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Multi-omics analyses unravel
DNA damage repair-related
clusters in breast cancer with
experimental validation

Peng Liu1†, Xinpei Deng1†, Huamao Zhou2†, Jindong Xie1,
Yanan Kong1, Yutian Zou1*, Anli Yang1* and Xing Li1*

1State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center
for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China, 2The Affiliated Nanhua
Hospital, Hengyang Medical School, University of South China, Hengyang, China
Background: As one of the most common malignancies worldwide, breast

cancer (BC) exhibits high heterogeneity of molecular phenotypes. The evolving

view regarding DNA damage repair (DDR) is that it is context-specific and

heterogeneous, but its role in BC remains unclear.

Methods: Multi-dimensional data of transcriptomics, genomics, and single-cell

transcriptome profiling were obtained to characterize the DDR-related features

of BC. We collected 276 DDR-related genes based on the Molecular Signature

Database (MSigDB) database and previous studies. We acquired public datasets

included the SCAN-B dataset (GEO: GSE96058), METABRIC database, and

TCGA-BRCA database. Corresponding repositories such as transcriptomics,

genomics, and clinical information were also downloaded. We selected

scRNA-seq data from GEO: GSE176078, GSE114727, GSE161529, and

GSE158724. Bulk RNA-seq data from GEO: GSE176078, GSE18728, GSE5462,

GSE20181, and GSE130788 were extracted for independent analyses.

Results: The DDR classification was constructed in the SCAN-B dataset (GEO:

GSE96058) and METABRIC database, Among BC patients, there were two

clusters with distinct clinical and molecular characteristics: the DDR-

suppressed cluster and the DDR-active cluster. A superior survival rate is found

for tumors in the DDR-suppressed cluster, while those with the DDR-activated

cluster tend to have inferior prognoses and clinically aggressive behavior. The

DDR classification was validated in the TCGA-BRCA cohort and shown similar

results. We also found that two clusters have different pathway activities at the

genomic level. Based on the intersection of the different expressed genes among

these cohorts, we found that PRAME might play a vital role in DDR. The DDR

classification was then enabled by establishing a DDR score, which was verified

through multilayer cohort analysis. Furthermore, our results revealed that

malignant cells contributed more to the DDR score at the single-cell level than

nonmalignant cells. Particularly, immune cells with immunosuppressive

properties (such as FOXP3+ CD4+ T cells) displayed higher DDR scores

among those with distinguishable characteristics.
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Conclusion: Collectively, this study performs general analyses of DDR

heterogeneity in BC and provides insight into the understanding of

individualized molecular and clinicopathological mechanisms underlying

unique DDR profiles.
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Introduction

As one of the most common malignancies worldwide, breast

cancer (BC) exhibits high heterogeneity of molecular phenotypes

(1). According to the status of the human epidermal growth factor

receptor-2 (HER2) and hormone receptor (HR), BC can be divided

into four subgroups: luminal A (HR+/HER2-), luminal B (HR

+/HER2+), HER2-positive (HR-/HER2+), and triple-negative

breast cancer (HR-/HER2- [TNBC]) (2). BC is usually associated

with unfavorable survival rates and requires molecules that assist in

determining prognoses as well as monitoring efficacy. There have

been significant advances in understanding the molecular

heterogeneity of BC over the past few decades (3–5). These

studies provide comprehensive insights into the molecular

phenotypes of BC and offer effective options. Nevertheless,

molecular mechanisms behind the dismal prognosis of BC remain

unclear. Therefore, it is critical to recognize the molecular

characteristics and mechanisms of BC.

Genome stability depends on DNA damage repair (DDR). It is

well known that DDR pathways involve in the onset, progression,

and therapeutic response of tumor (6). Besides, treatment strategies

that target DDR are increasingly coming to fruition. Poly (ADP-

ribose) polymerase (PARP) is a classic enzyme that detects DNA

damage and has been applied as a promising target (7). Based on

genetic, biochemical, and mechanistic criteria, DDR-related genes
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can be categorized into several pathways (8). Numerous studies

