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Background: Identifying the diagnosis as well as prognosis for patients

presented with community-acquired pneumonia (CAP) remains challenging.

We aimed to identify the role of lysophosphatidylcholine acyl-transferase

(LPCAT) for CAP along with assessing this protein’s effectiveness as a

biomarker for severity of disease and mortality.

Methods: Prospective multicenter research study was carried out among

hospitalized patients. A total of 299 CAP patients (including 97 severe CAP

patients [SCAP]) and 20 healthy controls (HC) were included. A quantitative

enzyme-linked immunosorbent test kit was employed for detecting the LPCAT

level in plasma. We developed a deep-learning-based binary classification (SCAP

or non-severe CAP [NSCAP]) model to process LPCAT levels and other

laboratory test results.

Results: The level of LPCAT in patients with SCAP and death outcome was

significantly higher than that in other patients. LPCAT showed the highest

predictive value for SCAP. LPCAT was able to predict 30-daymortality among

CAP patients, combining LPCAT values with PSI scores or CURB-65 further

enhance mortality prediction accuracy.

Conclusion: The on admission level of LPCAT found significantly raised

among SCAP patients and strongly predicted SCAP patients but with no

correlation to etiology. Combining the LPCAT value with CURB-65 or PSI

improved the 30-day mortality forecast significantly.

Trial registration: NCT03093220 Registered on March 28th, 2017.
KEYWORDS
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Background

Community-acquired pneumonia (CAP), regarded highly

prevalent globally, commonly resulted in infectious disease-

related mortality in the United States (1, 2). Despite advances in

antibiotics and other supportive treatments, some patients rapidly

progress to severe pneumonia with fever and hypoxemia, and

eventually could die due to acute respiratory syndrome or septic

shock. The overall mortality is approximately 4–18% among

patients admitted to hospital and around 50% among severe CAP

(SCAP) presented cases (3, 4). Therefore, early identification of

SCAP is important. Severe pneumonia is defined by meeting one

primary or three secondary criteria (5, 6). Furthermore, the CURB-

65 scoring systems and pneumonia severity index (PSI) are broadly

used to grade CAP severity in clinical practice (7). Even when

evaluated by PSI or CURB-65 scores, a delay in diagnosis cannot be

completely avoided because both methods are mainly based on

limited medical information. Delayed intensive care owing to

delayed diagnosis is closely related to increased mortality.

Biomarkers in the peripheral blood, evaluated by a simple blood

test, can objectively indicate a specific diagnosis and provide

prognostic information.

Lysophosphatidylcholine acyltransferase (LPCAT) is a lipid-

modifying intracellular enzyme in many tissues, including alveolar

type II cells in the lung (8), hepatocytes (9, 10), and red blood cells

( 11 ) . LPCAT conve r t s l y s opho spha t i dy l cho l i n e t o

phosphatidylcholine in the presence of acyl-CoA (12), a step in

Land’s cycle (13). It is involved in lipid metabolism and the

maintenance of membrane integrity. The progression and

metastasis of many diseases, including multiple cancers, are

related to the overexpression of the LPCAT gene or the LPCAT

level in the body (14–16). In the lung tissue, phosphatidylcholine

from the LPCAT remodeling pathway is converted into

dipalmitoylphosphatidylcholine, which is responsible for the

surface tension-lowering properties of the surfactant via the

remodeling pathway of dipalmitoylphosphatidylcholine

synthesis (8).

Recently, artificial intelligence, represented by deep learning,

has been increasingly applied in clinical practice. From DNA

sequence analysis to medical image processing, the application of

these emerging technologies can help clinicians not only ease

clinical procedures but also understand the features of the disease.

Demographic and clinical data have been broadly used for

psychological illness prediction and identification using deep

learning methods (17, 18). In respiratory disease assessment,

convolutional neural networks are typically applied to medical

image processing (chest radiography or computed tomography

scan) (19). The Food and Drug Administration in America has

granted regulatory approval for the deep learning diagnostic

software used in clinical practice (20).

