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Background: Antibody-mediated complement fixation has previously been

associated with protection against malaria in naturally acquired immunity.

However, the process of early-life development of complement-fixing

antibodies in infants, both in comparison to their respective mothers and to

other immune parameters, remains less clear.

Results: We measured complement-fixing antibodies in newborns and their

mothers in a malaria endemic area over 5 years follow-up and found that infants’

complement-fixing antibody levels were highest at birth, decreased until six months,

then increased progressively until they were similar to birth at five years. Infants with

high levels at birth experienced a faster decay of complement-fixing antibodies but

showed similar levels to the low response group of newborns thereafter. No

difference was observed in antibody levels between infant cord blood and

mothers at delivery. The same result was found when categorized into high and

low response groups, indicating placental transfer of antibodies. Complement-fixing

antibodies were positively correlated with total schizont-specific IgG and IgM levels

in mothers and infants at several time points. At nine months, complement-fixing

antibodies were negatively correlated with total B cell frequency and osteopontin

concentrations in the infants, while positively correlatedwith atypicalmemory B cells

and P. falciparum-positive atypical memory B cells.

Conclusion: This study indicates that complement-fixing antibodies against P.

falciparum merozoites are produced in the mothers and placentally-transferred,

and they are acquired in infants over time during the first years of life.

Understanding early life immune responses is crucial for developing a

functional, long lasting malaria vaccine.

KEYWORDS

malaria, complement, immunity, antibodies, P. falciparum, C1q, osteopontin, atypical
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1 Introduction

Malaria continues to pose a significant health burden with sub-

Saharan Africa bearing the major burden of disease. In 2021 there

were 247 million cases and 619,000 deaths globally (1). Despite

global control efforts, the reduction in malaria burden has stalled,

and in the African region of the World Health Organization

(WHO), it even increased during the COVID-19 pandemic (1).

The majority of deaths occur in children under five years of age, and

malaria in pregnancy can lead to adverse birth outcomes, including

preterm delivery, low birth weight, maternal anemia, neonatal and

childhood mortality and morbidity (2, 3). Moreover, there is

mounting evidence that partial artemisinin resistance is increasing

(1), underscoring the urgent need to develop a highly efficacious

malaria vaccine.

Currently, only one malaria vaccine, RTS,S/AS01, a sporozoite

protein subunit vaccine, has received WHO recommendation, but

its efficacy is modest at around 55% over 12 months and 18% to 36%

over 4 years, depending on age and dose regimen (4). RTS,S is now

being implemented in young children 6-24 months of age.

However, recent studies have shown promising results with the

R21/Matrix-M vaccine, which has demonstrated an efficacy of over

80% over one malaria transmission season (5). While this level of

efficacy is impressive compared to earlier trials, nearly half of the

children experienced malaria within one year and immunity wanes

relatively quickly over time (5, 6), indicating that there is still room

for improvement of potential vaccines. In malaria-endemic regions,

individuals develop naturally acquired immunity to clinical disease

after repeated exposure to P. falciparum, and the humoral response

plays a crucial role in this process (7–9). Antibodies can target

various stages of the parasite life cycle, including sporozoites, blood-

stage merozoites, and infected red blood cells (RBCs) (9, 10), and

can reduce transmission, suppress parasite density, and control

infection. Acquired immunity predominantly targets asexual blood-

stage parasites to prevent diseases (11, 12), however, it is still

unclear which specific antigens that mediate protective immunity

and which antibody effector functions are most important.

In recent years, several studies have investigated the role of

complement in antibody-mediated protection against malaria in

both acquired and vaccine-induced immunity (13–18). The

complement system is a critical component of innate immunity

and can be activated through three pathways, namely the classical,

mannose-binding lectin (MBL), and alternative pathways. In the

classical antibody-dependent pathway, C1q binds to antigen-

antibody complexes, which results in fixation of the complement

protein C3 on target cells, ultimately leading to the formation of the

membrane attack complex (MAC), which inserts into the target cell

membrane and causes cell lysis. The activation of the classical

complement pathway is dependent on the antibody isotype and

subclass, where IgM has the highest C1q-fixing activity (12) while

IgG2 and IgG4 exhibit little or no activity. Among the other IgG

subclasses, IgG3 has a higher affinity for C1q than IgG1 (19, 20).

