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Tumor-associated macrophages (TAMs) are integral to the tumor

microenvironment (TME), influencing cancer progression significantly.

Attracted by cancer cell signals, TAMs exhibit unparalleled adaptability, aligning

with the dynamic tumor milieu. Their roles span from promoting tumor growth

and angiogenesis to modulating metastasis. While substantial research has

explored the fundamentals of TAMs, comprehending their adaptive behavior,

and leveraging it for novel treatments remains challenging. This review delves

into TAM polarization, metabolic shifts, and the complex orchestration of

cytokines and chemokines determining their functions. We highlight the

complexities of TAM-targeted research focusing on their adaptability and

potential variability in therapeutic outcomes. Moreover, we discuss the synergy

of integrating TAM-focused strategies with established cancer treatments, such

as chemotherapy, and immunotherapy. Emphasis is laid on pioneering methods

like TAM reprogramming for cancer immunotherapy and the adoption of single-

cell technologies for precision intervention. This synthesis seeks to shed light on

TAMs’ multifaceted roles in cancer, pinpointing prospective pathways for

transformative research and enhancing therapeutic modalities in oncology.
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Abbreviations: CAFs, cancer-associated fibroblasts; CSF1R, colony-stimulating factor 1 receptor; ECM,

extracellular matrix; EMT, epithelial to mesenchymal transition; FACS, fluorescence-activated cell sorting;

GBM, glioblastoma multiforme; GM-CGF, granulocyte-monocyte colony-stimulating factor; HIF-1a,

hypoxia-inducible factor 1-alpha; IL, interleukin; LCM, laser capture microdissection; LPS,

lipopolysaccharide; MACS, magnetic associated cell sorting; PDGF, platelet-derived growth factor;

MDSCs, myeloid-derived suppressor cells; MF, macrophages; PGE2, prostaglandin E2; scRNA-seq, single-

cell RNA sequencing; TAMs, tumor-associated macrophages; TGF b, transforming growth factor b; TLR,

toll-like receptor; TME, tumor microenvironment; VEGF, vascular endothelial growth factor.
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1 Introduction

Tumor-associated macrophages (TAMs) are integral

immune cells that occupy a pivotal position within the tumor

microenvironment (TME). With their dual roles in both promoting

and inhibiting tumor activities, they stand at the forefront of cancer

progression research (1–5). Rather than mere bystanders, their active

presence in the TME is influenced predominantly by signals from

cancer cells, leading to their active recruitment (6, 7).

Numerous preclinical and clinical studies have highlighted the

promising therapeutic implications of targeting TAMs. However,

this journey presents its set of challenges, from understanding TAM

subtypes to crafting precise therapies (8–11). The inherent

adaptability of TAMs to diverse stimuli brings light to the

unpredictable nature of therapeutic outcomes, further

complicating the therapeutic landscape (12, 13).

This review has multifaceted objectives. We aim to deepen the

understanding of both researchers and clinicians about TAMs,

spotlighting their intricate roles in the complex landscape of

cancer progression and potential interventions. We delve into

aspects like TAM polarization, the influence of cytokines and

chemokines, and related metabolic pathways. Furthermore, we

investigate the potential of merging TAM-targeted strategies with

conventional treatments, covering chemotherapy, radiation, and

immunotherapy. This includes the innovative concept of utilizing

reprogrammed TAMs for cancer immunotherapy (14) and

employing single-cell-based technologies for personalized

therapeutic interventions (15).

In summary, this review highlights the diverse roles of TAMs in

oncology, offering a landscape teeming with both opportunities and

complexities. We underscore the urgency to refine TAM-focused

therapeutic strategies and shed light on ongoing advancements and

challenges in cancer immunotherapy. Our intent is to pave a lucid

path ahead, pinpointing areas warranting thorough exploration. In

presenting this consolidated overview, we aim to equip our readers,

whether researchers or medical professionals, with a comprehensive

understanding of TAMs in the broader context of cancer

progression and therapeutic intervention.
2 The multifaced role of TAMs in
the TME

TAMs are essential components of the TME across various

cancers. Originating from circulating monocytes, they migrate to

the tumor site, these monocytes differentiate into macrophages

(MF), which are TAMs under the influence of signals from both

distressed tissues and neoplastic cells. As these macrophages

immerse themselves within the tumor milieu, they further mature

into the TAMs (6, 7). Due to their vast phenotypic diversity, TAMs

possess the ability to transition between pro-tumor (M2) and anti-

tumor (M1) roles, influenced by cues from the TME. Depending on
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their state and the TME’s signaling, TAMs might either bolster or

hinder tumor progression (1, 16).
2.1 Phenotypic diversity and TAM
interaction within the TME

TAMs are central players within the TME, characterized by a

broad spectrum of phenotypic attributes. Their inherent phenotypic

diversity equips them to assume varied roles, ranging from

promoting to counteracting tumor activities (1, 4, 17, 18). This

diversity becomes particularly pronounced when observing TAM

behavior across different cancer types. For instance, in breast

cancer, TAMs often support tumor growth by promoting

angiogenesis (19) through releasing growth factors such as

vascular endothelial growth factor (VEGF), transforming growth

factor-b (TGF-b), and platelet-derived growth factor (PDGF) (20),

while in melanoma, they predominantly exhibit immune-

suppressive characteristics (21, 22).

