IL-6

expression. This effect was a result of a crosstalk between IL-6 and

other cytokines like IL-10 (33).

Furthermore, IL-6 is crucial for regulating the immune response

within the intestinal microenvironment. For instance, IL-6 activates

the pro-inflammatory NFkB signaling pathway in intestinal cells

leading to upregulation of ICAM-1 expression (34). ICAM-1, an

epithelial adhesion molecule, is required for neutrophil interactions

with the epithelia during neutrophil trafficking and thus plays a role
FIGURE 3

IL-6 intracellular signaling pathways. Activation of the hexameric IL-6 signaling complex brings the cytoplasmic tails of gp130 into proximity. This allows the
adjoined JAKs to transphosphorylate each other as well as tyrosine residues on the gp130 cytoplasmic portion. 1) Phosphorylated tyrosines at YXXQ/YXPQ
sequences act as docking sites for STAT transcription factors. These STATs are consequently phosphorylated by the activated JAKs leading to their
dimerization and translocation to the nucleus. 2) Phosphorylated TYR759 on gp130 recruits a cascade of signaling mediators, which eventually activate Ras
protein initiating the MAPK pathway (Raf/MEK/ERK), which eventually activates the transcription factor CEBPb. 3) Activated JAK phosphorylates and activates
PI3K, which generates PIP3 on the plasma membrane and docks for PKB/Akt, which is phosphorylated and activated, initiating multiple downstream
pathways, one of which activates transcription factor NFkB. All the activated transcription factors translocate to the nucleus, and by binding. DNA response
elements modulate the expression of target genes. Generated by Biorender.com.
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in inflammation (35). IL-6 trans-signaling via the soluble IL-6R

renders T cells resistant to apoptosis. Isolation of lamina propria

CD3+ T cells from CD patients showed higher expression of the

anti-apoptotic proteins, bcl-2 and bcl-xl, in these cells compared to

cells isolated from controls. This anti-apoptotic shift was found to

be STAT3-dependent and allows T cells to persist longer during

chronic inflammation. This is reversed by a neutralizing antibody

against IL-6R as well as by the fusion protein gp130-Fc, both of

which block IL-6 signaling. The latter specifically blocks trans-

signaling via the soluble receptor but not the membrane-bound

receptor (i.e., classical signaling). Both blocking mechanisms of IL-6

signaling lead to lamina propria T-cell death by apoptosis.

Interestingly, the fusion protein (gp130-Fc), which specifically

inhibits the trans-signaling pathway, induced T-cell apoptosis to

an extent very similar to that of IL-6R blocking, indicating the

prominent contribution of IL-6 trans-signaling on T-cell resistance

to apoptosis during inflammation (13).
Targeting IL-6 for CD therapy

Previous CD therapy focused on the non-specific inhibition of the

immune system with the use of corticosteroids or immunosuppressive

agents like thiopurines or methotrexate. The use of corticosteroids

reduces CD mortality but involves side effects that halt its long-term

use. Current therapeutic approaches vary between corticosteroids,

immunosuppressive agents, antibiotics, and biological therapies that

target either cytokines like TNFa, IL-12/IL-23, or integrins like a4b7
and surgical resection (36). IL-6 imposes an attractive target for

treatment in IBD, as it is further involved in the pathogenesis of

colorectal cancer. Targeting IL-6 can thus relieve inflammation in the

gastrointestinal tract and reduce the risk of carcinogenesis (5). Different

strategies have been explored to block IL-6 signaling for the treatment

of IBD. We mention here the most prominent ones in the journey to

control IL-6 signaling.

Because IL-6R has less inter-patient level variability compared to

IL-6, it has been selected earlier for therapeutic targeting. A humanized

monoclonal antibody (tocilizumab, initially known as MRA) against

IL-6R has been produced and used in the treatment of multiple

autoimmune and inflammatory diseases including rheumatoid

arthritis (RA) and CD (19). Tocilizumab (TCZ) treatment of CD

patients improved the disease activity index score in 80% of patients

compared to 31% in the placebo group. Of TCZ-receiving patients,

20% went into remission compared to 0% in the placebo group (37).