In this research, we assumed that the severity of CAP was

related to the level of LPCAT in peripheral blood. We measured the

LPCAT level by an ELISA (enzyme-linked immunosorbent assay)

for determining the LPCAT role in SCAP and evaluating the

predictive values for LPCAT as disease severity and prognosis

among CAP patients in the early stage. We also applied a deep
Frontiers in Immunology 02
learning algorithm to process laboratory test results to distinguish

patients with CAP into SCAP and NSCAP.
Methods

Study population

This prospective, observational and multi-center study was

conducted among hospitalized patients between January 2017 and

October 2018. All the samples were obtained from Peking

University People’s Hospital (PKUPH), Tianjin Medical

University General Hospital, Wuhan University People’s Hospital

and Fujian Provincial Hospital. The study was approved by the

Institutional Review Board of PKUPH (No. 2016PHB202-01) and

registered at ClinicalTrials .gov (ClinicalTrials.gov ID,

NCT03093220). Informed consent in written was obtained from

all participants. All cases enrolled for the research were CAP upon

diagnosis and already hospitalized either at the respiratory or

intensive care unit. CAP was defined by the following criteria (4):

(1) a chest radiograph showing either a new patchy infiltrate, leaf or

segment consolidation, ground glass opacity, or interstitial change;

(2) at least one of the following signs – (a) the presence of cough,

sputum production, and dyspnoea; (b) core body temperature

>38.0°C; (c) auscultatory findings of abnormal breath sounds and

rales; or (d) peripheral white blood cell counts >10 × 109/L

or<4 × 109/L; and (3) symptom onset that began in the

community, rather than in a healthcare setting. SCAP was

diagnosed by the presence of at least one major criterion, or at

least three minor criteria, as follows (6). Major criteria: (1)

requirement for invasive mechanical ventilation and (2)

occurrence of septic shock with the need for vasopressors. Minor

criteria: (1) respiratory rate ≥30 breaths/min; (2) oxygenation index

(PaO2/FiO2) ≤250; (3) presence of multilobar infiltrates; (4)

presence of confusion; (5) serum urea nitrogen ≥20 mg/dL; (6)

white blood cel l count ≤4 × 109/L; (7) blood platelet

count<100 × 109/L; (8) core body temperature<36.0°C; and (9)

hypotension requiring aggressive fluid resuscitation. The

exclusion criteria were age<18 years, or the presence of any of the

following: pregnancy, immunosuppressive condition, malignant

tumor, end-stage renal or liver disease, active tuberculosis, or

pulmonary interstitial fibrosis. We also recruited 20 sex and age

matched healthy volunteers to set up a baseline LPCAT level in

healthy individuals. Assessing LPCAT level as predictor for SCAP

or NSCAP is considered as primarily an endpoint for this research.

The secondary endpoint was the mortality of 30 days after CAP

onset. Outcomes were assessed at hospital discharge and at 30 days

fo l l ow ing inc lu s i on in the s tudy us ing s t ruc tu r ed

telephone interviews.
Sample size calculations

We assumed that the mortality rates of NSCAP (P0) and SCAP

(P1) were 0.05% and 0.25%, respectively (6, 21). An alpha level of

0.05 at 95% confidence of interval was considered significant to
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encounter type I error. A level of 0.01 set for type II (b) error

because these parameter settings can provide a power of 90% for the

study. The test standard deviations were Za=1.96 and Zb=1.282.

The sample size was calculated below.

R =
P1
P0

A =  P1(1 − P0) + P0(1 − P1)

B = (R − 1)P0(1 − P0)

K = (A + B)(RA − B) − R(P1 − P0)
2

N 0
NSCAP =

Z2
bK +  Z2

aðA + BÞ2 + 2ZaZbðA + BÞ ffiffiffiffi

K
p

(P1 − P0)
2(A + B)

= 121

N 0
SCAP =

N 0
NSCAP

R
= 25

We assumed that there would be a 10–30% ineligible inclusion.

We then calculated the primary numbers of cases diagnosed with

NSCAP and SCAP.

NNSCAP =
N 0
NSCAP

1 − 30%
= 173

NSCAP =
N 0
SCAP

1 − 30%
= 36
Microbiological evaluation

Lower respiratory tract specimens including sputum,

endotracheal aspiration was collected during the first 24 hours

after hospital admission. Bronchoalveolar lavage (BAL) samples

were obtained whenever possible within 7 days after admission. The

specimens were stored in sterile sample tubes, deep-frozen at −80°C

until analyzed in a central laboratory at Peking University People’s

Hospital. All samples were analyzed with multiplex real-time PCR

assays for viral detection and DNA-based quantitative loop-

mediated isothermal amplification (qLAMP) assays for

bacterial detection.