Diving deeper into the specific factors released by TAMs, these

cells secrete a variety of cytokines and growth factors that drive

oncogenic activities (17, 23). Notably, the release of cytokines such

as IL-6 and IL-10 promotes an immunosuppressive TME,

facilitating tumor escape from immune surveillance (24, 25). On

the angiogenic front, aside from the well-documented VEGF, TAMs

release additional pro-angiogenic factors that augment tumor blood

supply, enhancing nutrient availability for rapidly growing tumors

(26–28). The interactions between these cytokines and growth

factors not only fuel tumor growth and invasion but also shape

the overall dynamics of the TME, reinforcing the pro-tumorigenic

nature of TAMs (29, 30).

A deeper dive into the molecular mechanisms reveals that

TAMs, while often manipulated by tumors to support their

growth, can also be utilized in novel therapeutic strategies.

There’s an ongoing shift in the therapeutic paradigm to not

simply eliminate TAMs but to modulate their behavior. By

targeting specific signaling pathways and employing checkpoint

inhibitors, there’s potential to reprogram pro-tumorigenic M2-like

TAMs into tumor-inhibiting M1-like counterparts (10, 31, 32).

Such an approach aims to harness the inherent capabilities of TAMs

in tissue repair and homeostasis, converting them from potential

adversaries to allies in cancer therapy.

The differentiation into specific phenotypes is largely steered by

the cytokines present in the TME, acting as molecular directives for

TAMs. M1-type macrophages, which are pro-inflammatory,

instigate immune responses against tumor cells and potentially

restrict tumor expansion. Conversely, M2-type macrophages, which

exhibit anti-inflammatory tendencies, generally facilitate tissue

repair and boost angiogenesis. However, in the TME, they can

inadvertently foster tumor progression and aid metastasis (33, 34).

TAMs’ presence in the TME isn’t solitary; they are in constant

dialogue with other elements like cancer cells, stromal cells, and the

extracellular matrix. Through these interactions, TAMs can support
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angiogenesis, helping form new blood vessels to feed the tumor, but

also hinder immune responses, further aiding tumor cells in

metastasizing to new locations (1, 31, 32).
2.2 Recruitment, maturation, and
regulatory signaling pathways

The TME, serves as a hub of complex interactions, with its

cellular and non-cellular components guiding the recruitment and

maturation of TAMs. Molecular signals from tumor and stromal

cells, notably the chemokine CCL2, actively attract circulating

monocytes to the tumor vicinity. Upon arrival, monocytes are

further influenced by diverse signals. Growth factors, prominently

macrophage-colony stimulating factor (CSF-1) emanating from

tumor cells, hypoxia-responsive elements like hypoxia-inducible

factor 1-alpha (HIF-1a), and metabolic derivatives such as lactate

play vital roles. The significance of contact-dependent signaling,

exemplified by the CD200 and CD200R interaction, is also

noteworthy. These myriad of cues steer monocytes to differentiate

into macrophages, which further evolve into TAMs, reflecting the

deep symbiosis between neoplastic cells and TAM adaptability.

Such understanding hints at potential therapeutic interventions

(6, 7).

In the realm of signaling pathways dictating TAM recruitment

and maturation, the CSF1/CSF1R and CCL2/CCR2 axes stand out.

The CSF1/CSF1R pathway is indispensable for macrophage survival

and maturation, while the CCL2/CCR2 axis chiefly orchestrates

monocyte trafficking to the TME (20, 33). Venturing beyond these,

other pivotal pathways like STAT3, NF-kB, and PI3K are

instrumental in shaping TAM activities, steering them toward

either tumor promotion or suppression (35–37).

Given the central role of transcription factors, especially STAT3

and NF-kB, in TAM signaling, it’s pertinent to understand their

modulators. Tyrosine kinase inhibitors (TKIs), such as Sunitinib

and Sorafenib, have been identified to target the CSF1/CSF1R (38)

and STAT3 (36, 39) pathways, respectively, implying potential

avenues to redirect TAM functions. Additionally, small molecular

inhibitors like BAY 11-7082, targeting the NF-kB pathway, offer

promising leads. A deeper comprehension of these inhibitors can

elucidate opportunities to alter TAM behavior favorably, rendering

enhanced prognoses for patients.

Harnessing this intricate molecular knowledge paves the way

for innovative therapeutic strategies, emphasizing the recalibration

of TAM dynamics within the TME.
2.3 Modulation of TAM roles by
tumor attributes

TAMs are pivotal constituents of the TME. Their behavior and

roles are profoundly influenced by the broader tumor context. Key

tumor attributes, including its stage and anatomical location, play

pivotal roles in determining TAM behavior (40).

In the early stage of tumor development, the TME is

characterized by a dominant immune response. This is primarily
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facilitated by M1-type TAMs known for their pro-inflammatory

and anti-tumor properties. Their abundance in these early stages

suggests the body’s proactive defense against tumor formation,

which could be indicative of positive outcomes for patients (41).

As the tumor evolves, a significant shift occurs within the TME.