Antibody-mediated complement fixation is an important

mechanism for inhibitory immune responses against various

stages of the malaria parasite. Several studies have reported the
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involvement of complement fixation in sporozoite and merozoite

lysis, which leads to the inhibition of parasite invasion and

subsequent infection. For instance, sporozoite-specific IgG and

IgM antibodies can fix complement on the sporozoite surface,

leading to sporozoite lysis and inhibition of hepatocyte invasion

(17, 21). Similarly, human merozoite-specific antibodies can cause

lysis of merozoites and prevent erythrocyte invasion by activating

the classical complement pathway via C1q fixation. Interestingly,

C1q fixation alone can also inhibit erythrocyte invasion in the

absence of other complement factors (13). Furthermore,

complement-fixing antibodies against merozoite antigens have

been found to confer strong protection against malaria in

children living in malaria-endemic regions (13, 15). This is

supported by evidence showing that high levels of IgG1 and IgG3,

which can bind C1q and activate the classical complement pathway,

correlate with protection from malaria (22–24).

Newborns and young infants (<3-6 months) are thought to be

relatively protected from clinical malaria, but the underlying

immunological mechanisms are not yet fully known. Infant

immunity has traditionally been attributed to the passive transfer

of maternal antimalarial IgG antibodies through the placenta in the

final trimester of pregnancy (25, 26). The observed increase in

malaria infections in infants coincides with the decline of maternal

antimalarial IgG antibodies at 6-9 months of age (27–29), providing

support for this theory. However, other factors that can influence

malaria risk, such as decreased breastfeeding and the decrease in

fetal hemoglobin during this period (30, 31), make it difficult to

determine whether infant immunity is solely dependent on

antibodies or influenced by other factors. Longitudinal studies

have reported associations between maternal antimalarial

antibodies and protection against infection and clinical disease in

young infants (32–34). However, conflicting results have also been

reported, with some studies showing no association or even an

increased risk for infection, suggesting that elevated antibody levels

may indicate more exposure to malaria (28, 35).

Currently, it remains unclear how the subsequent development

of infant antibodies in response to natural exposure to P. falciparum

functions to mediate protection, including the rate of their

development and their antigenic targets. Furthermore, it remains

uncertain whether the levels and rate of decay of infant antimalarial

antibodies rely on maternal antibody levels at birth, and which

specific antibodies are transferred across the placenta.

Our study aims to address this gap in knowledge by examining

functional infant antimalarial antibody responses during the

development of naturally acquired immunity against malaria.

Specifically, we have measured the levels of anti-merozoite C1q-

fixing antibodies in cord blood and compared this to the mothers’

levels to determine the transplacental ratio. We also monitored the

levels in the children until they reached 5-6 years of age and

explored correlations between levels of C1q-fixing antibodies and

different P. falciparum-specific B cell subsets, as well as antibodies to

P. falciparum schizont extract. Our study aims to provide insights

into the development of functional antimalarial antibody responses

in early childhood and the correlation with immune responses

against malaria.
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2 Methods

2.1 Study design

The first part of the study was conducted in Kasangati in Uganda,

where malaria transmission is moderate (36). In brief, mother-infant

pairs were enrolled at birth and mothers were sampled at birth and

after 9 months. The mothers were in good health and had

uncomplicated deliveries. Infants were sampled at birth (cord blood),

2.5, 6, 9 months and 5-6 years. None of the study participants exhibited

fever or any signs of severe infection. During pregnancy, all women

received at least one dose of Fansidar as preventive treatment and an

insecticide-treated mosquito net. All provided voluntary informed

consent. The study was approved by The Makerere University

School of Medicine Research and Ethics Committee, The Uganda

National Council of Science and Technology (approval Uganda

2007-045), and Regionala Etikprövningsnämnden in Stockholm,

Sweden (2011/132-31/3).
2.2 Malaria diagnostics

All samples underwent testing using Rapid Diagnostic Test

(RDT) pLDH/HRP2 Combo (Premier Medical Corporation

Limited, India). For all positive samples, thin and thick blood

smears were examined by microscopy, and parasitemia was

calculated in accordance with WHO guidelines (37).
2.3 Parasite culture and merozoite
extract preparation