have provided insights into the mechanism and therapeutic efficacy

of DDR in multiple cancer types (9–12). However, most of them

focused on the bulk transcriptome analysis, and multi-dimensional

analysis is still lacking, especially in BC. The BC ecosystem consists

of diverse molecular characteristics and immune infiltrations, and

DDR zealously contributes to the processes of BC carcinogenesis as

well as immune characteristics. Recently, Ka et al. identified that

IFI16 could inhibit DDR that potentiates type-I interferon-induced

antitumor effects in TNBC (13). However, these studies

predominantly concentrated on single gene. Besides, single-cell

RNA sequencing (scRNA-seq) technology offers an accurate way

to identify both intrinsic and extrinsic characteristics of tumor cells

(14, 15). It is capable of identifying different cell subsets, illustrating

clonal diversity, and, importantly, figuring out the critical factor

influencing tumor heterogeneity (16). By identifying cancer

subtypes, patients can be tracked for treatment responses and

improvement in outcomes (17–21). Consequently, uncovering the

roles of DDR in BC is imperative.

Herein, we performed a multi-dimensional analysis of

transcriptomics, genomics, and single-cell transcriptome profiling

to characterize the DDR-related features of BC. We defined DDR-

related clusters based on 276 DDR-related genes. The DDR

classification was then enabled by establishing a DDR score,

which was verified through multilayer cohort analysis.

Furthermore, we distinguished DDR characteristics between

nonmalignant and malignant cells, as well as among immune cell

subtypes. Collectively, our findings provided general analyses of

DDR heterogeneity in BC which might help with prognosis

monitoring and diverse therapies.
Materials and methods

Patients and samples

We acquired public datasets included the SCAN-B dataset

(GEO: GSE96058) (22), METABRIC database (Dataset ID:

EGAS00001001753) (23) , and TCGA-BRCA database.

Corresponding repositories such as transcriptomics, genomics,

and clinical information were also downloaded. We selected

scRNA-seq data from GEO: GSE176078 (24), GSE114727 (25),
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GSE161529 (26), and GSE158724 (27). Bulk RNA-seq data from

GEO: GSE176078 (24), GSE18728 (28), GSE5462 (29), GSE20181

(30), and GSE130788 (31) were extracted for independent analysis.

The probes were mapped using “AnnoProbe” R package.

“GeoTcgaData” R package was applied to convert ensemble ids to

gene symbols. The average values of multiple probes were calculated

by the “limma” R package if necessary.
Construction and validation of the DDR-
related clusters

To identify potential subtypes of breast cancer, we searched for

276 DDR-related genes based on the Molecular Signature Database

(MSigDB) database and previous studies (8). These DDR genes

involved in ten DDR pathways. Detailed information was

summarized in Supplementary Table S1. We then performed the

ssGSEA algorithm (“GSVA” R package) to calculate the enrichment

level of each DDR pathway as well as total DDR score in each

sample through transcriptomics.

We applied “ConsensusClusterPlus” R package to determine

the optimal k value for the DDR-related clusters (32). The CC

parameter “maxK” was selected as “8”, “clusterAlg” was selected as

“km”, and “distance” was selected as “pearson”. Heatmaps were

shown with “ComplexHeatmap” R package (33). PCA was also used

to show the heterogeneity of the clusters.
Survival analysis

K-M analyses of OS, BCSS, and DFS were performed by

“survival” and “survminer” R packages and shown in “ggsurvplot”

R package. The median value was used as the cut-off value.
Collection and calculation of
signature scores

We collected 50 hallmark signatures retrieved from MSigDB.

ssGSEA algorithm (“GSVA” R package) was applied to assess the

enrichment level of each hallmark signature in each sample (34). 31

COSMIC signatures were obtained from online website (https://

software.broadinstitute.org/cancer/cga/msp). The COSMIC

signature scores were calculated by “deconstructSigs” R

package (35).
DEGs analysis

We conducted DEGs analysis by the “limma” R package for the

SCAN-B and METABRIC cohorts, and the “edgeR” R package for

the TCGA-BRCA cohort (36, 37). Genes with adjusted P < 0.05 and

an absolute log2 fold change (FC) > 0.5 were considered as DEGs.