M2-type TAMs, which assist tumor growth through angiogenesis,

immune suppression, and tissue reconstruction, become more

prevalent (4, 42). Their increased presence in the advanced stages

reflects the tumor’s adeptness at modulating its surrounding

environment. Such adaptability might enhance the tumor’s

resilience against therapeutic strategies (31, 43–45).

Recognizing the dynamic roles of TAMs, influenced by tumor

attributes, underscores the need for an in-depth understanding of

the tumor’s condition. Grasping these changes can inform and

refine therapeutic approaches, potentially enhancing treatment

efficacy and overall patient prognosis.
3 Recognizing the limitations in
TAM research

In the pursuit of understanding the role of TAMs in tumor

biology, it’s imperative to address the inherent challenges and

discrepancies that stand as obstacles to a thorough comprehension

and its subsequent clinical application.
3.1 Challenges in TAM isolation techniques

TAMs, integral to the TME, play a pivotal role in influencing

tumor dynamics and determining therapeutic responses (13, 46).

Successfully isolating TAMs is essential for understanding their

functions and devising effective therapeutic strategies (4, 47).

However, each isolation technique presents distinct challenges.

For instance, while enzymatic digestion is adept at dismantling

the extracellular matrix (ECM), its over-reliance on specific antigenic

markers can lead to inaccurate TAM representation (47). Techniques

like magnetic associated cell sorting (MACS) & fluorescence-

activated cell sorting (FACS), though efficient, can be plagued by

inconsistencies stemming from marker variability (48–51).

Adhesion-based techniques, tapping into TAMs’ natural

propensity to adhere to certain surfaces, aren’t without their

pitfalls. The adherence properties of TAMs, shaped by their

originating tumor microenvironments, can vary. For example,

TAMs from breast tumors may adhere differently than those

from lung tumors, leading to disparities in isolation outcomes.

Such variations underscore the influence of unique tumor

microenvironments on TAM cellular behaviors, including

adhesion (52, 53).

Other methods like density gradient centrifugation might

produce heterogeneous cell populations, warranting further

purification (54). While laser capture microdissection (LCM)

offers precision, its stringent requirements could limit its

widespread application (46, 55). Furthermore, tissue microarrays,

despite their potential insight, might overlook specific TAM subsets

depending on the selected markers (56).
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3.2 Challenges in transitioning research to
clinical settings

In various cancers, TAMs exhibit distinct interactions and

behaviors shaped by the specific TME. For example, in breast

cancer, TAMs often support tumor growth, and metastasis, and

hinder anti-tumor immune responses (19, 20). In contrast, cervical

cancer showcases a strong correlation between heightened TAM

infiltration and advanced disease stages, with TAMs enhancing

angiogenesis and suppressing immune reactions against cancer cells

(57, 58). In melanoma, TAMs not only aid tumor progression but

also sometimes foster resistance to standard treatments, although

emerging therapies targeting TAMs offer hope (59, 60). Particularly

in non-small cell lung cancer, a subtype of lung cancer, the presence

of TAMs relates to tumor progression, metastasis, and even

resistance to certain treatments, often indicating a reduced

survival rate for affected patients (61, 62).

Transitioning these insights from laboratory studies to clinical

applications is fraught with challenges. Central to this transition is the

need to perfect TAM isolation methods suitable for clinical

environments. Embracing and advocating for innovative,

streamlined techniques will be critical, aiming to provide a

consistent foundation for TAM research and thereby deepening

our knowledge while fast-tracking TAM-centric therapeutic avenues.
4 TAM interactions and
polarization dynamics

The intricate relationship between TAMs and the TME is a

complex interweaving of factors, ranging from TAM activation

dynamics, and polarization predispositions, to the distinctive

features of the TME, governed by cancer type and its progression

stage (17). Understanding this multifaceted interplay is essential to

develop efficient TAM-targeted immunotherapies.
4.1 TAM regulatory mechanisms

Within the TME, the behavior and function of TAMs are

influenced by multifarious factors including cytokines, metabolic

cues, ECM components, and, crucially, hypoxia (63, 64). Hypoxia,

characterized by reduced oxygen availability, is a hallmark in the

TME and serves as a pivotal modulator of TAM polarization. In

response to hypoxic conditions, TAMs are driven toward the M2

phenotype, which tends to support tumor growth and metastasis

(65, 66). This hypoxia-induced M2 polarization activates specific

transcriptional profiles that are critical for the cellular

communication between TAMs and the tumor’s stromal

components, including fibroblasts, endothelial cells, and other

immune cells (67).

Additionally, TAMs display distinct metabolic signatures which

further modulate their activities within the TME (68). Elevated

glycolysis paired with decreased oxidative phosphorylation is often
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observed in TAMs, facilitating their survival in the nutrient

depleted and hypoxic TME (68, 69). Increased fatty acid synthesis

and uptake are also characteristic of TAMs and are correlated with

their immunosuppressive functionalities (68, 70, 71). These unique

metabolic patterns significantly contribute to angiogenesis, anti-

tumor immunity suppression, and the facilitation of tumor cell

invasion and metastasis.