3D7 P. falciparum was cultured at 37°C as described (38, 39) using

O+ human erythrocytes at 4% hematocrit in RPMI 1640-HEPES

supplemented with 1% AlbuMAX II, 25 mg/mL gentamicin, 5 mM

L-glutamine and 200 mg/mL hypoxanthine. For merozoite isolation

(36), synchronization of the cultures was achieved through sorbitol

treatment and early to late schizont parasites were separated from

uninfected RBCs by passing through MACs magnet separation

columns (Miltenyi Biotec, Germany). Purified parasites were then

incubated with E64 (Sigma) for 7 h, pelleted at 1900 x g 5 min,

washed with PBS, resuspended in PBS, and filtered using 1.2 mm
Acrodisc 32-mm syringe filters (Pall Corporation) to obtain merozoites

(36). Merozoites from different preparations were pooled and

homogenized through three freeze-thaw cycles. The extract contained

66 µg/ml protein (Nanodrop, ThermoFisher Scientific).
2.4 Complement fixation ELISA

The level of complement fixation tomerozoite crude antigens was

assessed as described (40) with somemodifications. Maxisorp 96-well

plates (Nunc, Roskilde, Denmark) were coated at 50 mL/well with
frozen purified merozoites (see above) in phosphate-buffered saline

(PBS) for 2 h. Between each of the following steps, the wells were

washed x3 with washing buffer (PBS-0.01% Tween 20). Following 2
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hours of blocking with 1% casein (ThermoFisher Scientific, Rockford,

IL, USA, cat#37528), plasma samples and controls in duplicates

diluted 1:50 in 0.1% casein in washing buffer were added and

incubated overnight. Human C1q (10 mg/mL) (EMD Millipore

Corp, USA, cat#204876) was added for 30 minutes, then rabbit

anti-C1q IgG antibodies (Beeson lab) 1:2000 (41), followed by anti-

rabbit IgG(H+L)-horseradish peroxidase 1:3000 (BioRad

Laboratories, USA, cat#1706515), each incubation was 1 h. TMB

One Solution (Promega, Madison, WI, USA, cat#G7431) was added,

the reaction stopped with 1 MH2SO4 and absorbance read at 450 nm

(Multiskan Sky, ThermoFisher Scientific, Rockford, IL, USA). To

prevent batch/plate effects, longitudinal samples from the same

mother-baby pairs were always analyzed on the same plates.
2.5 P. falciparum schizont extract ELISA

The measurement of total P. falciparum+ IgG and IgM in

plasma was conducted as previously described (42). Microtiter

plates were coated with schizont extract, blocked with 5%

skimmed milk (Sigma) for IgG and super block dry blend

(Thermo Scientific) for IgM. Bound antibodies were quantified

using TMB substrate (Promega). Absorbance was read at 450 nm.
2.6 Immunophenotyping of P. falciparum
specific B cells

The immunophenotyping of P. falciparum B cells was conducted

as previously described using flow cytometry and conjugated

antibodies from BD (Becton Dickinson) (42): IgG memory B cells

(CD19+CD20+CD27+FcRL4 ± IgG+), non-IgG+ memory B cells

( C D 1 9 + CD 2 0 + CD 2 7 + F c R L 4 ± I g G − ) , n a ï v e B

cells (CD19+CD20+CD27−FcRL4 ± IgG−), plasma cells/blasts

(CD19+CD20−CD27+FcRL4 ± IgG−), and atypical memory B cells

(CD19+CD20+CD27−FcRL4 ± IgG+). B cells specific for P.

