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National Scientific and Technical Research
Council (CONICET), Argentina

*CORRESPONDENCE

Bo Lv

lvbo@tongji.edu.cn

Zhigang Xue

xuezg@tongji.edu.cn

Yazhong Ji

jiyazhong@tongji.edu.cn

†These authors have contributed equally to
the work

RECEIVED 20 September 2023

ACCEPTED 13 November 2023

PUBLISHED 04 December 2023

CITATION

Qi L, Li Y, Zhang L, Li S, Zhang X, Li W,
Qin J, Chen X, Ji Y, Xue Z and Lv B (2023)
Immune and oxidative stress disorder in
ovulation-dysfunction women revealed by
single-cell transcriptome.
Front. Immunol. 14:1297484.
doi: 10.3389/fimmu.2023.1297484

COPYRIGHT

© 2023 Qi, Li, Zhang, Li, Zhang, Li, Qin,
Chen, Ji, Xue and Lv. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 04 December 2023

DOI 10.3389/fimmu.2023.1297484
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dysfunction women revealed
by single-cell transcriptome
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Introduction: Ovulation dysfunction is now a widespread cause of infertility

around the world. Although the impact of immune cells in human reproduction

has been widely investigated, systematic understanding of the changes of the

immune atlas under female ovulation remain less understood.

Methods: Here, we generated single cell transcriptomic profiles of 80,689

PBMCs in three representative statuses of ovulation dysfunction, i.e., polycystic

ovary syndrome (PCOS), primary ovarian insufficiency (POI) and menopause

(MENO), and identified totally 7 major cell types and 25 subsets of cells.

Results: Our study revealed distinct cluster distributions of immune cells among

individuals of ovulation disorders and health. In patients with ovulation

dysfunction, we observed a significant reduction in populations of naïve CD8 T

cells and effector memory CD4 T cells, whereas circulating NK cells and

regulatory NK cells increased.

Discussion: Our results highlight the significant contribution of cDC-mediated

signaling pathways to the overall inflammatory response within ovulation

disorders. Furthermore, our data demonstrated a significant upregulation of

oxidative stress in patients with ovulation disorder. Overall, our study gave a

deeper insight into the mechanism of PCOS, POI, and menopause, which may

contribute to the better diagnosis and treatments of these ovulatory disorder.

KEYWORDS

single-cell RNA sequencing, ovulation dysfunction, immune cell disorder, conventional
dendritic cell, oxidative stress
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Introduction

In recent decades, female infertility has become an increasing

global concern. Knowledge of human reproduction has revealed

that immune disorders can affect female fertility at multiple levels

(1). Immune disorders affect hormonal glandular functions, such as

thyroiditis, resulting in hyperprolactinemia that promotes ovulation

dysfunction (2). Meanwhile, it has been reported that antibodies

produced by immune cells are associated with high risk of infertility

(3). Clinical evidence has confirmed that autoimmune diseases play

a critical role in fertility decreasing (4). Ovulation disorder is the

most frequent cause of female infertility and is present in

approximately 40% of infertile women (5). The most common

reasons for the decrease in ovulation function are polycystic ovary

syndrome (PCOS), primary ovarian insufficiency (POI), and aging-

induced ovarian reserve loss such as menopause (MENO).

Although the immune cell types involved in these ovarian

disorders are partially known, the essential immune subclusters,

their transcriptomic characteristics, and changes in signaling

pathways remain unclear (6–8). Sorting immune cells from

peripheral blood using flow cytometry in bulk is unable

to capture natural transcriptome characteristics. In addition, there

still has no specific drugs for the treatment of either PCOS or POI

(9, 10). Menopause, as a result of women losing their reproductive

capacity and suffering from endocrine disorders with aging, also

lacks immune cell data. Therefore, further studies are needed to

understand specific anovulation-associated pathogenic factors.