Moreover, the molecular underpinnings governing TAM

polarization are intricate (72, 73). When exposed to Th1

cytokines like IFN-g, TAMs undergo a shift toward the M1

phenotype via the JAK-STAT1 pathway, augmenting their

tumoricidal capabilities (74, 75). Lipopolysaccharide (LPS), an

endotoxin predominantly derived from Gram-negative bacteria

within the tumor microenvironment, serves as an influential

modulator for TAMs. It interacts with TLR4 to strengthen the

M1-type TAM response via the NF-kB and MAPK pathways (76–

78). The source of this LPS can be multifaceted, stemming from

tumor-associated bacteria, systemic sources, or even mimics from

necrotic tumor cells within the TME (79, 80). Recent evidence

suggests that certain tumors, especially in organs with a rich

microbial environment, possess an associated microbiome. The

gram-negative bacteria present within these tumors release LPS,

which becomes a pivotal component of the TME, affecting the

behavior of various immune cells, including TAMs. On the

contrary, Th2 cytokines, notably IL-4 and IL-13, prompt a tilt

toward the M2 phenotype through the activation of the JAK-STAT6

signaling pathway (81). This shift, in turn, promotes tissue repair,

angiogenesis, and tumor progression (61). Other molecules such as

TGFb, chemokines, and PGE2 further emphasize the pro-

tumorigenic M2 profile (44, 82–84).

Unraveling these multifaceted hypoxia-driven interactions,

combined with the intricate molecular mechanisms governing

TAM polarization, offers promising avenues for therapeutic

interventions (85).
4.2 TAM-TME interaction dynamics

The hypoxic environment within the TME has profound

implications for the behavior and functionality of TAM. Hypoxia

not only drives TAM polarization but also modulates the complex

interplay between TAMs and other cellular components of the

TME, including immune cells, stromal cells, and cancer cells (29,

86). This low-oxygen condition intensifies the interactions between

TAMs and other TME cells emphasizing the pivotal roles TAMs

play, for instance, regulating T-cell functions (87, 88). Additionally,

hypoxia augments TAM-associated processes like angiogenesis and

communication with stromal cells, ultimately fostering tumor

growth (89–91).

Within the TME, several cell types actively modify the

microenvironment, each contributing distinct molecular

mechanisms that collectively influence tumor dynamics (92).

TAMs play a pivotal role by releasing various cytokines and growth

factors, inducing angiogenesis via VEGF secretion, fostering tissue

remodeling with MMPs, and suppressing immune responses through
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factors like IL-10 and TGF-b (4, 18, 32, 35). Complementing this,

Cancer-Associated Fibroblasts (CAFs) actively remodel the

extracellular matrix, heightening tumor stiffness that augments

cancer cell migration (93). These fibroblasts secrete growth factors,

notably TGF-b, propelling cancer cell proliferation and facilitating

epithelial-mesenchymal transition (EMT) (94). CAFs also contribute

to the immunosuppressive nature of the TME, recruiting regulatory T

cells (Tregs) via CCL2 secretion (83). Similarly, Myeloid-Derived

Suppressor Cells (MDSCs) are essential players in dampening the

anti-tumor immune response, inhibiting T cell activation with

reactive species, and depleting crucial amino acids, which further

impede T cell functionality (95).

Macrophages are classically polarized into two primary

phenotypes: M1, known for its pro-inflammatory attributes, and

M2, recognized for its anti-inflammatory characteristics (74). The

M1 macrophages predominantly defend against pathogens and

participate in early wound healing, while M2 macrophages

orchestrate tissue repair, immunoregulation, and inflammation

resolution (96).

Diving deeper, M2 macrophages are further segmented into

subtypes, namely M2a, M2b, M2c, and M2d, each distinguished by

their specific roles, stimuli responsiveness, and cytokine production

(97). Particularly, the M2b subtype, emerging as the focal point of

numerous studies, exhibits hybrid pro- and anti-inflammatory

activities, asserting their significance in varied physiological and

pathological contexts (98).

Current research accentuates the diverse roles of M2b

macrophages within both oncological and infectious contexts.

M2b macrophages not only participate in cancer promotion,

metastasis, and recurrence but also play crucial roles during

infectious challenges. These cells, unique among macrophages, are

characterized by their secretion of specific pro-inflammatory

cytokines. Given their capability to accentuate infections while
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concomitantly suppressing certain immune responses, there is an

increasing emphasis on understanding M2b polarization dynamics.

This focus arises from the potential of targeting M2b macrophages

for therapeutic innovations, both in cancer and infectious disease

scenarios (99–101).

M2b macrophages can be identified based on their distinct

cytokine secretion patterns. They are known to express high levels

of the anti-inflammatory cytokine IL-10. At the same time, they

exhibit reduced IL-12 levels. These cells also possess the capability to

release significant quantities of pro-inflammatory agents, such as IL-

1b, IL-6, and TNF-a. Interestingly, despite this pro-inflammatory

profile, M2b macrophages maintain high IL-10 levels, demonstrating

their multifaceted immunomodulatory roles (22). The following

Table 1 elucidates the determinants guiding the polarization of

macrophages into either M1 or M2 TAM phenotypes.
4.3 TAM polarization in the TME

Hypoxia in the TME is a pivotal determinant in guiding TAM

polarization. Under these low-oxygen conditions, CD8+ T cells lean

toward M1-type polarization, whereas Tregs predominantly skew

toward the M2-type (9, 27, 102, 103). The interplay between immune

checkpoints, especially those involving PD-L1 and PD-1, further

intricates TAM polarization within hypoxic TME. he implications of

this interaction might have substantial consequences for tumor

progression and its subsequent therapeutic targeting (104, 105).