Common DEGs were shown by the “ggvenn” R package.
Frontiers in Immunology 03
Human BC cell lines and cell culture

We used the human epithelial BC cell lines, including MCF10A,

T47D, MCF7, ZR-75-1, SKBR-3, and MDA-MB-468. The cell lines

present in this study were obtained from the American Type

Culture Collection. Standard guidelines were followed to culture

all cell lines and maintain them at 37°C and 99% relative humidity

without antibiotics.
RNA isolation and qRT-PCR analysis

We extracted total RNA from cells using the RNA-Quick

Purification Kit (ES-RN001, Shanghai Yishan Biotechnology Co.,

Shanghai, China). Supplementary Table S2 showed the primer

sequences. We used qRT-PCR with three technical repetitions to

determine RNA levels on a Bio-Rad CFX96 using the SYBR Green

method (RR420A, Takara, Mountain View, CA, USA). We

purchased the qRT-PCR plate from NEST (402301, Wuxi NEST

Biotechnology Co., Jiangsu, China). Comparative Ct method was

used to normalize RNA levels against b-actin RNA.
Western blot analysis

Protein extracts from cells were prepared using RIPA lysis

buffer. Total protein was added to SDS-PAGE and transferred

to PVDF membrane (Millipore). Antibody against PRAME

and GAPDH was used. Membrane was incubated with

primary antibody at 4°C overnight and subsequent secondary

antibody at room temperature for 1h. The blots were further

visualized with Immobilon Western Chemiluminescent HRP

Substrate (Beyotime).
scRNA-seq data processing

Annotated cell types of the GEO: GSE176078 and GSE114727

datasets, and the clinical information of the GEO: GSE161529 and

GSE158724 datasets were all obtained from their previous studies.

“Seurat” R package was applied to accomplish subsequent analysis

(38). We selected the top 2000 highly variable genes (HGVs). The

process involved the utilization of the top 20 principal components,

in conjunction with HGVs. We used t-SNE to reduce the dimensions

and observe the classification of each cell type. According to

previously reported markers, CD4+ T cells, myeloid cells, CD8+ T

cells, and macrophages were furtherly distinguished (5, 39).
Statistical analysis

We used R version 4.1 to perform all analyses. We used

Wilcoxon rank-sum test to compare the differences between two

groups and Kruskal-Wallis test to three or more groups. The hazard

ratios (HR) and 95% confidence intervals (CI) were also calculated.
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Chisquare test was applied for two groups of categorical

variables. We chose pearson correlation coefficient to accomplish

correlation analysis. P < 0.05 was considered statistically significant.
Result

BC has two types of statuses based on the
DDR-related genes

In order to provide a systematic description of our study, a

flowchart was developed (Figure 1). We accomplished unsupervised

clustering in the SCAN-B and Molecular Taxonomy of Breast
Frontiers in Immunology 04
Cancer International Consortium (METABRIC) dataset based on

276 DDR-related genes. We found that when k = 2, two subgroups

of patients could be distinguished in each cohort (Figures 2A, C).

Using the single-sample gene set enrichment analysis (ssGSEA)

algorithm, we estimated the enrichment level of ten DDR-related

pathways in each sample. We found that two clusters had distinct

DDR characteristics (Figures 2B, D). The DDR-suppressed

subgroup was determined by the relative downregulation of most

DDR-related pathways, which was contrary to that in the DDR-

activated subgroup. Additionally, overall survival (OS) outcomes

were evidently different between the subgroups in the SCAN-B

cohort, with DDR-activated subgroup showing inferior OS

(Figure 2E). Similar result was then confirmed in the METABRIC
FIGURE 1

Flowchart of our study.
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cohort. The DDR-activated subgroup was related to poorer breast-

cancer-specific survival (BCSS) and OS (Figure 2F). Furthermore,

we compared clinical characteristics in the two cohorts.

Figures 2G, H showed that the DDR-activated subgroup had
Frontiers in Immunology 05
larger tumor size (both P < 0.0001), higher possibility of lymph

node metastasis (P < 0.0001 in the SCAN-B cohort; P < 0.001 in the

METABRIC cohort), advanced grade (both P < 0.0001), and higher

frequency of basal-like PAM50 subtype (both P < 0.0001).
B

C D

E F

G

H

A

FIGURE 2

Identification of two DDR-related clusters in the SCAN-B and METABRIC cohorts. (A) Heatmap displaying consensus clustering with the robust
classification in the SCAN-B cohort (k = 2). (B) Heatmap based on ten DDR pathways calculated through ssGSEA algorithm in the SCAN-B cohort.
(C) Heatmap displaying consensus clustering with the robust classification in the METABRIC cohort (k = 2). (D) Heatmap based on ten DDR pathways
calculated through ssGSEA algorithm in the METABRIC cohort. (E) Kaplan-Meier curves of OS between two DDR-related clusters in the SCAN-B
cohort. (F) Kaplan-Meier curves of OS and BCSS between two DDR-related clusters in the METABRIC cohort. (G) Violin plots and bar plots of clinical
features (tumor size, positive lymphnodes, pathological grade, and PAM50 subtypes) between two DDR-related clusters in the SCAN-B cohort. ****
means P < 0.0001. (H) Violin plots and bar plots of clinical features (tumor size, positive lymphnodes, pathological grade, and PAM50 subtypes)
between two DDR-related clusters in the METABRIC cohort. **** means P < 0.0001 and *** means P < 0.001.
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Further validation using the DDR clusters