falciparum (Pf+) were identified using carboxyl Quantum dots

(Invitrogen) conjugated to extract of trophozoite/schizont-stage

parasites (43, 44).
2.7 Statistics

Differences in antibody levels between groups were assessed by

Wilcoxon matched-pairs signed rank and by Mann-Whitney test for

paired/unpaired samples, respectively. To account for repeated

measurements linear mixed model was used. Continuous variables

were expressed as estimated means in AR (1) covariance structure,

and study participants as random effects. In two separate models

changes in infants´ antibody levels over time were estimated with/

without adjustment for maternal antibody levels at birth. To explore

whether changes in antibody levels varied over time based on whether

infants had high antibody levels (top 25% of values) at birth, an

interaction term was added between time point and high value at

birth. To adjust for multiple comparisons, false discovery rate was

used. Analyses were performed using R Statistical Software 4.1.2
frontiersin.org
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(Foundation for Statistical Computing, Vienna, Austria) and

GraphPad Prism version 9.5.1 (528) for macOS (GraphPad

Software, San Diego, California USA).
3 Results

3.1 Characteristics of participants

We analyzed complement-fixing antibodies in mother-infant

pairs. Complement fixing activity was measured as the ability of

antibodies to fix C1q, the first and essential step in the classical

pathway of complement system activation. C1q fixation by

antibodies to merozoites correlates with subsequent complement

activation and formation of the C5-9 complex (15). We followed

mother-infant pairs for 9 months from birth, including samples

from mothers at birth (M0), infants at birth (B0), infants at 2.5

(B2.5), 6 (B6), and 9 (B9) months, and mothers at 9 months (M9).

In addition, 39 children were sampled during a follow-up visit at 5

to 6 years of age (B5F). However, due to limitations in plasma

volume, the number of samples analyzed for complement-fixing

antibodies varied among the groups: M0 (n=131), B0 (n=129), B2.5

(n=95), B6 (n=104), B9 (n=112), B5F (n=39), and M9 (n=114).
3.2 Levels of complement-fixing antibodies
in plasma in the infants

The estimated mean levels of complement-fixing antibodies in

infants at different time points were analyzed using linear mixed

models, (Figure 1). The highest mean level was observed at birth,

followed by a significant decrease in antibody levels at 2.5 months

until 6 months of age. At 9 months, a slight increase in mean

antibody levels was observed, but it was not statistically significant

compared to the 6-month level. At 5 years of age, there was no

significant difference in mean antibody levels compared to the

estimated mean cord blood levels. To examine the potential

influence of the maternal complement-fixing antibody levels on

changes in the infant levels, the infant levels were adjusted for the

maternal levels at delivery in the linear mixed model. The adjustment

did not reveal any significant differences in complement-fixing

antibody levels among infants at any of the five time points.
3.3 Levels of complement-fixing antibodies
in plasma in the mothers

Median complement-fixing antibody levels in the mothers

remained unchanged from delivery to 9months postpartum (Figure 2).
3.4 Comparison of infants versus mothers

There was no significant difference in median complement-fixing

antibody levels between infant cord blood (0.36 (IQR: 0.31)) and

median plasma levels in mothers at delivery (0.40 (IQR: 0.33))
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(Figure 3A). However, after 9 months, there was a significant

reduction in median antibody levels in infants (0.21 (IQR: 0.14))

compared to their mothers (0.38 (IQR: 0.25), P < 0.0001) (Figure 3B).
3.5 Acquisition and decay in high and low
complement-fixing antibody responders

To assess the dynamics of complement-fixing antibody

acquisition and decay, we employed a linear mixed model to

compare infants based on their antibody levels at birth. Infants

were categorized as high or low responders, with 25% of the highest

values at birth classified as high responders (Figure 4). Infants with

high levels of complement-fixing antibodies at birth had a faster

decay of antibodies from birth to 2.5 and 6 months (estimated

mean: 0.8 (CI 95%: 0.74; 0.85), 0.36 (CI 95%: 0.30; 0.42) and 0.23

(CI 95%: 0.17; 0.29), respectively) compared to those in the low

response group. However, by 6 months of age, the two groups had

comparable levels of antibodies and followed the same increase in

levels of antibodies thereafter. When adjusting for the mothers’

complement-fixing antibody levels at delivery in the linear mixed

model, we did not reveal any significant differences in antibody

levels in infants at any of the five time points studied.