Inflammatory cytokines, such as IL-6, TNF-a, and IL-1b, are
instrumental in determining TAM behavior within the TME (106).

These cytokines actively guide the polarization of macrophages

toward an M2-like, tumor-promoting phenotype. For instance, IL-

6, by activating the STAT3 signaling pathway, fosters M2
TABLE 1 Determinants of circulating macrophage polarization into M1 or M2 TAMs (22, 31, 32, 99–102).

MF Types M1 MF
M2 MF

M2a MF M2b MF M2c MF M2d MF

Stimuli IFN-g and/or LPS IL-4 and/or IL-13
immune complexes
and/or TLR agonists

IL-10 and/or TGF-b
TLR agonists, adenosine,
tumor-associated factors

Function Pro-inflammatory Anti-inflammatory
Immunoregulatory
(Pro- and Anti-
inflammatory)

Anti-inflammatory Pro-angiogenic

Cytokine profile Produce IL-12, IL-23, and iNOS
Produce IL-10 and
arginase 1

Produce IL-1b,
IL-6, TNF-a, and high
IL-10, low IL-2

Produce IL-10 and
TGF-b

Produce IL-4, IL-10, and
TGF-b

Cell response Promote Th1 cell response
Promote Th2 cell
response

Promote Th2 (low
induction of Th1) cell
response

Promote Th2 cell
response

Promote Th2 cell
response

Function Inhibit tumor growth Promote tumor growth

Promote tumor growth
& infection due to
blunting of immune
response

Promote angiogenesis Promote tumor growth

Chemokine
profile

CCL3, CCL4, CXCL9, CXCL10,
CXCL11

CCL17, CCL18, CCL22, CCL24

Surface markers CD80, CD86, MHC II CD206, CD163, MRC1, IL-10 receptor
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macrophage differentiation, which in turn is associated with

activities that promote tumor growth and progression.

In addition to cytokines, ECM components present in the TME,

notably hyaluronan and collagen, play significant roles in TAM

functionality. Hyaluronan interacts with TAM receptors like CD44,

triggering intracellular pathways that enhance the pro-tumorigenic

functions. In contrast, collagen provides a structural scaffold that

assists TAM.When collagen binds to integrin receptors on TAMs, it

influences their differentiation and function within the TME (32,

107, 108).

A thorough comprehension of the interplay and dynamics of

TAM in a hypoxic TME is essential for devising therapeutic

strategies that amplify anti-tumor responses. Figure 1 illustrates

the dynamics of TAM polarizat ion within the TME,

providing a visual representation of the factors that influence

their differentiation and subsequent roles in tumor progression

and immune response modulation.
5 Ongoing clinical trials

TAMs play a pivotal role in tumor progression and therapeutic

outcomes. Given this, there is significant interest in the oncological
Frontiers in Immunology 06
domain regarding TAMs, with numerous clinical trials emphasizing

TAM-centered therapies.
5.1 Clinical investigations centered
around TAMs

TAMs have emerged as key players in the TME, guiding both

tumor progression mechanisms and innovative therapeutic

strategies. Several clinical trials are underway to harness the

potential of TAMs, and we have sourced these from the extensive

database www.clinicaltrials.gov. Table 2 provides a snapshot of

these trials, both ongoing and completed.

Among these trials of NCT04776980 and 687 NCT04168528,

the former employs advanced imaging and biopsy methods to study

TAMs within the glioblastoma multiforme (GBM) tumor

environment. The latter focuses on a radiolabeled agent targeting

the MMR (macrophage mannose receptor), predominantly found

on M2-polarized TAMs, allowing researchers to visualize the TAM

distribution in various malignancies. Another notable trial,

NCT01316822, assesses ARRY-382, a targeted inhibitor against

the CSF1/CSF1R pathway essential for TAM activity and

differentiation. The emphasis on TAMs in these trials showcases
FIGURE 1

Dynamics of TAM polarization within the TME. TAMs, originating from circulating monocytes, differentiate into macrophages within the TME in
response to specific signals. Key influencers include the cytokine IFN-g, sourced from activated CD8+ T cells and NK cells, as well as a combination
of IFN-g, IL-2, IL-10, and TNF-a/b from Th1 cells (CD4+ T cells). External factors like LPS, predominantly derived from Gram-negative bacteria within
the tumor microenvironment, and other TLR agonists, which are typically released from bacteria, and necrotic tumor cells, or systemic sources,
favor the development of the M1 macrophage phenotype. In contrast, potent Th2 cytokines, such as IL-4 and IL-13, along with hypoxic conditions,
steer macrophages toward the TAM2 direction. TAM1 macrophages, influenced dominantly by IFN-g and LPS, assume a pro-inflammatory stance,
producing cytokines like IL-1b, IL-6, and TNF-a that can promote tumor cell apoptosis. On the other hand, TAM2 macrophages, shaped by IL-4 and
IL-13, exhibit an anti-inflammatory profile, secreting cytokines such as IL-10 and TGF-b, which not only suppress immune responses but also
enhance angiogenesis processes.
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their increasing importance in oncology, with potential applications

in cancer treatment and patient care.