The clusters were then validated in another large-scale cohort,

The Cancer Genome Atlas (TCGA)-breast invasive carcinoma

(BRCA) cohort. Based on the 276 DDR-related genes, a total of

two subgroups were also identified in BC patients, the DDR-

activated and DDR-suppressed subgroups (Figure 3A). Figure 3B

revealed that similar changes in DDR-related pathways were found.

Survival differences were also observed between two subgroups, that

is, the DDR-activated subgroup was associated with worse OS and

disease-free survival (DFS) (Figures 3C, D). Besides, we observed a

similar relationship between the clusters and clinical parameters

(Figure 3E). The DDR-activated subgroup is more likely to have
Frontiers in Immunology 06
larger tumor size (P < 0.0001), higher stage (both P < 0.001), and

higher frequency of basal-like PAM50 subtype (P < 0.0001).

Ultimately, the robustness of our DDR-related clusters was

impressive, and it was able to establish two subgroups.
DDR clusters-specific transcriptomic and
genomic characteristics of BC

Previous studies have found that DDR can be triggered by

amplifications or mutations in oncogenes (6, 40, 41). Hence, we

examined gene mutation differences between two DDR subgroups

in the TCGA-BRCA and METABRIC cohorts. We found that there
B

C D E

F

G

H

A

FIGURE 3

Validation of two DDR-related clusters in the TCGA cohort. (A) Heatmap displaying consensus clustering with the robust classification in the TCGA
cohort (k = 2). (B) Heatmap based on ten DDR pathways calculated through ssGSEA algorithm in the TCGA cohort. (C) Kaplan-Meier curves of OS
between two DDR-related clusters in the TCGA cohort. (D) Kaplan-Meier curves of DFS between two DDR-related clusters in the TCGA cohort.
(E) Bar plots of clinical features (tumor size, positive lymphnodes, pathological stage, and PAM50 subtypes) between two DDR-related classifiers in the
TCGA cohort. **** means P < 0.0001, *** means P < 0.001, and ns means no significance. (F) Mutation landscape between two DDR-related clusters in
the TCGA cohort. (G) Mutation landscape between two DDR-related clusters in the METABRIC cohort. (H) Heatmaps of COSMIC signatures between
two DDR-related clusters in the TCGA and METABRIC cohort. ****, ***, **, * means P < 0.0001, P < 0.001, P < 0.01, and P < 0.05, respectively.
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was a high incidence of mutations in PIK3CA and TP53 in two

cohorts of patients (Figures 3F, G). Since both genes are essential,

our comparisons revealed that the DDR-activated subgroup had

higher mutation rates of TP53, whereas the DDR-suppressed

subgroup had higher mutation rates of PIK3CA. Moreover, we

calculated 31 COSMIC signature scores related to the mutation

characteristics. The values refer to the average contribution across

all samples within each cluster. Previous studies indicated that

“Signature 3”, “Signature 4”, “Signature 6”, “Signature 15”,

“Signature 20”, and “Signature 26” were strongly correlated with

DDR activity (35). “Signature 3” is mainly related to homology-

dependent recombination (HDR), while “Signature 4”, “Signature

6”, “Signature 15”, “Signature 20”, and “Signature 26” are relevant

to defective DNA mismatch repair (MMR). Figure 3H showed that

the DDR-activated subgroup had higher score of “Signature 3”
Frontiers in Immunology 07
while the DDR- suppressed subgroup had higher scores of

“Signature 20” and “Signature 26”, demonstrating that two

subgroups have different pathway activities at the genomic level.