Total viral nucleic acids were extracted from respiratory

samples using a QIAamp MinElute Virus Spin Kit (Qiagen Inc.,

Valencia, CA, USA). The presence of common respiratory

pathogens were screened using an AgPath-ID™ One-Step real-

time polymerase chain reaction (RT-PCR) kit (Ambion) with the

FTD respiratory pathogens 21 kit (Fast Track Diagnosis,

Luxembourg), which included influenza A/B, influenza A H1N1,

rhinovirus, coronaviruses (NL63, 229E, OC43, and HKU1),

parainfluenza viruses, human metapneumovirus A/B, bocavirus,

respiratory syncytial virus A/B, adenovirus, parechovirus, and

enterovirus. A virus was considered as the etiology of CAP when

the Ct value was<30, using GAPDH as an internal control (22).
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Loop-mediated isothermal amplification (LAMP) assays were

used to detect 13 common bacterial pathogens of CAP, including

Streptococcus pneumoniae, Staphylococcus aureus, Methicillin-

resistant Staphylococcus aureus, Escherichia coli, Klebsiella

pneumoniae, Pseudomonas aeruginosa, Acinetobacter Baumannii,

Stenotrophomonas maltophilia, Haemophilus influenza, Legionella

pneumophila, Mycobacterium tuberculosis, Mycoplasma

pnedumoniae, and Chlamydia pneumoniae. In our previous

studies, LAMP assay had been proved to be an effective technique

for detection of bacteria and atypical pathogens (23). A bacterium

was considered to be the causative pathogen only if the DNA

concentration was over 104 copies/mL. If no pathogenic bacteria,

viruses or atypical pathogens were detected in the sample, it is

defined as “unknown”.
Data collection

The clinical characteristics of participants were evaluated and

recorded by attending physicians at admission. Peripheral venous

blood was sampled within 8h after hospitalization, the plasma was

immediately separated by in-situ centrifugation, transported in a

dry ice environment, and stored at -80°C for subsequent analysis.

Moreover, laboratory examination and chest imaging were

performed within 24 h in situ. Scores for PSI and CURB-65 were

calculated from clinically data.
Measurement of LPCAT level

We measured plasma LPCAT level by using a quantitative

enzyme-linked immunosorbent assay kits (Shanghai Enzyme-

linked Biotech, Shanghai, China) in duplicate. For examination

the details from manufacturer’s instructions were followed. The

inter- and intra-assay coefficients of variation were< 15% and 10%.

The quantities of plasma LPCAT were measured by a standard

curve using CurvExpert Professional 2.6.3 (Hyams Development,

Madison, WI, USA).
Dataset creation, model development and
performance evaluation

We created the dataset, the parameters of which are listed in

Supplementary Data Sheet 1. We applied a deep-learning method,

multilayer perceptron (MLP), to build a joint prediction model for

the SCAP with multiple indicators. Eight dimensions representing

the eight laboratory test results were passed to a dense layer with

eight units as the input layer. The variables from the input layer

were then passed to several hidden layers with different numbers of

hidden units. We attempted several combinations of the hidden

layers. The number of hidden layers was changed from 3 to 10

(including the input and output layers). The hidden units in each

layer were also changed from 8 to 128. Finally, we applied a 10-layer

multilayer perceptron with different hidden units to each layer. We
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also applied L2-norm regularization to the output layer to reduce

overfitting. Further details regarding the MLP structure are

presented in Table 1. We chose Adam (24), which has an

automatic learning rate, as the optimizer. The model was trained

for up to 500 epochs with a batch size of 16. Hyperparameters were

adjusted based on a 5-fold cross-validation of the entire

training dataset.

To evaluate the model performance, we performed prediction

on the test dataset features and applied the confusion matrix and

ROC curve by comparing the labels in the test dataset. Sensitivity,

specificity, and Youden index were calculated based on the

confusion matrix. The AUC was also calculated using a ROC

curve analysis. To evaluate the contribution of each input

variable, we applied the dropout method by creating a series of

dropout datasets. The details of the dropout dataset are elaborated

in the section “Dataset Creation.” When performing an SCAP

prediction on a drop-out dataset, a significant drop in the

Youden index or AUC suggested a significant degradation in the

model prediction without specific variables in the drop-out dataset,

which also suggested the importance of this dropout variable.

Model training and prediction were performed using the open-

source platform TensorFlow (v2.8, Google Inc. USA) (25). The

confusion matrices and AUCs were calculated using the Python

package scikit-learn (v1.1.2), and the ROC curves were plotted

using the Python package matplotlib (v3.5.3 The Matplotlib

Development Team).
Statistical analysis

The mean ± SE of the mean was used to present continuous

variable with normal distribution whereas median (interquartile

range) was used for non-normally distributed continuous variables.