No significant difference in median complement-fixing

antibody levels was found between infants and their mothers in

the high response nor the low response group (Figures 5A, B).
FIGURE 1

Distribution of complement-fixing antibody levels (OD 450 nm) in
infants at each time point. Samples were analyzed at 5 time points:
Birth (n=129), at 2.5 months (n=95), at 6 months (n=104), at 9
months (n=112), and at 5 years (n=39). Each dot represents the
estimated mean (linear mixed model), and whiskers represent the
95% confidence intervals. *** indicates significance at P < 0.001.
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3.6 Complement-fixing antibody levels
and P. falciparum parasitemia in mothers
at delivery

At delivery, among 131 mothers and 129 infants, only six

mothers and one infant tested positive for P. falciparum using both

the rapid diagnostic test (RDT) and microscopy. However, upon

analyzing the complement-fixing antibody levels, we did not observe

any significant differences based on the degree of parasitemia

(Additional file 1). We concluded that our sample size was not

large enough to detect any potential statistical differences.
Frontiers in Immunology 05
3.7 Correlation between P. falciparum
schizont-specific antibodies and levels of
complement-fixing antibodies

Schizont specific IgG and IgM has been widely used as a broad

marker of exposure to blood-stage malaria (42, 45, 46). During the

first 9 months of follow-up, schizont specific IgG and IgM levels

were analyzed in all individuals, as reported previously (42). In the

current study, Pearson’s correlation was used to correlate the

antibody levels with complement-fixing antibody levels, and the

data was compared individually for each time point. At birth and at

9 months of age, complement-fixing antibodies were found to

correlate with schizont specific IgG in the babies: r = 0.25, P =

0.02, and r = 0.29, P = 0.005, respectively (Figure 6A). Moreover, for

mothers at delivery, complement-fixing antibody levels were found

to correlate with both schizont specific IgG and IgM (r = 0.52, P <

0.0001, and r = 0.30, P = 0.01, respectively) (Figure 6B).

3.8 Correlation between total and P.
falciparum-positive (Pf+) B cell subsets and
complement-fixing antibodies

In order to examine the potential role of complement-fixing

antibodies and B cell activities in development of immunity, we

correlated our results to different proportions of B cell subsets

(CD19+ cells) binding to P. falciparum extract (Pf+ B cells),

previously analyzed in this cohort (42). For infants, no significant

correlations were seen at birth, 2.5 months, or 6 months of age. At 9

months of age, complement-fixing antibody levels were found to

negatively correlate with the total frequency of B cells (r = -0.33, P =

0.005), and positively correlated with atypical memory B cells

(MBCs) (defined as CD19+CD20+CD27−FcRL4 ± IgG+) (r =

0.43, P < 0.001) and Pf+ atypical MBCs (r = 0.50, P < 0.001)

(Figure 6A). No significant correlations were found between

complement-fixing antibodies and B cell subsets in mothers at

delivery or after 9 months.
FIGURE 2

Distribution of complement-fixing antibody levels in mothers at
delivery and after 9 months (n=131 and n=114, respectively). Box
plots represent interquartile range, whiskers the range and
horizontal lines represent the medians; ns, non-significant (Wilcoxon
matched-pairs signed-rank test).
A B

FIGURE 3

Distribution of complement-fixing antibody levels in cord blood (n=129) and mothers at delivery (n=131) (A) and infants and mothers after 9 months
(n=112 and n=114, respectively) (B). Box plots represent interquartile range, whiskers the range and horizontal lines represent the medians; ns, non-
significant and ****, significant at P < 0.0001 (Mann-Whitney).
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3.9 Correlations between plasma
concentrations of BAFF, OPN and levels
of complement-fixing antibodies

