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Editorial on the Research Topic

Manipulation of immune-vascular crosstalk in solid tumors
Advances in modern sciences such as molecular biology, genetics, and immunology

have equipped us to eradicate different infectious diseases (smallpox, polio) known from

ancient times. However, despite these advances, cancer is the number one killer of humans.

For example, in 2023, 1,958,310 new cancer cases and 609,820 cancer deaths may occur

only in the United States (1). Immune-checkpoint inhibitors (ICIs) are the latest

breakthrough in cancer treatment with existing chemo and radiotherapies, which are not

without side effects (2–5). Furthermore, ICIs usually benefit less than 15% of cancer

patients with adverse events in a large number of patients (6). Chimeric antigen receptor

(CAR) T cells (especially autologous CAR-T cells) targeting tumor-associated antigen

(TAAs) has transformed the treatment of many hematological cancers (CD19 CAR T cells

for leukemia) and also have a high therapeutic potential for solid tumors (7–10). Besides

toxic (immune and nervous system-mediated) events associated with CAR-T cells-based

immunotherapies, another hurdle in their success in treating solid cancers is resistance

development and cancer cell escape in the immunosuppressive tumor microenvironment

(TME) or tumor immune microenvironment (TIME) (11–13). Furthermore, allogenic

CAR-T cell immunotherapy may induce severe graft-versus-host disease (GVHD) and can

be easily eliminated by the immune system (9). Therefore, we have to move forward to find

alternative approaches to target cancers with minimum or no side/adverse events.

Blood vascular and lymphoid systems are critical for nutrition supply and immune cell

infiltration in the TME or TIME (14, 15). The immune and vascular cross-talk is also fully

consistent with the seed (cancer cell) and soil (specific organ environment) hypothesis

given by Stephen Paget in 1899, approximately 150 years back, to explain conditions

creating an environment for metastasis (16, 17). For example, tumor metastasis depends on

several factors promoting cancer cell growth, proliferation, survival, immune escape,

nutrition supply, and local and distant tissue invasion. Blood vascular endothelium (VE)

and lymphatic endothelium (LE) differ due to their different roles that also depend on the

specific tissue environment (18–20). Of note, many cancers, such as breast cancer and

melanoma, preferentially spread via lymphatics (21). Furthermore, primary tumors, like

blood vasculature, also modify lymphatic vessels and draining lymph nodes (dLNs) by
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lymph-angiogenesis, incorporating myeloid cells into lymphatics

and delivering exosome or extracellular vesicles (EVs) to dLNs for

generating pretumoral niches for cancer cell metastasis (15, 22–25).

A strong connection between blood vasculature and lymphatics

has emerged that can change tumor biology and immunology than

previously expected (26–30). Furthermore, the cross-talk between

endothelial cells, immune cells, and immune checkpoints in the

TME is emerging with a therapeutic potential (31). For example, a

combination of anti-angiogenic therapy and ICIs normalizes

vascular-immune cross-talk to increase the antitumor immunity

(32). Therefore, understanding immune-vascular cross-talk in the

TME or TIME of solid cancers is critical for designing better

therapies. The current Research Topic of the thematic issue with

four articles focusses on this less explored area of tumor

immunology and vascularization.

For example, the research article by Yang et al. in this Research

Topic has explored that the efficacy of ICIs such as anti-programed

cell death protein-1 (PD-1 or CD279) antibodies increases in

combination with the anti-angiogenesis drug, lenvatinib (a multi-

receptor tyrosine kinase inhibitor, including vascular endothelial

growth factor receptor-1 (VEGFR1), VEGFR2, and VEGFR3)

against hepatocellular carcinoma (HCC). The increased efficacy of

the ICI with lenvatinib occurred due to the normalization of the

tumor vasculature and increased antitumor immune cell infiltration

in the TME/TIME. For example, at adequate doses, lenvatinib

increases the integrity among endothelial cells and prevents

vascular leakage. Lenvatinib treatment maintains the endothelial

cell integrity by forming the neuropilin-1 (NRP-1)-platelet-derived

growth factor receptor-b (PDGFR-b) complex, activating a novel

cdc-2 related protein kinase 1 (Crkl)-C3G (a guanine nucleotide

exchange factor for Ras-associated protein 1 or Rap1, which is a

small GTPase)-Rap1 signaling pathway in endothelial cells. The

details of Rap-1 signaling in cancer are discussed elsewhere (33, 34).

The NRP-1/PDGFR-b complex also promotes the interaction

between endothelial cells and pericytes by inducing tyrosine-

phosphorylation in pericytes. Thus, normovascularization by the

lenvatinib in the TME increased the antitumor activity of the ICIs to

suppress HCC.

Another study in the Research Topic by Liu et al., has indicated

that blocking the interaction between microRNA (miR)-27a and

VE-cadherin with Blockmir CD5-2, a novel oligonucleotide-based

miR-27a inhibitor inhibits angiogenesis and its combination with

ICIs (anti-PD-1s) significantly reduce the HCC tumor size. CD5-2

takes care of leaky blood vessels and reduces tumor hypoxia, and

ICIs increase the infiltration of antitumor immune cells in the TME

or TIME. Thus, combining anti-angiogenesis approach and ICIs

proves beneficial to the host to decrease the tumor burden.

Therefore, different approaches combining anti-angiogenesis and

ICICs are emerging to target solid cancer for developing a field

called tumor vasculoimmunology, where tumor vasculature and

immune environment would be studied and targeted together for

lowering the tumor burden and metastasis.

Furthermore, the review article by Dianat-Moghadam et al.,

discusses about failure of anti-angiogenesis therapies as anticancer

drugs when used alone as they completely deplete vascularization,
Frontiers in Immunology
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inducing hypoxia, drug resistance, and tumor recurrence along with

negatively impacting chemotherapies and immune cell infiltration

in the TME/TIME. They have further discussed different challenges

to target tumor vasculature and its normalization for improving

cancer immunotherapies. The authors have further discussed that

nanomedicine-based tumor vasculature target ing and

normalization has a bright future to act as potent antitumor

molecules to enhance the efficacy of existing immunotherapies

such as ICIs.

I have mentioned earlier that VE or vascular endothelial cells

(VECs) differ from LE or lymphatic endothelial cells (LECs) and

vice versa. The fourth article in the Research Topic by Viudez-

Pareja et al. discuss the immunomodulatory properties of LE in the

TME/TIME. LE or LECs have unique properties to suppress or

potentiate the antitumor immune response. For example, tumor-

associated lymphangiogenesis can promote tumor dissemination

and metastasis, as seen in breast cancers and melanoma. Viudez-

Pareza et al, discuss the immunomodulatory properties of LE

within the TME/TIME of primary tumors and tumor-dLNs. They

have further discussed emerging approaches to target tumor LE or

LECs to enhance antitumor immune response. Hence, understating

the cross-talk between LE, VE, and immune response or cells in the

TME/TIME may increase the efficacy of currently available

immunotherapies, such as ICIs. Additionally, it will be interesting

to study the impact of immune-vascular cross-talk targeting on

cellular immunotherapies, including chimeric antigen receptor-T

(CAR-T) cells. Therefore, immune-vascular cross-talk has a bright

future in understanding the TIME and enhancing the efficacies of

current immunotherapies.
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