All the categorical variables are expressed as count or numbers

(percentages). Student’s t-tests and Mann–Whitney U tests were

employed for comparing both groups for normal distribution of

data with homogeneity of variance and others, respectively. One-

way ANOVA (analysis of variance) along with Kruskal-Wallis
Frontiers in Immunology 04
comparison test was employed for multiple groups comparison.

Correlations between variables were assessed using Pearson’s

correlation test or Spearman’s rho test. The receiver operating

characteristic (ROC) curves, areas under the curve (AUCs),

optimal threshold values, sensitivity, and specificity were

calculated to compare the predicted values of different variable

combinations. The 30-day survival curve was established using

Kaplan-Meier method. GraphPad Prism version 6.01 (GraphPad

Software, La Jolla, California, USA) and MedCalc statistical

software version 15.2.2 (MedCalc Software, Ostend, Belgium)

were used for all statistical analyses. Confidence intervals (CIs)

were established at 95% in this study, and a two-sided p-value of

0.05 was considered statistically significant.
Results

Patient characteristics

299 patients with CAP were enrolled in this research, of whom

97 were diagnosed with SCAP. Twenty patients (20.6%) died during

their hospitalization within 30 days of admission, due to CAP or its

complications, including septic shock or multiple organ dysfunction

syndromes. The remaining 279 patients recovered either discharged

or were shifted within 30 days to the intensive care unit. white blood

cell (WBC) count, C-reactive protein (CRP), bilateral change,

pleural effusion on chest imaging, and pathogen detection showed

significant differences among patients presented with NSCAP and

SCAP. The demographic along with clinical characteristics of the

study patients are presented in Table 2.
LPCAT level in each group

The plasma LPCAT level in the 20 healthy volunteers was 12.71

± 5.40 ng/mL. The level of plasma LPCAT at admission was 35.13

(13.88-83.03) ng/mL among CAP patients, found to be greater than

that in healthy individuals (p< 0.05, Figure 1A). The plasma LPCAT
TABLE 1 Multilayer perceptron structure of prediction model.

Layer Name Input Output Activation Function Regularization Kernel Initializer

Input Layer 8 128 Sigmoid None He Normal

Dense Layer 1 128 128 Sigmoid None He Normal

Dense Layer 2 128 64 Sigmoid None He Normal

Dense Layer 3 64 64 Sigmoid None He Normal

Dense Layer 4 64 32 Sigmoid None He Normal

Dense Layer 5 32 32 Sigmoid None He Normal

Dense Layer 6 32 16 Sigmoid None He Normal

Dense Layer 7 16 8 Sigmoid None He Normal

Dense Layer 8 8 2 Sigmoid None He Normal

Output Layer 2 2 Sigmoid L2-norm He Normal
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level was significantly higher among SCAP patients comparison to

those NSCAP (p-value<0.05, Figure 1B). For those who died within

30 days after diagnosis, the plasma LPCAT level was also

significantly higher than that of survivors (p-value<

0.05, Figure 1C).

The CAP etiology was categorized into the following pathogen

groups: bacterial, viruses, atypical pathogens (Chlamydia

pneumoniae, Mycoplasma pneumoniae, and Legionella

pneumophila), mixed pathogens, and unknown pathogen group.

Regardless of the NSCAP or SCAP status, no differences were

observed in LPCAT levels among CAP patients presented

different CAP etiological variations (p-value > 0.05, Figure 2).
Correlation between plasma LPCAT level
and CAP severity

We chose the PSI and CURB-65 scoring systems for evaluation the

CAP severity among patients. The results found that levels of LPCAT

in CURB-65 high score group were significantly greater than low score
Frontiers in Immunology 05
groups (Figure 3A). Similarly, the LPCAT levels of patients with CAP

with PSI grades III or IV were significantly greater than PSI grades I or

II patients (Figure 3B). The plasma LPCAT level at admission showed

positive correlation with both of CURB-65 and PSI scores (Figures 4A,

B, Spearman = 0.30 and 0.34, respectively; p-value< 0.0001). LPCAT

level in CAP patients also showed positive correlation with the

procalcitonin (PCT) level (Spearman = 0.38, p-value< 0.0001),

respiratory rate (Spearman = 0.36, p-value< 0.0001), neutrophil/

lymphocyte ratio (NLR) (Spearman = 0.35, p-value< 0.0001), and

neutrophil percentage (NE%) (Spearman = 0.34, p-value< 0.0001)

(Figures 4C–F). The plasma LPCAT level in patients negatively

correlated with lymphocyte percentage (LY%) and PaO2 (Figures 4G,

H, Spearman = -0.36 and -0.18, respectively; p< 0.0001).
Severity prediction value of LPCAT in
patients with CAP

As shown in Table 3, LPCAT showed the highest predictive

value for SCAP compared with the other blood test results or
TABLE 2 Demographic and clinical characteristics of the 299 participants with CAP enrolled in this study.