Both OPN and BAFF have important roles in the production of

immunoglobulins and B cell differentiation. Our prior studies

within the same cohort have shown interesting correlations

between these factors in the context of malaria (39, 47). Results

showed that levels of complement-fixing antibodies in infants were

negatively correlated with OPN concentrations at 9 months of age

(r = -0.28, P = 0.048) (Figure 6A).
4 Discussion

Understanding the functional mechanisms that underlie

naturally acquired immunity against malaria is of critical

importance for the development of an effective vaccine. However,
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the exact process by which immunity is acquired is not yet fully

understood especially among young children who are the primary

target of malaria vaccines. In this study, we present, for the first

time, the dynamics of complement-fixing antibodies in a

longitudinal cohort of healthy mother-infant pairs residing in a

malaria-endemic region of Uganda, from birth until five years of

age. We show that complement-fixing antibodies in infants

gradually decrease during the first six months of life, probably

due to natural decay of antibodies transferred from the mothers. We

further demonstrate that by five years of age, the antibody responses

have nearly reached the same levels as those observed in both cord

blood at birth and in the mothers.

In malaria-endemic regions, it is widely acknowledged that

children develop partial immunity against malaria during their

first few years of life, while infants below 4-6 months of age

seldom experience clinical malaria, despite the possibility of

having sub-microscopic and asymptomatic infections (48–51).

This is partly due to the transfer of maternal antibodies through

the placenta, which facilitates a more rapid spontaneous clearance

of parasites in young infants when compared to older infants and

children (52, 53). The transfer of antibodies through the placenta is

predominantly restricted to the IgG subclasses, and among them,

IgG1 demonstrates the highest efficiency in antibody transfer (54).

In general, maternal and fetal IgG concentrations become

comparable by 33 weeks of gestation (55). Towards the end of the

third trimester, fetal IgG levels can even exceed those of the mother

(56–59). However, studies conducted in African settings have

reported lower cord/maternal IgG ratios and reduced total IgG

transfer across the placenta (58, 60), indicating impaired transfer.

This phenomenon can be attributed to various factors, including

HIV infection (61), placental malaria (62, 63) and elevated maternal

IgG levels, which are common in areas with continuous pathogen

exposure (58, 60, 63). Maternal IgG antibodies are likely to play a

significant role in the presence of complement-fixing antibodies

detected in cord blood, as fetal-produced IgG represents only a

small fraction of the immunoglobulins at birth (64). In our study,

we found very similar levels of complement-fixing antibodies in
FIGURE 4

Complement-fixing antibody levels at different time points in infants
categorized into high or low antibody responders at birth. Each dot
represents the estimated mean (linear mixed model) and whiskers
represent the 95% confidence intervals.
A B

FIGURE 5

Complement-fixing antibody levels in infants and mothers at birth in the high antibody response group (A) and the low antibody response group (B).
Box plots represent interquartile range, whiskers the range and horizontal lines represent the median; ns, non-significant (Mann-Whitney test).
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both cord blood and in mothers at delivery, even when categorized

into high and low responders. These findings strongly indicate the

transfer of complement-dependent antibodies across the placenta,

without any compromise observed in the transmission of

complement-fixing IgG to the infants within our cohort. IgM

responses were seen among mothers, and IgM can effectively fix

and activate complement. However, IgM is not transferred across

the placenta.

When we correlated our data for complement-fixing antibodies

to schizont-specific IgG and IgM, we were surprised to discover

correlations in the mothers only at delivery, but not nine months

later. The majority of the mothers have resided in the same area for

several years, encountering malaria multiple times, suggesting a

relatively long-developed immunity. Interestingly, a previous study

on individuals with clinical malaria reported strong associations

between complement-fixing antibodies and merozoite-specific IgM

as well as subclasses IgG1 and IgG3 (40). Our results could suggest a

more recent exposure to malaria for the mothers at the time of

delivery, compared to nine months later. Previous research on

pregnant women with malaria exposure has also reported
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correlations between complement-binding antibodies and IgM

and IgG responses, mainly consisting of IgG1 and IgG3

subclasses, which are known to have a high affinity for

complement (18, 65). It is worth noting that high levels of

complement-fixing antibodies during pregnancy have been linked

to a lower risk of placental parasitemia at delivery, implying a more

effective control of the infection (65). However, in our study, we did

not observe such an association due to very few mothers having

enough parasites in the blood to be measured by our methods.