Unlike infliximab (anti-TNFa antibody), endoscopic and histologic

healing was not observed in patients treated with TCZ. Few patients on

TCZ suffered from gastrointestinal bleeding due to treatment, but a

causative link with IL-6 blockade was not confirmed. Trials with TCZ

were halted because of intestinal perforations found in rheumatoid

arthritis clinical trials. It is noteworthy that most events of intestinal

perforations occurred in patients with a pre-existing risk factor like

intestinal diverticulitis or ulcers or patients who have used oral

glucocorticoids (19).

In a phase II clinical trial, a fully human monoclonal

immunoglobulin G2 against human IL-6 (PF-04236921) was used

in CD patients. The study recruited 247 CD patients with
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unsatisfactory response to anti-TNFa therapy, and they were

randomized in a double-blinded trial to one of three groups:

placebo, 10 mg, or 50 mg of PF-04236921. The study met the

established end points of improved CD activity parameters, and

drug response and remission rates were significantly greater in the

50 mg treatment arm compared to other groups. Unfortunately, a

proportion of patients treated with the antibody experienced

gastrointestinal abscesses and perforations, as was reported

previously in rheumatoid arthritis patients treated with TCZ (38).

It is worth mentioning that multiple studies of larger sample

sizes contradict a higher risk of gastrointestinal (GI) complications

in patients treated with TCZ compared to other conventional

treatments of inflammatory diseases like CD and RA. A case

study of a large rheumatoid arthritis patient population analyzed

the frequency of serious adverse events in patients using TCZ

(65,000 patient-years) in comparison to anti-TNFa (50,000

patient-years) therapies. This study included a bigger sample size

compared to clinical trials by using different-sourced datasets of

patients who used TCZ after the drug was marketed and available to

the public. The reporting rate of serious gastrointestinal

perforations in TCZ patients was found comparable to that of

anti-TNFa patients. These results support the claim that TCZ does

not impose a higher risk of serious adverse events of interest like GI

perforations in the real-world setting when larger numbers of

patients are assessed and included, in comparison to anti-TNFa
therapies, which are commonly used (39). Before disease-modifying

anti-rheumatic drugs (DMARDs) like anti-TNFa and TCZ were

used, RA patients were treated with corticosteroids, which caused

gastrointestinal complications and related deaths. In a systematic

review comparing GI perforations in RA patients treated with

corticosteroids, anti-TNFa, and TCZ, the reported rate of GI

perforations of TCZ was within the range of that found in

patients treated with corticosteroids or anti-TNFa. This could

indicate that TCZ should not be singled out among CD therapies

as the cause of GI perforations, and more strategies should be

considered for treating patients of autoimmune diseases with IL-6

blockers before such a conclusion can be drawn (40).

A more recent approach to target IL-6 in IBD was to target the

trans-signaling axis specifically. IL-6 classical signaling is thought to

induce defensive inflammatory responses, while trans-signaling is

involved in pathogenic chronic inflammation seen in IBD. To

specifically target IL-6 trans-signaling, a decoy protein has been

developed that is made of two gp130 extracellular domains fused to

the Fc part of human IgG1 and is known as sgp130Fc or

Olamkicept. In a phase 2a clinical trial that recruited 16 active

IBD patients, 44% of patients showed clinical response, and 19%

reached clinical remission. None of the patients reported intestinal

perforations or severe adverse effects related to immunosuppression

due to treatment. Olamkicept had strongly suppressed the STAT3

signaling pathway and more strongly in patients achieving clinical

remission as was shown by transcriptomic analysis of patients’

intestinal mucosal biopsies. Olamkicept had no negative effect on

epithelial cells’ proliferative or wound-healing abilities. Olamkicept,

thus far, represents an outstanding drug with promising potential

for the treatment of IBD by specifically targeting the IL-6 trans-

signaling pathway (41).
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Intestinal regulators of IL-6 signaling
as potential novel therapeutic targets

IL-6 signaling is subject to tight regulation by an intricate

network of upstream molecular factors. The critical interplay

between these molecular regulators ensures the precise and

balanced activation of IL-6 signaling, which is essential for

maintaining immune homeostasis and preventing excessive

inflammation. Understanding the molecular regulators of IL-6

signaling holds significant therapeutic potential in the context of

CD as well as other inflammatory disorders.
TGFb and serotonin

TGFb is a well-studied upstream antagonist of IL-6 signaling in

intestinal cells, which activates downstream Smad2 and Smad4,

which translocate to the nucleus to activate target genes. Active

Smad2/4 interferes with IL-6-induced phosphorylation of STAT3,

which prevents the expression of ICAM-1, normally induced by

active IL-6 signaling. ICAM-1, in contrast, is needed for IL-6 to

induce leukocyte adhesion to the epithelium and endothelium,

which secures their trafficking to intestinal tissue (42).