Using the “ssGSEA” algorithm, we then calculated a novel index

named DDR score in each patient. We compared the DDR score

between two subgroups and found that it was significantly higher in

the DDR-activated subgroup (Figure 4A). Besides, we collected 50

hallmark signatures and calculated the enrichment level of each

hallmark signature in each sample. The result of the heatmap

showed that the DDR-activated subgroup displayed higher

activity of mitotic spindle, DNA repair, unfolded protein

response, G2M checkpoint, interferon responses, PI3K-AKT-

mTOR signaling, whereas the DDR- suppressed subgroup

exhibited higher activity of TGF-beta signaling, apoptosis, WNT-

beta-catenin signaling, etc. (Figure 4B). The correlation between the
B C

D E

F G

A

FIGURE 4

Construction of the DDR score and distinct multi-omics features of the DDR-related clusters revealing potential targets. (A) Violin plots of DDR
score between two DDR-related clusters in the SCAN-B, METABRIC, and TCGA cohorts. **** means P < 0.0001. (B) Heatmap based on hallmark
signatures calculated through ssGSEA algorithm in the SCAN-B, METABRIC, and TCGA cohorts. (C) Bubble plots of the correlation between DDR
score and hallmark signatures in the SCAN-B, METABRIC, and TCGA cohorts. (D) Volcano plots of the DEGs between two DDR-related clusters in
the SCAN-B, METABRIC, and TCGA cohorts. (E) Venn plot of the common DEGs among the SCAN-B, METABRIC, and TCGA cohorts. (F) Boxplot of
PRAME expression among different breast cancer cell lines by qRT-PCR, and Western blot analysis of PRAME. ****, ***, **, * means P < 0.0001,
P < 0.001, P < 0.01, and P < 0.05, respectively. (G) Kaplan-Meier curves of OS and BCSS based on the median expression of PRAME in the SCAN-B,
METABRIC, and TCGA cohorts.
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DDR score and each hallmark signature level was also analyzed, and

consistent conclusion was found (Figure 4C). Moreover, we

constructed volcano plots to test whether the DDR-activated

subgroup has uniquely expressed gene programs that might

support their DDR status (Figure 4D). Based on the intersection

of the upregulated genes among these cohorts, PRAME and ART3

appeared to be the most likely candidates (Figure 4E). Preferentially

expressed antigen in melanoma (PRAME) is crucial for multiple

cellular processes as well as immunotherapy response in human

cancers among the cancer/testis antigen gene family (42). However,

there have been no reports regarding the relationship between

PRAME and DDR. We then applied quantitative real-time PCR

(qRT-PCR) and Western blot analysis on PRAME. The results

showed that that PRAME was significantly upregulated in multiple
Frontiers in Immunology 08
BC cell lines at both mRNA and protein levels (Figure 4F).

Bioinformatic analysis in the TCGA-BRCA cohort also confirmed

that PRAME was upregulated in tumor tissues compare with

normal tissues (Supplementary Figure S1). Besides, our survival

analysis among three cohorts displayed that PRAME was a

significant risk factor for patients with BC (Figure 4G). Our

findings indicated that PRAME might play a vital role in DDR.
Malignant cells primarily contribute to
DDR heterogeneity

Firstly, we verified our findings in another bulk RNA-seq

cohort, GSE176078. We found that patients were stably classified
B

C D E

F G

H I

A

FIGURE 5

Validation of two DDR-related clusters in GSE176078, and malignant cells are the major contributor to DDR heterogeneity in breast cancer. (A) Heatmap
based on ten DDR pathways calculated through ssGSEA algorithm in the GSE176078 bulk RNA-seq cohort. (B) Violin plots based on ten DDR pathways
calculated through ssGSEA algorithm in the GSE176078 bulk RNA-seq cohort. ** means P < 0.01 and * means P < 0.05. (C) t-distributed stochastic
neighbor embedding (t-SNE) plot of different cell types from GSE176078 scRNA-seq cohort. (D) Heatmap based on ten DDR pathways calculated
through ssGSEA algorithm in the GSE176078 scRNA-seq cohort. (E) Violin plots based on ten DDR pathways calculated through ssGSEA algorithm in the
GSE176078 scRNA-seq cohort. ** means P < 0.01 and * means P < 0.05. (F) DDR score among bulk RNA-seq (left), malignant cells (middle), and
nonmalignant cells (right) between two DDR-related classifiers in the GSE176078 cohort. **** means P < 0.0001, * means P < 0.05 and ns means no
significance. (G) t-SNE plot of the distribution of the DDR score in the GSE176078 scRNA-seq cohort. (H) Violin plot of the distribution of the DDR score
in the GSE176078 scRNA-seq cohort. (I) Heatmap based on ten DDR pathways calculated through ssGSEA algorithm among different cell types in the
GSE176078 scRNA-seq cohort.
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into two subgroups, and Figures 5A, B showed that similar DDR-