Among the 131 participating mothers, six were found to have

confirmed parasitemia at delivery through RDT and microscopy.

Interestingly, the levels of C1q-fixing antibodies varied widely

among these six women, ranging from low to high values, with

two of them belonging to the high antibody response group.

Nevertheless, it is challenging to draw any definitive conclusions

regarding the potential protective immunity for these mothers. A

limitation of our study is that evaluation of P. falciparum

parasitemia using more sensitive molecular methods, such as

qPCR, was not performed; therefore, we may have missed

infections. None of the participants in our cohort presented with

malaria symptoms and those with parasitemia were most likely

asymptomatic carriers of P. falciparum, or at least did not have fever

or other obvious symptoms of infection. All 109 women had

received intermittent preventive therapy and mosquito bed nets

during their pregnancies, which could explain the low prevalence of

parasitemia. Given that all women resided in close proximity to the

clinic and needed to bring their children for multiple follow-up

visits, we anticipate that the transmission of malaria would be

similar among all individuals.

In our assay, merozoite extract is bound to the plate and both

IgG and IgM can bind to the merozoites, even though we only

measure the levels of IgG. This could also mean that if there are very

high levels of IgM, it could compete with binding of IgG.

Nevertheless, considering the decline in IgG levels among infants

in the months following birth, we do not consider this to be a

concern for the overall interpretation of our results, even though it

might have the potential to influence certain individual outcomes.

Maternal antibodies that develop during pregnancy have been

shown to play a role in improving birth outcomes for the babies.

However, the mechanisms underlying their protective effects

remain poorly understood (66). It has been suggested that

complement-binding antibodies may contribute to the

development of immunity against pathogens (65). Our study

found a correlation between schizont-specific IgG antibodies and

complement -fixing antibodies in cord blood, indicating the

existence of transfer of functional malaria-specific antibodies in

parallel to other P. falciparum-specific IgG from mothers to infants,

providing early-life protection. Our findings align with previous

studies on malaria-specific antibody responses in sub-Saharan

African birth cohorts (29, 51, 59, 67), as we observed a decline in

complement-fixing antibody levels in infants during the initial six

months, followed by an increase at nine months. This pattern

reflects the waning of maternal antibodies and the infant’s own

acquisition of antibodies.

At nine months of age, we found several significant correlations

in the infants when compared to other immune response
A

B

FIGURE 6

Correlation heatmap of complement-fixing antibody levels and
schizont specific IgG and IgM, subsets of B cells, BAFF and OPN in
infants and mothers. Pearson correlations with adjustments for
multiple comparisons using the Benjamini-Hochberg method were
performed for each time point, presenting R values and * represents
where P <0.05. Green color represents positive correlations and red
color represents negative correlations. (A) C1q-fixing antibody
correlation heatmap for infants at birth, 2.5 months, 6 months, and
9 months. (B) C1q-fixing antibody correlation heatmap for mothers
at delivery and after 9 months. MBC, Memory B cells; BAFF, B cell
activating factor; OPN, Osteopontin.
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parameters. Specifically, we observed that complement-fixing

antibodies were positively associated with schizont-specific IgG,

atypical memory B cells (MBCs), and Pf+ atypical MBCs, all of

which exhibit an increase in response to malaria exposure.