5.2 The potential of CSF1R as a
therapeutic target

The Colony-stimulating factor 1 receptor (CSF1R) is fast

gaining traction in the realm of cancer therapeutics. This receptor

tyrosine kinase is a pivotal element found in TAMs. It plays an

indispensable role in orchestrating the growth and survival of

TAMs making it a compelling therapeutic target (109, 110).

The therapeutic potential of agents that inhibit CSF1R is a topic

of considerable interest and is currently being scrutinized in several

clinical trials. One standout Phase 2 clinical has been focusing on

gauging the collective effectiveness of the CSF1R inhibitor, namely

pexidartinib in tandem with pembrolizumab for treating patients

with advanced melanoma cases (10, 111–113).
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Currently, a commendable number of 20 clinical trials are

actively in progress. These trials are delving into the potential

implications of CSF1R in the field of Oncology. A detailed

breakdown and specifics of these trials can be perused in Table 3.
6 Innovations in TAM-focused
therapeutic strategies

Oncological advancements are revealing the significant role that

TAMs play in the TME. This has inspired innovative therapeutic

strategies that harness the complex biology of TAMs. These

strategies, enriched by emerging technologies, are carving fresh

and promising avenues in the treatment of cancer. Particularly

notable are efforts to reprogram TAMs for cancer immunotherapy

(14, 114) and the application of single-cell technologies for

precision interventions (115–118).
TABLE 2 Clinical trials involving TAMs in cancers (www.clinicaltrials.gov).

NCT
Number

Phases Study title Conditions
Completion
Date

NCT00690261 N/A
The Impact of M1/M2 TAM Polarization on Cancer Progression and
Prognosis Prediction

Tumor, Lung Cancer August 2010

NCT01551251 N/A
Tumor-Associated Macrophage in Advanced Non-small Cell Lung
Cancer

Advanced Non-small Cell Lung Cancer December 2010

NCT05053750
Early
Phase 1

A Pilot Study of Weekly Paclitaxel, Bevacizumab, and Tumor-
Associated Macrophage Targeted Therapy (Zoledronic Acid) in
Women with Recurrent, Platinum-resistant, Epithelial Ovarian,
Fallopian Tube or Primary Peritoneal Cancer

Epithelial Ovarian, Fallopian Tube, Primary
Peritoneal Cancer

March 31 2023

NCT01770353 Phase 1

MM-398 (Nanoliposomal Irinotecan, Nal-IRI) to Determine Tumor
Drug Levels and to Evaluate the Feasibility of Ferumoxytol Magnetic
Resonance Imaging to Measure Tumor-Associated Macrophages and
to Predict Patient Response to Treatment

Solid Tumors, ER/PR Positive Breast
Cancer, Triple Negative Breast Cancer,
Metastatic Breast Cancer, Metastatic Breast
Cancer with Active Brain Metastasis

Oct. 2 2018

NCT03888638 N/A
The Role of Tumor-associated Macrophages in Colorectal Liver
Metastases

Colorectal Liver Metastases, Colorectal
Cancer, Liver Metastases, Immunotherapy

March 1 2019

NCT01493817 N/A Biomarkers in Samples from Younger Patients with Wilms Tumor
Wilms Tumor and Other Childhood
Kidney Tumors

Completed

NCT02472275 Phase 1
PLX3397, Radiation Therapy, and Antihormone Therapy in Treating
Patients with Intermediate- or High-Risk Prostate Cancer

Stage I Prostate Adenocarcinoma, Stage II
Prostate Adenocarcinoma, Stage III
Prostate Adenocarcinoma

August 5 2019

NCT04776980
Early
Phase 1

Multimodality MRI and Liquid Biopsy in GBM
Multiforme Glioblastoma, Brain Tumor,
Adult Glioblastoma, Recurrent Brain
Tumor, Primary Brain Tumor

June 22 2022

NCT04168528
Phase 1,
Phase 2

Phase I/IIa Study of 68GaNOTA-Anti-MMR-VHH2 for PET/CT
Malignant Solid Tumor, Breast Cancer,
Head and Neck Cancer, Melanoma (Skin)

April 2023

NCT04663126
Early
Phase 1

Feasibility of IV Tc-99m-tilmanocept for Imaging of M2-type TAMs
in Metastatic Melanoma

Melanoma December 2022

NCT03397238 N/A Myeloid Cell Reprogramming in Thyroid Carcinoma Thyroid Cancer January 2021

NCT01316822 Phase 1
A Study of ARRY-382 in Patients with Selected Advanced or
Metastatic Cancers

Metastatic Cancer October 2012

NCT00979277 N/A
Transcriptional and Molecular Characterization of Tumor-Associated
Monocytes/Macrophages in Human Cancers

Tumor, Cancer Unknown
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6.1 Reprogramming TAMs for
cancer immunotherapy

TAMs possess a dual nature in cancer development, particularly

in aggressive cancers like gastric adenocarcinoma. They can

transition between tumor-resistant M1 macrophages, which exert

anti-tumor functions, and tumor-promoting M2 macrophages.
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Recent evidence suggests that M2-type macrophages, similar to

TAMs, serve as prognostic markers for gastric cancer (119). Instead

of eliminating TAMs altogether, current therapeutic strategies aim

to modify their behavior by converting pro-tumorigenic M2-like

TAMs into anti-tumor M1-like forms (14). This approach retains

TAMs’ essential roles in tissue repair and homeostasis while

harnessing their potential in the fight against cancer. M2
TABLE 3 Clinical trials involving CSF1R as a therapeutic target in cancers (www.clinicaltrials.gov).