Another molecular regulator that connects to TGFb is the

monoamine neurotransmitter, serotonin (also known as 5-

hydroxytryptamine (5-HT)). Activation of the serotonin receptor,

5-HT2B, protects against the initiation of colitis-associated cancer

(CAC) via the canonical TGFb/SMAD pathway, which inhibits the

IL-6/STAT3 signaling pathway. 5-HT has a reputation for dual

regulation in the context of intestinal inflammation and associated

cancer. 5-HT/5-HT2B/TGFb axis acts as a tumor suppressor in the

initiation of CAC but then becomes a promoter of the established

CAC at later stages. This shift occurs via the alternative activation of

the non-canonical effector molecule of TGFb signaling, Akt.

Deletion of 5-HT2B from the mouse model of chemically induced

colitis leads to an increased level of IL-6 and an accompanying

upregulation of STAT3 activation, which boosts the survival and

proliferation of intestinal epithelial cells during inflammation,

leading to cancer initiation. The use of fluoxetine, a readily

available anti-depressant drug and inhibitor of 5-HT reuptake,

improved the weight of dextran sulfate sodium (DSS)-induced

colitis mouse models (43). It may be valuable to consider

repurposing this modulator for the treatment of early CD once

clinical trials establish its efficacy in improving intestinal health

under chronic inflammation in its early stages.
Monocarboxylate transporter 4

Monocarboxylate transporter 4 (MCT4) is a cell-surface H+-

coupled monocarboxylate symporter that was found to specifically

upregulate IL-6 levels in vivo and in vitro (44, 45). MCT4 is

expressed highly in hypoxic sites like metastatic tumors and

inflammatory foci where lactate is involved in the modulation of

immune responses. MCT4 has a high affinity for lactate and exports
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it against the concentration gradient (45). MCT4 is upregulated in

the colons of IBD patients and DSS-induced experimental colitis

mouse models. MCT4 activates the phosphorylation of p65 of

NFkB, which translocates to the nucleus and interacts with the

transcription coactivator CREB-binding protein (CBP), dissociating

it from the CREB transcription complex. This activates the

transcription of NFkB target genes comprising inflammatory

cytokines like IL-1b, IL-6, and TNFa. Most notably, IL-6 was

markedly increased in the serum of DSS animals and MCT4-

transfected Caco-2 compared to other inflammatory cytokines. In

contrast, MCT4 leads to a reduction in the transcriptional activity of

CREB at the promoter of the tight junction protein, zonula

occludens-1 (ZO-1). This leads to damaging the intestinal barrier

function demonstrated by reduced TEER value compared to the

control. Blocking MCT4 using the specific inhibitor, a-cyano-4-
hydroxycinnamate (CHC), improves the barrier function and

alleviates the colitis in DSS mouse models (44). Efforts have been

made to develop selective inhibitors against MCT4 like the clinical

candidate, AZD0095. This inhibitor showed satisfactory preclinical

efficacy for cancer treatment and is on its way to clinical trials (46).

Once safety is established, it can be alternatively tested in preclinical

and clinical experiments for the treatment of IBD.
Cellular communication network factor-1