Although previous studies have shown correlations between the

acquisition of atypical MBCs, exposure to malaria, and age, the role

of these cells in the formation of immune responses against malaria

remains unclear (39, 42, 68, 69). Moreover, our findings indicated a

correlation between complement-fixing antibodies and OPN at 9

months, suggesting a potential connection between complement-

fixing antibodies and the regulation of B cell differentiation through

OPN-mediated pathways. Both OPN and BAFFmight have a role in

the B cell immune response against P. falciparum infection and the

formation of atypical MBCs (39, 47), but its precise function in this

context is not yet fully understood. We speculate that the infant’s

immune system becomes highly active in developing its own

immunity against malaria around the age of 9 months. This

heightened activity may explain the presence of multiple

correlations, such as those observed with P. falciparum-specific B

cells at this time point. In contrast, such correlations may be less

pronounced during other ages when the immune system has

reached a more stable state. Upon reaching the age of 5 years in

our study cohort, the levels of complement-fixing antibodies in

children appear to be comparable to those of their mothers. This is

consistent with findings from a study conducted in a malaria-

endemic region of Kenya, which reported that children at the age of

5 years had significantly higher C1q-fixing antibody levels against

the merozoite surface protein 2 (MSP2) compared to younger

children, and had reached similar levels to those observed in

adults (16). However, in the same study, complement-fixing

antibody levels against the circumsporozoite protein (CSP) were

lower in children under 5 years old compared to adults (16). This

indicates that the development of complement-fixing antibodies

against sporozoite antigens may be slower than that of merozoite

antigens. Nonetheless, our results likely reflect the gradual

development of protective immunity against clinical malaria

during childhood. This is also supported by previous studies that

demonstrated levels of complement-binding antibodies against CSP

and a number of merozoite antigens to be associated with

protection from clinical malaria in children (13, 15, 16).

Therefore, our findings suggest that by the age of 5 years,

children have developed functional complement-binding

antibodies that may contribute to protection against malaria.

Upon dividing the infants into high and low complement-fixing

antibody responders at birth, our findings revealed a faster decay

rate of maternal complement-fixing antibodies in infants with

initially high antibody levels. These results are in line with a

study conducted on a birth cohort in Kenya, which demonstrated

that the rate of decline of maternal total IgG levels against five

recombinant merozoite antigens was inversely proportional to the

starting levels in cord blood (70). Moreover, it has been

demonstrated that maternal antibodies against viral agents such

as rubella (71), parainfluenza type 3, and influenza A2 (72) decline

more rapidly in children with high levels of cord blood antibodies.

The inverse relationship between starting levels and decay rate has

been attributed to an increase in the rate of catabolism due to
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increased serum IgG levels (71), or an increased antibody

consumption secondary to asymptomatic malaria infections (70).

The rate of decline of maternal IgG can also vary depending on the

antigen-specificity, as antibodies against MSP2 have been shown to

have a shorter half-life compared to AMA1, for example (73).

Notably, at 6 months of age the high and low level groups were

equivalent in our study, indicating that the levels of complement-

fixing antibodies in cord blood and in the mothers do not influence

the production of the infants’ own antibodies. These findings,

together with the fact that the mothers’ complement-fixing

antibody levels were consistent with those of their respective

infants in both groups, confirm that complement-fixing

antibodies are transferred via the placenta and that the levels in

cord blood are primarily dependent on maternal levels

during pregnancy.

The observed variations in complement-fixing antibody levels

between the different mother-infant pairs in our cohort may be

attributed to differences in exposure to P. falciparum, as evidenced

also by prior studies indicating that high levels of exposure result in

high levels of antibodies (51, 74). High IgG antibody levels in cord

blood have been reported as an indicator of frequent malaria

exposure during gestation and have been found to correlate with

an increased risk of malaria infection during the first year of life (51,

74). Notably, while high MSP1-antibody levels in cord blood have

been associated with protection of infants from malaria infections

in high-endemicity settings during the first 6 months of life, they

have also been associated with a higher risk of infection compared

to infants in low-endemicity settings (75). Considering these

observations, it would be interesting to investigate whether

infants with higher levels of maternally derived complement-

fixing antibodies experience longer protection from malaria

infections and a shorter time-to-first-infection following the

waning of maternal antibodies, compared to those with lower levels.

In conclusion, this study provides novel insights into the

longitudinal decay and acquisition of complement-fixing

antibodies in a birth-cohort residing in a malaria-endemic region,

and it also clearly indicates that these antibodies are transferred

effectively across the placental barrier. However, further studies are

necessary to assess functional antibodies and neonatal, maternal,

and fetal factors that lead to clinical immunity. Understanding the

development of the immune response in infancy and early

childhood is crucial since children under 5 years are the primary

target population for current and future malaria vaccines.
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