Characteristic non-SCAP
(N=202)

SCAP
(N=97)

p value

Male sex — no. (%) 114 (56.44) 55 (56.70) 0.361

Age — years 57.50 (45.00-69.00) 57.90 ± 16.46 0.570

BMI 21.24 (19.19-23.67) 22.49 (21.26-22.84) <0.0001

Smoking history — no. (%) 34 (16.83) 16 (16.50) 0.542

Underlying diseases— no. (%)

Chronic heart failure 11(5.45) 5 (5.20) 0.578

Diabetes mellitus 34 (16.83) 14 (14.43) 0.364

Cerebrovascular disease 14 (6.93) 18 (18.56) 0.003

Chronic liver disease 5 2.48) 7 (7.22) 0.054

Chronic renal disease 0 (0) 3 (3.09) 0.033

Bronchiectasis 1 (0.50) 3 (3.09) 0.102

Chronic obstructive pulmonary disease 6 (2.97) 9 (9.28) 0.023

Physical examination

T max (°C) 39.85 ± 1.61 39.10 ± 1.09 0.590

Respiratory frequency (times/min) 22 ± 1 27 ± 4 <0.0001

Heart rate 89 ± 7 100 ± 23 <0.0001

Blood oxygen saturation 97.00 ± 1.41 91.37 ± 14.01 0.003

Laboratory results

WBC (×109/L) 8.20 (6.03-10.48) 7.60 (5.80-18.35) <0.0001

NEU (%) 79.50 (67.75-84.20) 85.50 (77.90-88.80) <0.0001

LYM (%) 12.10 (7.95-24.50) 7.70 (3.20-15.40) <0.0001

NLR 4.08 (2.50-7.37) 11.53 (5.04-26.84) <0.0001

(Continued)
fro
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TABLE 2 Continued

Characteristic non-SCAP
(N=202)

SCAP
(N=97)

p value

PLT 225.75 ± 100.26 238.53 ± 97.79 <0.0001

ALT 36.25 (25.08-89.73) 34.00 (20.00-94.00) <0.0001

AST 58.25 ± 49.43 53.59 ± 31.03 0.001

BUN 3.57 ± 1.62 5.33 ± 2.55 <0.0001

Scr 84.5 (57.5-111.5) 59.00 (42.00-61.00) 0.433

ALB 34.00 (24.80-40.05) 30.00 (28.00-32.00) <0.0001

ESR 48.00 ± 43.03 64.13 ± 26.56 0.012

CRP 76.53 ± 75.28 89.32 ± 95.25 0.344

PCT 0.18 (0.06-2.40) 1.33 (0.47-1.71) 0.003

PaO2 91.55 (78.30-104.43) 68.90 (59.20-122.00) <0.0001

PaO2/FiO2 435.5 ± 68.48 248.93 ± 101.93 0.526

PaCO2 29.43 ± 3.77 48.05 ± 42.09 0.555

SaO2 97.28 ± 1.35 91.63 ± 8.44 0.013

HCO3 20.80 (19.03-25.28) 23.70 (22.80-26.00) 0.054

Chest X-ray

Bilateral lung infection— no. (%) 60 (29.70) 83 (85.60) <0.0001

Pleural effusion— no. (%) 16 (7.90) 31 (31.96) <0.0001

Detected pathogen— no. (%)

Virus 22 (10.90) 19 (19.60) 0.033

Bacteria 34 (16.80) 24 (24.70) 0.073

Atypical pathogen 27 (13.40) 1 (1.00) <0.0001

Mixed pathogen 24 (11.90) 10 (10.3) 0.425

Unknown 98 (48.50) 44 (45.40) 0.349

CURB-65

Score points 0 (0-1) 1 (0-2) <0.0001

0 130 20

1 52 28

2 18 29

3 2 14

4 0 6

PSI

Score points 57.00 ± 26.00 88.00 ± 37.00 <0.0001

≤ 70 134 21

71-90 49 18

≥ 91 19 59

30-day mortality-no. (%) 0 (0.00) 20 (20.60) <0.0001
F
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 06
 fro
Descriptive statistics. Variables are expressed as numbers (percentages). Continuous variables are expressed as the mean ± standard deviation (mean ± SD) when they met the normal
distribution, and continuous nonparametric data are presented as the median and interquartile ranges (25th and 75th percentiles).
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CURB-65/PSI score. With 51.36 ng/mL optimal cut-off, AUC of