Cellular communication network factor-1 (CCN1) or cysteine-

rich angiogenic inducer 61 (Cyr61) is a matricellular protein that is

upregulated in colons of CD and UC patients (47). CCN1 induces

IL-6 expression as well as other pro-inflammatory genes in

macrophages (47, 48) The action of CCN1 on these genes was

mediated by aMb2 integrin and the co-receptor syndecan-4 on

macrophages. CCN1 also supports macrophage adhesion via these

two receptors. These receptors are activated by extracellular matrix

(ECM) ligands or cell adhesion and activate the transcription factor

NFkB, which then influences the change in pro-inflammatory gene

expression (48). CCN1 is restricted to terminally differentiated

intestinal cells in the normal colon but is found all over the crypt

upon DSS treatment in a mouse colitis model. In the initiation

phase of colitis, IL-6 upregulation is independent of CCN1, but later

in the repair phase (8 days after DSS administration), IL-6

overexpression is mainly CCN1-dependent (47). Heparan sulfate

proteoglycans (HSPGs), which include the co-receptor syndecan-4,

are involved in monocyte and fibroblast adhesion to CCN1. Pre-

treatment of monocytes with heparin or heparinase I partially

inhibited monocyte adhesion to CCN1. Heparin binds CCN1

with high affinity, while heparinase removes cell surface HSPGs

like syndecan-4. Concentrations of 0.1–10 µg/ml of heparin reduced

monocyte adhesion by approximately 45%, and monoclonal

antibodies against integrin aMb2 also blocked monocyte adhesion

to CCN1 (49). As the adhesion of monocytes to aMb2 integrin and

syndecan-4 is linked to signal activation by them, this pathway,

specifically syndecan-4, presents a potential therapeutic target for a

downstream reduction in IL-6 production. Syndecan-4 is an

emerging target for cancer treatment, and several cancer

therapeutics have been found to downregulate it like trastuzumab
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(humanized anti-HER2 monoclonal antibody) and panitumumab

(human anti-EGFR monoclonal antibody) (50). Hopefully, once a

more specific inhibitor of syndecan-4 is available, it can be multi-

purposed for cancer and CD treatment.
Rhomboid proteases 1 & 2

Another upstream pathway that could be included in the potential

target list is the rhomboid proteases iRhom1 and iRhom2 (iRhom 1/2).

These are regulators of themembrane trafficking of the transmembrane

metalloproteinase, TACE (also known as ADAM17, a disintegrin and

metalloproteinase 17). iRhoms form a complex with TACE in the

endoplasmic reticulum (ER) and guide TACE trafficking from the ER

to the cell surface via the Golgi apparatus. In Golgi, the pro-domain is

removed, and the proteolytic potential of TACE is released. Ablation of

iRhoms retains TACE in ER and impairs its maturation. TACE is also

involved in the shedding of many inflammatory cytokines and their

receptors including IL-6R, which mediates the trans-signaling on

gp130-expressing cells (51). TACE membrane trafficking increases in

macrophages during Mycobacterium avium paratuberculosis (MAP)

infection and in IBD, which results in an upregulation of pro-

inflammatory cytokine release (51, 52). iRhom1 and iRhom2 are to a

large extent redundant and must be abolished together to achieve an

effect on TACE membrane trafficking (51). SiRNA-mediated silencing

of iRhom 1/2 in MAP-infected macrophages reduced the production

and membrane trafficking of TACE and further decreased the

expression of pro-inflammatory cytokines like TNFa (52). Targeting

iRhoms would also reduce the shedding of IL-6R from MAP-infected

macrophages, abolishing the detrimental increase of IL-6 trans-

signaling during MAP-infection. Pharmaceutical targeting of TACE

through iRhom 1/2 is an emerging need for many inflammatory

disorders like RA, atherosclerosis, Alzheimer’s disease, and IBD (51).

Also, further experimentations are needed to identify off-targets and

side effects of reducing TACE membrane trafficking.
The role and interplay of M. avium
paratuberculosis infection and IL-6 in
CD therapy

The etiology of CD is a complex interplay between host genetics,

the immune response, and environmental and microbial factors. Some

microbes have the potential to stimulate an immune response in

genetically susceptible individuals and initiate a chronic

inflammatory response in the intestine manifested as CD symptoms

(53). Among many debated microbial agents linked to CD, MAP has

been heavily studied in clinical samples and found to be closely

associated with CD (3, 54). Viable MAP is specifically detected in the

blood of more than 50% of CD patients as found in separate studies (3,

55). This bacterium was first studied in mammal ruminants (like cows,

sheep, goats, and deer) where it causes an inflammatory bowel disease

called Johne’s disease (56, 57). In addition to being present in infected

animal’s tissues, MAP is released in their feces and milk. Because this

microbe is resistant to conventional pasteurization, humans can be
Frontiers in Immunology 07
exposed to MAP when in contact with the meat or milk of an infected

animal (58). MAP is an obligatory intracellular pathogen that can

survive in host macrophages by inhibiting the phagosome–lysosome

fusion similar to Mycobacterium tuberculosis (54). Evidence on MAP

association with CD was derived from the specific detection of MAP

DNA in the blood and granulomatous tissue of CD patients using PCR

specific to the unique MAP genome sequence, IS900 (59, 60). It was

further supported by the identification of serum antibodies against

MAP-specific proteins (p35 and p36), RNA, and culturable microbes

from the intestinal tissue, milk, and blood of CD patients (3, 54, 60, 61).