related pathways alteration was observed in GSE176078. Afterward,

we investigated whether the difference of DDR status between the

two subgroups can be determined at the single-cell level. By

applying scRNA-seq technique, we can better understand the

tumor diversity as well as tumor microenvironment (TME). We

then downloaded the scRNA-seq data from GSE176078. Cells were

broadly divided into 9 types, including B cells, cancer-associated
Frontiers in Immunology 09
fibroblasts (CAFs), cancer epithelial cells, endothelial cells, myeloid

cells, normal epithelial cells, plasma blasts, perivascular-like cells

(PVLs), and T cells (Figure 5C). Additionally, we stratified the

samples by mixing the cells from each patient. Intriguingly, all

patients were still allocated into two subgroups at the single-cell

level, with similar conclusion found in the bulk RNA-seq level

(Figures 5D, E). We subsequently assessed the DDR score of each

patient. We found that the customized DDR score was significantly
B

C D

E F

G H

A

FIGURE 6

Comparisons of DDR score among immune cell clusters in the GSE176078 and GSE114727 scRNA-seq cohorts. (A) t-SNE plot of two clusters among
CD8+ T cells, and violin plot between cluster 1 (IL7R+CD8+ T cells) and cluster 2 (GZMB+CD8+ T cells) in the GSE176078 scRNA-seq cohort. ****
means P < 0.0001. (B) t-SNE plot of three clusters among CD4+ T cells, and violin plot among cluster 1 (IL7R+CD4+ T cells), cluster 2 (CXCL13
+CD4+ T cells), and cluster 3 (FOXP3+CD4+ T cells) in the GSE176078 scRNA-seq cohort. **** means P < 0.0001 and * means P < 0.05. (C) t-SNE
plot of four clusters among myeloid cells, and violin plot among cluster 1 (S100A9+ myeloid cells), cluster 2 (TREM2+ myeloid cells), cluster 3 (CD1C
+ myeloid cells), and cluster 4 (LILRA4+ myeloid cells) in the GSE176078 scRNA-seq cohort. **** means P < 0.0001 and *** means P < 0.001. (D) t-
SNE plot of two clusters among macrophages, and violin plot between cluster 1 (FOLR2+ macrophages) and cluster 2 (FOLR2- macrophages) in the
GSE176078 scRNA-seq cohort. *** means P < 0.001. (E) t-SNE plot of different cell types from GSE114727 scRNA-seq cohort. (F) t-SNE plot of two
clusters among CD8+ T cells, and violin plot between cluster 1 (IL7R+CD8+ T cells) and cluster 2 (GZMK+CD8+ T cells) in the GSE114727 scRNA-
seq cohort. ** means P < 0.01. (G) t-SNE plot of two clusters among CD4+ T cells, and violin plot between cluster 1 (IL7R+CD4+ T cells) and cluster
2 (FOXP3+CD4+ T cells) in the GSE114727 scRNA-seq cohort. **** means P < 0.0001. (H) t-SNE plot of two clusters among macrophages, and violin
plot between cluster 1 (FOLR2+ macrophages) and cluster 2 (FOLR2- macrophages) in the GSE114727 scRNA-seq cohort. *** means P < 0.001.
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higher in the DDR-activated subgroup (P < 0.0001, Figure 5F).

Besides, we evaluated the DDR score in each cell at the single-cell

level. We found that the DDR score in malignant cells showed

significant difference between two subgroups. Comparatively, the

DDR score in nonmalignant cells did not differ significantly from

those in the subgroup (Figure 5F). Besides, we explored the

distribution of the DDR score among 9 cell types. The result

showed that malignant cells exhibited the highest DDR activity

(Figures 5G, H), which was accompanied by an upregulation of

most DDR-related pathways (Figure 5I). In conclusion, malignant

cells primarily contributed to DDR heterogeneity.
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DDR characteristics of immune
cell clusters