LPCAT in predicting SCAP reached 0.853. The AUCs for CURB-65

and PSI were 0.773 (0 .720-0.820) and 0.823 (0.774-

0.865), respectively.
Performance of the MLP-developed SCAP
prediction model

The performance of the SCAP prediction model was tested on

the test dataset, and its sensitivity and specificity were 94.74% and

80.49%, respectively, with an overall accuracy of 85%. For model the
Frontiers in Immunology 07
AUC of ROC was 0.86. The drop-out method was applied to

identify variables with significant contributions (Table 4 and

Figure 5). Compared with the original test dataset, the indicators

of model performance (including the Youden Index and AUCs)

with the dropout datasets of LPCAT and NE% were

significantly degraded.
Value of LPCAT levels in CAP prognosis

The plasma LPCAT level was also the best indicator among the

blood test results (Table 5); its predictive value was higher than that
B

C

A

FIGURE 1

Plasma LPCAT levels in different groups. (A) plasma LPCAT levels in healthy control and CAP patients. (B) plasma LPCAT levels in healthy control and
patients with NSCAP or SCAP. (C) plasma LPCAT levels in healthy control and CAP patients survived or didn’t survive. * p<0.05; **** p<0.0001.
BA

FIGURE 2

Plasma LPCAT levels of NSCAP patients (A) and SCAP patients (B) with different pathogens. ns, not-statistically significant.
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of the CURB-65 scoring system but lower than that of the PSI, with

an optimal cut-off 86.42 ng/ml and an AUC 0.845. The predictive

value of the 30-day mortality after combining LPCAT level was

improved further along with PSI scores or the CURB-65, with

AUCs of 0.902 vs. 0.819 and 0.936 vs. 0.868, respectively.

All CAP presented patients were divided into a high LPCAT

group (plasma LPCAT > 86.42 ng/mL) and a low LPCAT group

(plasma LPCAT ≤ 86.42 ng/mL) according to the ROC plot of the

30-day mortality prediction shown above. The high LPCAT group

showed a significantly higher 30-day mortality rate compared to

low LPCAT group (Figure 6).
Discussion

In this research, we illustrated the relationship between plasma

LPCAT levels and CAP severity. We measured the plasma LPCAT

level among healthy individuals and those patients with different

severities of CAP, PSI and CURB-65 scores, and assessed that the

increased in plasma LPCAT level wasmore pronounced inmore severe

cases than in less severe cases. Moreover, LPCAT level were not

influenced by the different pathogens. Finally, we evaluated the value

of plasma LPCAT levels in predicting SCAP and 30-day mortality, the

LPCAT level was more effective than any of the other blood test results.

The predictive values of LPCAT combined with the CURB-65 and PSI

scores or other blood test results for SCAP and 30-day mortality were

further improved in both the traditional combined diagnostic tests and

deep learning models. Taken together, these results show that plasma

LPCAT levels can predict the severity of CAP.

LPCAT plays an important role in lipid metabolism and is broadly

associated with membrane metabolism and maintenance. LPCAT is

upregulated in several carcinomas and is associated with poor

prognosis (26), cancer metastasis (27) and proliferation. In patients

with colorectal (28) and renal (29) carcinomas, LPCAT expression was

enhanced. Previous studies also suggested LPCAT’s involvement in the

synthesis of phospholipids in alveolar surfactants (30). Purandare et al.

revealed that LPCAT protein was expressed from the initiation of

embryogenesis and regulated by oxygen tension, several mitochondrial

regulators, and antenatal corticosteroids (31). The role of LPCAT in

regulating surfactant phospholipids and respiratory function was also
Frontiers in Immunology 08
verified in a mouse model (32). LPCAT deficiency can also lead to

alveolar epithelial cell apoptosis and promote pulmonary

emphysema (33).

However, studies of LPCAT in infectious diseases are limited.