NCT
Number

Phases Study Title Conditions
Completion
Date

NCT04648254 Phase 1
Oral Axl/Mer/CSF1R Selective Tyrosine Kinase Inhibitor in
Patients with Advanced Solid Tumor

Solid Tumor, Advanced Cancer, Metastatic Cancer 11/18/2023

NCT05438420
Phase 1/
Phase 2

Oral Axl/Mer/CSF1R Selective Tyrosine Kinase Inhibitor
Q702 in Combination with Pembrolizumab in Patients with
Selected Advanced Solid

Esophageal Cancer, Gastric Cancer, Hepatocellular
Cancer, Cervical Cancer

6/30/2026

NCT05438420
Phase 1/
Phase 2

Study of NMS-03592088 in Patients with Relapsed or
Refractory AML or CMML

Acute Myeloid Leukemia (AML), Chronic
Myelomonocytic Leukemia (CMML)

9/30/2023

NCT03993873
Phase 1/
Phase 2

Study of TPX-0022 in Patients with Advanced NSCLC,
Gastric Cancer, or Solid Tumors Harboring Genetic
Alterations in MET

Advanced Solid Tumor, Metastatic Solid Tumors,
MET Gene Alterations

11/1/2023

NCT04848116 Phase 2
Neoadjuvant Targeting of Myeloid Cell Populations in
Combination with Nivolumab in Head & Neck Ca

Head and Neck Squamous Cell Carcinoma 4/1/2026

NCT05020743
Phase 1/
Phase 2

Study of DCC-3014 in Patients with Advanced Tumors and
Tenosynovial Giant Cell Tumor

Advanced Malignant Neoplasm, Pigmented
Villonodular Synovitis, Giant Cell Tumor of Tendon
Sheath, Tenosynovial Giant Cell

6/1/2024

NCT05020743 Phase 1
Phase Ib/II Study of Chiauranib in Patients with Small Cell
Lung Cancer

Small Cell Lung Cancer 12/30/2022

NCT05494580
Phase 1/
Phase 2

Pamiparib Plus Surufatinib in Patients with Platinum-
resistant Ovarian Cancer

Ovarian Cancer, Platinum-resistant Ovarian Cancer,
Fallopian Tube Carcinosarcoma, Primary Peritoneal
Cancer

8/10/2025

NCT05627427 Phase 2
Multi-cohort Study of Surufatinib Plus Sintilimab in
Metastatic NEN and Pancreatic Carcinoma Who Failed
Standard Chemotherapy

Neuroendocrine Tumor Grade 3, Neuroendocrine
Carcinoma, Pancreatic Carcinoma

12/31/2024

NCT05627427 N/A Mass Balance Study of [14C] Chiauranib Small Cell Lung Cancer (SCLC) 6/30/2023

NCT04830813 Phase 3
Phase 3 Clinical Study of Chiauranib Capsule in Patients
with Small-cell Lung Cancer

Small Cell Lung Cancer (SCLC) 12/31/2024

NCT05273099 N/A
Molecular Biomarkers Predicting Early Development of
Endometrial Carcinoma

Cancer of Endometrium 12/1/2023

NCT04622865 Phase 2
APUR: Testing the Use of FDA Approved Drugs That
Target a Specific Abnormality in a Tumor Gene in People
with Advanced Stage Cancer

Non-Hodgkin Lymphoma, Multiple Myeloma,
Advanced Solid Tumors

12/31/2025

NCT04622865 Phase 2
Biomarker Driven Trial of VEGFR2 Inhibitor in Advanced
Sarcoma

Sarcoma 8/25/2023

NCT02171104 Phase 2
A Study Evaluating the Activity of Anti-cancer Treatments
Targeting Tumor Molecular Alterations/Characteristics in
Advanced/Metastatic Tumors.

Malignant Solid Tumor 11/1/2026

NCT02171104 Phase 2
Canadian Profiling and Targeted Agent Utilization Trial
(CAPTUR)

Non-Hodgkin Lymphoma, Multiple Myeloma,
Advanced Solid Tumors

1/31/2027

NCT02029001 Phase 2
Adapting Treatment to the Tumor Molecular Alterations
for Patients with Advanced Solid Tumors

Malignant Solid Neoplasms 10/1/2026

NCT02029001 Phase 3 Molecular Profiling of Advanced Soft-tissue Sarcomas Soft Tissue Sarcoma 10/1/2025

NCT02029001 Phase 1 A Phase I Trial of Simmitinib in Advanced Solid Tumors Advanced Solid Tumor 3/31/2025
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macrophages, which resemble TAMs, are increasingly recognized as

independent prognostic factors in gastric cancer (119, 120). The

utilization of TAMs as prognostic tools in clinical settings is on the

rise, particularly in the context of therapeutic reprogramming.