We further differentiated nonmalignant cells in the TME

(myeloid cells, CD4+ T cells, CD8+ T cells, and macrophages) to

assess their suitability for DDR-based treatment. We extracted CD8

+ T cells cluster in GSE176078, and these cells were subdivided into

two clusters. Figure 6A illustrated that cells from CD8-C1-IL7R

were naive CD8+ T cells, whereas cells from CD8-C2-GZMB were

cytotoxic CD8+ T cells. The result showed that the DDR score was

higher in CD8-C2 cluster compared with CD8-C1 cluster
B C

D

E

F G

A

FIGURE 7

Clinical values of the DDR score. (A) t-SNE plot of different patient samples from GSE161529 scRNA-seq cohort. (B) t-SNE plot of the density of the
DDR score in the GSE161529 scRNA-seq cohort. (C) Violin plots of the comparison among different patient samples in the GSE161529 scRNA-seq
cohort. **** means P < 0.0001. (D) Boxplots of the DDR score values between different types of therapy in the GSE18728, GSE5462, GSE20181, and
GSE130788 cohorts. **** means P < 0.0001 and * means P < 0.05. (E) t-SNE plot based on the treatment responses, different types of arms,
treatment time points, and the density of the DDR score in the GSE158724 scRNA-seq cohort. (F) Violin plot among different treatment time points
in the GSE158724 scRNA-seq cohort. **** means P < 0.0001. (G) Violin plots between different treatment responses in each arm in the GSE158724
scRNA-seq cohort. **** means P < 0.0001.
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(Figure 6A). We then classified CD4+ T cells into three clusters

based on their heterogeneity: CD4-C1-IL7R, CD4-C2-CXCL13, and

CD4-C3-FOXP3. The CD4-C2-CXCL13 cluster represents the

main subtype of exhausted T cells, while the activation of CD4-

C3-FOXP3 cluster is associated with immunosuppressive reactions.

T cells from CD4-C3-FOXP3 were found to have a higher DDR

score than those from CD4-C1-IL7R and CD4-C2-CXCL13

(Figure 6B). Following that, we detected four clusters of myeloid

cells. Among these clusters, M-C1-S100A9 and M-C2-TREM2 are

composed of macrophages, whereas dendritic cells comprise M-C3-

CD1C and M-C4-LILRA4 (Figure 6C). We then compared the

DDR score among four clusters. M-C4-LILRA4 exhibits high

expression of LILRA4 and GZMB, indicating the presence of

plasmacytoid dendritic cells (pDCs). We found that there was an

obvious upregulation of DDR score in M-C4-LILRA4 compared

with M-C3-CD1C (Figure 6C). However, M-C2-TREM2 (M2-like

TAMs) displayed slightly higher levels of DDR score compared with

M-C1-S100A9, a classic-type macrophage. Previous study has

verified that FOLR2+ macrophages were correlated with better

patient survival (39). Hence, we divided macrophages into FOLR2

+ and FOLR2- macrophages based on FOLR2 expression. We found

that FOLR2+ macrophages exhibited lower DDR score than

FOLR2- macrophages (Figure 6D). Moreover, we confirmed our

findings mentioned above in another scRNA-seq cohort,

GSE114727. Cells were classified into 15 clusters, including B

cells, mast cells, monocytes, myofibroblasts, naive CD4+ T cells,

neutrophils, central memory CD8+ T cells, effector memory CD8+

T cells, classic dendritic cells, endothelial cells, fibroblasts, M1-like

macrophages, M2-like macrophages, NK cells, and plasma dendritic

cells (Figure 6E). CD8+ T cells were subdivided into two clusters,

CD8-C1-IL7R (naive CD8+ T cells) and CD8-C2-GZMK (cytotoxic

CD8+ T cells), and higher DDR score was observed in CD8-C2-

GZMK subgroup (Figure 6F). Then, CD4+ T cells were classified

into two clusters: CD4-C1-IL7R and CD4-C2-FOXP3 (Figure 6G).

The result showed that CD4-C2-FOXP3 exhibited higher DDR

score than CD4-C1-IL7R. Besides, we still split macrophages into

FOLR2+ and FOLR2- macrophages and found that FOLR2+

macrophages had lower DDR score than FOLR2- macrophages

(Figure 6H). Overall, these results suggest strategies for eliminating

immunosuppressive immune cells that target DDR activity.
DDR score is associated with
clinical outcomes

We then assessed whether the DDR score makes sense to the

clinical outcomes. We downloaded GSE161529 scRNA-seq dataset

which contained both primary and paired lymph node metastases

breast cancer tissues. Figure 7A showed the t-distributed stochastic

neighbor embedding (t-SNE) plot of different patient samples, and

Figure 7B showed the density of the DDR score, indicating that the

DDR score was mainly distributing in the lymph node metastases

site compared with the primary site. We further analyzed the DDR

score in each patient, and the result showed that most of the lymph

node metastases sites exhibited higher DDR score compare with the

paired primary sites (5 of 7 patients, Figure 7C). These finding
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indicated that the DDR score might be an indicator of the lymph

node metastases.