An earlier study highlighted the effect of LPCAT for the

inflammatory responses of macrophages to lipopolysaccharide

and other bacterial stimuli. (34–37). In our previous research, we

discovered that a high concentration of phosphatidylcholine

correlated with the severity of CAP (38). This may be because

LPCAT, which is important for the acylation of LPC to PC, was also

significantly higher in SCAP patients, especially in patients who

died within 30 days. The LPCAT levels in diseases with different

causative pathogens were not significantly different, suggesting that

LPCAT is a general indicator that has neither clinical value in

distinguishing bacterial, viral, nor other infections.

The correlation between the LPCAT level and the CAP severity

score system was also strong in our study. In addition, LPCAT levels

were broadly correlated with many clinical and laboratory test results,

including respiratory rate, NE%, LY%, NLR, PCT, and PaO2. The

parameters NE%, respiratory rate, and PaO2 are commonly used to

evaluate the severity of lung infection, whereas NLR is a convenient

biomarker associated with the prognosis andmortality of inflammation

(39), tumors (40), and heart failure (41). These results suggest that

plasma LPCAT level is a strong indicator of CAP severity.

In our study, the diagnostic LPCAT value was significantly

higher than CURB-65 score, PSI score, and other clinical or

laboratory indicators. The AUC of LPCAT for predicting SCAP

was as high as 0.85, with 84.54% sensitivity and 72.77% specificity.

In 30-day mortality prediction, the LPCAT level (AUC=0.845) also

performed better than the other laboratory test results, and even

better than the CURB-65 score (AUC=0.819) alone, but less

efficient than the PSI score (AUC=0.868). By combining PSI or

CURB-65 scores along LPCAT, new 30-day mortality assessment

methods can be further improved, achieving over 90% sensitivity

and 78% specificity. The survival time of CAP patients with plasma

LPCAT levels >86.42 ng/mL at admission was significantly shorter

than that of CAP patients showing LPCAT< 86.42 ng/mL level, as

shown by Kaplan-Meier survival curves.

We attempted to develop a deep-learning-based binary

classification (SCAP or NSCAP) model to process plasma LPCAT
BA

FIGURE 3

Plasma LPCAT levels in patients with CAP across different severity, divided by CURB-65 (A) and PSI scores (B). * p<0.05; ** p<0.01; **** p<0.0001.
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TABLE 3 Areas under the curve (AUCs) and thresholds for predicting SCAP in CAP patients.

AUC
95% CI

Sensitivity Specificity Threshold p value
Lower limit Higher limit

LPCAT1 0.853 0.808 0.891 84.54% 72.77% >51.36 <0.0001

WBC 0.640 0.582 0.696 58.70% 66.67% >9.47 0.0001

NEU % 0.739 0.677 0.796 75.00% 68.15% >78.00 <0.0001

(Continued)
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FIGURE 4

Correlation of plasma LPCAT levels with different indicators of CAP patients’ severity representing by CURB-65 (A) and PSI scores (B) or other
examination results including PCT (C), respiratory rate (D), NLR (E), NEU% (F), LYM% (G), PaO2 (H).
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TABLE 3 Continued

AUC
95% CI

Sensitivity Specificity Threshold p value
Lower limit Higher limit

LYM % 0.757 0.693 0.814 63.95% 79.34% ≤ 9.72 <0.0001

NLR 0.764 0.700 0.820 72.09% 71.07% > 6.48 <0.0001

ESR 0.656 0.576 0.730 72.58% 65.59% > 47.00 0.0005

CRP 0.536 0.453 0.617 45.76% 72.83% > 105 0.4735

PCT 0.701 0.592 0.795 71.93% 68.97% > 0.313 0.0008

CURB-65 0.773 0.720 0.820 78.02% 65.13% > 0 <0.0001

PSI 0.823 0.774 0.865 64.84% 88.72% > 86 <0.0001
F
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FIGURE 5

ROC curves of the SCAP prediction model with different dataset inputs.
TABLE 4 Performance of the SCAP prediction model with different inputs.