MAP has been meticulously studied in bovine hosts. It typically

infects the host through the oral route, inhalation, or exchange of body

fluids. Once MAP reaches the intestine, it can invade the intestinal

tissue through the microfold (M) cells of Peyer’s patches and the iliac

epithelial cells. The movement of MAP across the intestinal layer

activates the bacterial cell wall protein, fibronectin attachment protein

(FAP), which attaches MAP to the luminal surface of intestinal M cells

that express the b1 fibronectin receptor. MAP is subsequently

translocated to the submucosa, where it is engulfed by macrophages.

There, MAP interferes with the maturation of phagolysosomes,

allowing the mycobacterium to survive in host macrophages and

sustain a persistent infection (56). MAP can further manipulate

macrophage survival by activating Notch-1 signaling to inhibit

cellular apoptosis and enhance their survival in the intestinal tissue

(62). In macrophages, MAP upregulates the expression and release of

TNFa that leads to chronic inflammation in the gut and upregulates

the expression of other inflammatory cytokines like IL-6 and IL-12 (52,

63). MAP infection also reduces TGFb signaling needed for

immunosuppression, which allows for tissue damage healing (52). It

is strongly supported that this microbial mechanism of establishing a

long-standing infection in intestinal macrophages leads to the chronic

intestinal inflammation seen in CD.

MAP-targeting antibiotic combinations have shown clinical

efficacy in several studies (58). Most notably, a triple antibiotic

treatment that comprises clarithromycin (CLA), clofazimine

(CLO), and rifabutin (RIF) was evaluated in vitro for efficacy

against MAP infection (64, 65). This triple therapy reduces NFkB
signaling and T-cell proliferation, demonstrating intrinsic anti-

inflammatory properties in addition to the antimicrobial ones

(66). This treatment has proved efficacy in a clinical trial on

active CD patients where clinical response and remission were

improved by RHB-104 treatment compared to the placebo group.

Notably, the enhanced response with this therapy was more

pronounced when combined with other conventional CD

treatments like anti-TNFa (67).

IL-6, like other pro-inflammatory cytokines, is upregulated

during MAP infection in CD patients. IL-6 serum levels in MAP-

positive CD patients were determined as 1.72 ± 1.65 ng/ml, while in

MAP-negative patients, it was 0.82 ± 0.74 ng/ml (7). Unlike TNFa,
which is needed for the elimination of infectious agents, treatment

of MAP-infected macrophages with recombinant IL-6 (rIL-6)

increased the survival of MAP in macrophages. This points to IL-

6 as a unique and better target for MAP-positive CD patients than

conventional targeting of TNFa (63). A combination of anti-MAP

and IL-6-targeted therapies could provide hope for CD patients

with an underlying MAP infection.
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Conclusion

IL-6 is a versatile cytokine with various functions throughout

the body and a more targeted and specialized influence on the

intestinal mucosa. It plays a central role in the pathogenesis of CD

and other inflammatory disorders. The signaling of IL-6 is of

particular interest because it comprises a complex network of

multiple upstream regulators, multiple modes of activation, and a

variety of downstream signaling pathways activated in target cells.

This complexity provides a multitude of targets for fine-tuning the

concentration of released IL-6 or the extent of signaling pathway

activation in a disease context. In light of this complexity, IL-6 plays

a dual role in the intestine, and aberrations in IL-6 concentration

and signaling can participate in the shift between homeostasis and

chronic inflammation. Substantial efforts have been made to target

the IL-6 pathway for the treatment of inflammatory disorders. More

trials and efforts should include patients with IBD and CD

specifically, as the current approaches are becoming less effective.

Regulating IL-6 release and signaling could be the key to providing a

healing window for a chronically inflamed intestine. Differentially

targeting the trans-signaling pathway of IL-6 could be the key to

finding the balance needed to restore intestinal health in patients

with CD and other inflammatory disorders.
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