After that, we collected three cohorts (GSE18728, GSE5462, and

GSE20181) containing patients that received chemotherapy

treatment. We found that the DDR score of most patients was

decreasing after the treatment of chemotherapy (P < 0.05 in

GSE18728; P < 0.0001 in GSE5462; P < 0.0001 in GSE20181,

Figure 7D). Besides, we downloaded GSE130788 cohort

containing patients that received target therapy treatment.

Consistent result was found that the DDR score was lower in

patients received target therapy compared with their baseline

status (Figure 7D). Moreover, we analyzed a scRNA-seq cohort

(GSE158724) which assessed the response of multiple regimens.

Figure 7E showed the t-SNE plot based on the treatment responses,

different types of arms, treatment time points, and the density of the

DDR score. We verified our findings at the single-cell level, that is,

the DDR score was gradually decreasing during regimens (P <

0.0001, Figure 7F). We also found that patients who were resistant

to the regimens exhibited higher DDR score than those were

sensitive to the regimens (P < 0.0001, Figure 7G). In summary,

our findings indicated that the DDR score was strongly correlated

with clinical treatment, and might be a novel indicator.
Discussion

Despite advances in therapies, the prognosis of BC is still

unfavorable due to the high recurrence rate, even after surgery.

The presence of molecular heterogeneity restricts treatment options

and makes survival monitoring difficult. Thus, numerous excellent

studies that identified BC molecular subtypes have shed new light

on BC precision medicine (3–5). Previous studies have revealed that

DDR are complex biological processes, and it is well known that

DDR pathways involve in the onset, progression, and therapeutic

response of many diseases (6, 43). Besides, treatment strategies that

target altered DDR function are gradually coming to fruition.

Nonetheless, it remains unclear what role DDR plays in BC

ecosystems. Large-scaled cohorts coupled with novel sequencing

techniques and tools have enabled us to explore the

DDR complexity.

Our study found that, among BC patients, there were two

subtypes with distinct clinical and molecular characteristics: the

DDR-suppressed subtype and the DDR-active subtype. A superior

survival rate is found for tumors in the DDR-suppressed class, while

those with the DDR-activated class tend to have inferior prognoses

and clinically aggressive behavior. Genomic and transcriptomic

variations were found between two subgroups, suggesting that the

DDR heterogeneity should be incorporated into personalized

therapy development. Furthermore, we constructed the DDR

score and scRNA-seq analyses revealed that the DDR

heterogeneity of BC was primarily caused by malignant cells. We

also found that the TME was also crucial to DDR plasticity.

Moreover, we found that, at the single-cell level, the DDR score

can be differentiated between immune and stromal cell subtypes.

Besides, it appeared that as a part of the DDR process, immune-

suppressive cells like FOXP3+ CD4+ T cells were involved. It is
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anticipated that our findings might aid the understanding of the

DDR heterogeneity within BC as well as gain a new insight into how

to tailor therapies accordingly.

Despite its advantages, our study has some limitations as well.

First, multiple expression detection platforms were used, and large-

scaled studies are necessary to verify the robustness of the clusters.

Second, data from multi-cohorts were primarily used to assess

DDR-related survival and molecular features, and more

information about DDR subtype alterations might be provided by

future in vitro and in vivo investigations. Third, dataset like

METABRIC only contains targeted panel sequencing, and the

majority of the samples might do not have sufficient mutational

load to perform signature analysis. Fourth, other novel technologies

such as proteomics and spatial transcriptomes were not enrolled to

analyze in this study.
Conclusion

Consequently, this study offers a novel perspective for

understanding the DDR heterogeneity of BC. Identifying specific

DDR subtype characteristics helps BC patients to make informed

clinical decisions. The robust DDR clusters demonstrated that

DDR-related pathways were vital to clinical outcomes and

indicated potential target during DDR activation. With the advent

of scRNA-seq technique, we are better equipped to understand the

complexity of DDR in BC. In the future, novel technologies such as

proteomics and spatial transcriptomes will add to the ability to

characterize DDR status.
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