Instead of complete TAM removal, current strategies focus on

behavior modification, transitioning pro-tumorigenic M2-like

TAMs into anti-tumor M1-like counterparts (7, 14). This strategy

maintains the advantageous properties of TAMs in tissue repair and

homeostasis while engaging them in the battle against cancer.
6.2 Utilizing single-cell technologies for
precision interventions

TAMs play critical roles in a range of cancers, notably

endometrial and breast types. The impact of cancer on the

transcriptional landscapes of monocytes and macrophages

suggests consequential effects on patient outcomes. For instance,

breast TAMs present a signature linked to aggressive cancer

subtypes, correlating with decreased disease-specific survival (121,

122). Discovering the interactions between TAMs and cancer cells

has led to the identification of potential therapeutic targets like

SIGLEC1 and CCL8 (46, 121, 123, 124).

In stage II colon cancer, the varying effectiveness of post-

surgery chemotherapy highlights the significance of reliable

biomarkers. Notably, TAM ratios, such as CD206/CD68, are

emerging as pivotal prognostic and predictive metrics for

postoperative chemotherapy (125, 126). These insights not only

deepen our grasp of TAMs’ function in cancer but also accentuate

the imperative for precision interventions.

The evolving clarity of TAM populations within the TME

underscores the necessity for sophisticated interventions.

Advanced tools, like single-cell RNA sequencing (scRNA-seq)

enable the identification of distinct TAM subsets, revealing their

specific molecular imprints and operational states (12, 116, 127,

128). By combining lineage tracing with scRNA-seq, researchers

like Casanova-Acebes et al. (117) have elucidated TAM

dynamics in specific cancer models, advocating for bespoke

therapeutic approaches that target distinct TAM groups. This

refined comprehension, powered by cutting-edge technologies,

foreshadows individualized treatments that reconfigure the TME

to hinder tumor growth.
7 The future of TAM research

TAMs, prominent actors within TME, exhibit both facilitative

and inhibitive roles in cancer progression, making them intriguing

therapeutic targets. As TAM-centered clinical trials advance,

their potential to redefine cancer immunotherapy becomes

increasingly evident.
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7.1 Precision in TAM-targeted therapeutics

Given the diverse roles of TAMs, precision in therapy is

imperative. Recent studies advocate for restricting TAM influx

into the TME to counter their tumor-promoting functions (13).

Additionally, efforts to direct TAM polarization toward the anti-

tumor M1 phenotype are gaining traction, which may enhance the

TME’s immune responsiveness. Emphasis is also on curbing TAM-

induced immune suppression (129). As we continue to gain insight,

the targeting of distinct TAM subsets emerges as a crucial strategy,

warranting an integrative understanding of the TME (130). Such

holistic endeavors might propel a new epoch in cancer care.
7.2 Innovations in non-invasive TAM
monitoring

Advancing TAM research necessitates the standardization of

isolation techniques. In this context, cutting-edge tools, such as

single-cell analysis (116, 118), have emerged as powerful assets.

Single-cell analysis not only allows for the isolation and study of

individual TAMs but also provides a window into the intricate

nuances of TAM phenotypes. Furthermore, it sheds light on the

dynamic interactions between TAMs and the TME (15). This

innovative approach has the potential to revolutionize our

understanding of TAMs by uncovering their heterogeneity and

unveiling the intricacies of their crosstalk within the TME. These

advancements in non-invasive TAM monitoring hold promise for

more targeted and effective therapeutic strategies in the fight

against cancer.
7.3 Navigating clinical trial & their
implications

Optimizing TAM-oriented therapies requires rigorous clinical

trials to validate both their efficacy and safety. Such endeavors also

spotlight potential biomarkers to ascertain the most suitable patient

groups for these interventions. By understanding the intricate

interactions of TAM-TME engagements, opportunities for

combinatorial treatments emerge, elevating the standards of

cancer therapy.
7.4 Reflections and horizons

Within the complex world of oncology, TAMs are at the forefront.

Unraveling their role in tumor dynamics will inspire novel therapeutic

ventures. With this momentum, the domain of TAM research has the

promise to revolutionize cancer immunotherapy, a sentiment gaining

traction among researchers (131).
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8 Conclusion

TAMs, central to cancer dynamics, both facilitate and counteract

tumor progression. Their intricate roles pose significant therapeutic

challenges. Yet, the advent of clinical trials reveals potential means to

regulate TAMs, mitigating their immune-suppressive effects.

Integrating these TAM-focused strategies with current treatments

may revolutionize cancer immunotherapy.

A paramount shift in TAM research demands standardized

methodologies for consistent and precise results. Breakthroughs

such as single-cell analyses grant a profound understanding of TAM

functions and their complex TME interplay. Concurrently, efforts to

devise drugs targeting adverse TAM subsets are intensifying.

Through careful assessment and biomarker application, patient

selection for optimal benefits becomes feasible.

In summary, investigating TAMs isn’t merely scholarly; it bears

the promise of transforming cancer treatment paradigms.

Embracing the nuances and opportunities in TAM research

brings us a step closer to improved outcomes for cancer patients.
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