Test Dataset AUC Se Sp Youden Index

Prediction Model 0.86 0.95 0.80 0.75

Drop-out LPCAT 0.75 0.21 0.98 0.19

Drop-out WBC 0.86 0.95 0.54 0.48

Drop-out NE% 0.72 0.79 0.46 0.25

Drop-out LY% 0.82 0.68 0.76 0.44

Drop-out ESR 0.86 0.89 0.71 0.60

Drop-out CRP 0.85 0.95 0.78 0.73

Drop-out PCT 0.87 0.89 0.80 0.70
Se, sensitivity; Sp, Specificity.
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and other laboratory test results. After viewing multiple machine

learning model structures, we chose the MLP as the basic model

structure instead of traditional machine learning methods, which

includes linear regression, a random forest plot and support vector

machine. The MLP model input is more tolerant because it requires

less feature engineering. The SCAP prediction model achieved

94.74% sensitivity and 80.49% specificity, with an overall accuracy

of 85.00%, which had the highest sensitivity and the second highest

specificity. After applying the drop-out method, LPCAT level and

NE% seemed to have the highest weights in the SCAP prediction

model, as the performance of the model was significantly degraded

with the drop-out datasets of LPCAT and NE%. The LPCAT and

the indicators of peripheral blood cell count missing in prediction

variables significantly reduced the Youden index and AUCs,
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whereas the Youden index and AUCs of inflammatory biomarker

(including erythrocyte sedimentation rate, CRP, and PCT) drop-out

datasets were like those of the complete dataset prediction. The

lower importance of erythrocyte sedimentation rate, CRP, and PCT

in distinguishing SCAP from NSCAP is inconsistent with previous

research findings (42–44). A possible explanation is that the missing

values of these inflammatory biomarkers were greater than those of

the other laboratory test results. Therefore, the weights of

inflammatory biomarkers were lower in the prediction model.

However, our model was trained to consider missing input values

because we applied L2-norm regularization to limit the weight for

each input variable. The ability to consider missing input variables

made the prediction model much more tolerant and robust. Taken

together, plasma LPCAT levels can improve prognosis prediction

and contribute to improved clinical practice.

However, the process of increasing LPCAT levels are elevated in

severe cases still remains unclear. LPCAT is an essential component

of the Lands cycle and participates in lipid metabolism and

membrane maintenance in multiple types of cells and tissues (12).

Combined with our previous study on lipid profiles (37) and

another lipid metabolism enzyme, LPEAT (37), in patients with

SCAP, we speculated that the elevation of LPCAT may be related to

lung tissue destruction in SCAP because LPCAT is abundantly

expressed in type II alveolar epithelial cells (8).

Our study had certain limitations. First, we only collected blood

samples at admission; therefore, we could not elucidate the trends in

LPCAT levels in patients with CAP. The dynamic trend of LPCAT

concentration changes in the progression of CAP inflammation and

the response to treatment require further follow-up. Future studies

should assess the long-term prognostic value of LPCAT. Moreover,

although our study showed that LPCAT levels are not related to

specific pathogens, future studies should focus on changes in

LPCAT levels during different pathogeneses.
TABLE 5 Areas under the curve (AUCs) and thresholds for predicting 30-day mortality in patients with CAP.

AUC
95% CI

Sensitivity Specificity Threshold p value
Lower limit Higher limit

LPCAT 0.845 0.798 0.884 80.00% 82.08% >86.42 <0.0001

WBC 0.747 0.692 0.796 60.00% 88.76% >15.21 0.0005

NEU % 0.696 0.631 0.756 87.50% 60.39% > 80.51 0.0071

LYM % 0.775 0.712 0.830 81.25% 67.02% ≤ 9.60 <0.0001

NLR 0.770 0.707 0.826 87.50% 60.73% >7.07 0.0001

ESR 0.645 0.564 0.720 88.89% 42.74% >35 0.0566

CRP 0.553 0.470 0.633 45.45% 77.86% > 139.50 0.5977

PCT 0.730 0.624 0.820 72.73% 77.33% > 1.33 0.0199

CURB-65 0.819 0.769 0.862 70.00% 81.58% > 1 <0.0001

PSI 0.868 0.823 0.905 90.00% 85.71% >109 <0.0001

CURB-65
+LPCAT

0.902 0.862 0.934 90.00% 78.57% – <0.0001

PSI+LPCAT 0.936 0.901 0.961 95.00% 79.32% – <0.0001
fro
FIGURE 6

Kaplan-Meier analysis of 30-day mortality in CAP patients with high
plasma LPCAT level (> 86.42 ng/ml) and low plasma LPCAT level (≤
86.42 ng/ml). ** p<0.01.
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Conclusion

The plasma LPCAT level at the time of admission were

significantly higher in SCAP patients and strongly predicted

SCAP in CAP patients but with no correlation to etiology.

Combining LPCAT with available CAP severity scores (CURB-65

or PSI) can further improve the 30-day mortality prediction.
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