Understanding immune alterations in peripheral blood is of

paramount importance for unraveling the pathogenesis of ovulatory

disorders. Comparative analysis of scRNA-seq datasets among

individuals with varying health conditions, including PCOS, POI,

and menopause, revealed notable changes in subsets of well-known

cell types. It is widely acknowledged that naive T cells serve as

precursors for effector and memory T cell subsets. Previous studies

on mouse ovaries have indicated that a reduction in the proportion

of naive CD4 T cells is associated with a diminished ability to mount

an immune response, potentially contributing to age-related

reproductive decline (11). Furthermore, a wealth of evidence

suggests that effector memory CD4 T cells play a vital role in

maintaining fetal-maternal immune tolerance and preventing

pregnancy loss (12). Circulating and regulatory NK cells represent

two major subtypes of NK cells distinguished by their expression of

CD56. CD56bright NK cells, known as regulatory NK cells, generally

constitute a small population and are recognized for their regulatory

and immunomodulatory functions. Conversely, CD56dim NK cells,

referred to as circulating NK cells, are the predominant subset of

NK cells and possess potent cytotoxic and effector functions.

Although NK cells contribute to the innate immune system and

aid in preserving the integrity of ovarian tissue by eliminating cells

with abnormal growth or function, an excessive number of NK cells

may lead to chronic inflammation and tissue damage (13). Previous

evidence has identified that elevated levels of NK cells in the ovary

can disrupt proper follicular development by exerting cytotoxic
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effects on granulosa cells, which are essential for follicular growth

and maturation (14). These findings highlight the disruption of T

cell reserves and NK cell activation during anovulation, potentially

causing a homeostatic imbalance within the immune system.

Therefore, it is crucial to investigate these immune alterations in

ovulatory disorders to gain a deeper understanding of their

underlying mechanisms.

In this study, we utilized single-cell RNA sequencing (scRNA-

seq) to explore the immune landscape at high resolution in

peripheral blood mononuclear cells (PBMCs) from patients with

ovulation failure and compared them to healthy individuals. We

identified a total of 25 distinct cell clusters and investigated the

major changes that occurred in each cell type. Our findings revealed

a significant disturbance in the NK and T cell populations in

individuals with ovulation disorders. Our data also highlighted

the crucial role of cDC-mediated cell-cell interactions, especially

contributing to the amplification of global inflammatory responses

in individuals with immune dysfunction. Furthermore, we observed

a significant upregulation of oxidative stress in patients with

ovulation disorders. In addition to enhancing our understanding

of the immune mechanisms underlying ovulation dysfunction, the

present study suggests potential therapeutic strategies for mitigating

ovarian dysfunction in female reproductive health.
Materials and methods

Ethics statement and clinical
sample collection

This study was approved by the Ethics Committee of the

Department of Medical and Life Science, Tongji University, and

written informed consent was obtained from each participant

(2020tjdx067). All sample collections were strictly performed

according to the ethical and biosafety protocols approved by the

institutional guidelines.

Blood samples were collected from the Shanghai Tongji

Hospital (China) between November 2020 and January 2021. The

cohort included individuals with MENO (n = 2), PCOS (n = 3), and

POI (n = 3) for subsequent 10× genomic scRNA-seq. To eliminate

the influence of medication, all volunteers were sampled without

drug administration. The diagnosis of menopause, PCOS, and POI

was based on detailed clinical symptoms according to a previous

guide (15–17). The menopausal ages of the two individuals in the

menopausal control group were 51 and 52 years, respectively. They

joined the study control group at 1 and 3 years after the onset of

menopause. Both women experienced natural menopause and were

excluded from any immune disorders. The detailed clinical

information and demographic characteristics of the patient cohort

are shown in Table S1. PBMCs sequencing data of healthy females

(n = 3) were downloaded from the 10× genomics dataset (https://

www.10xgenomics.com/resources/datasets).
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Single cell RNA library preparation
and sequencing

PBMCs were isolated from whole blood samples according to

the 10× Genomics Demonstrated Protocol (CG00039). Cell viability

was assessed by trypan blue staining, and samples (cell viability

>90%) were prepared using a 10× Genomics Single Cell 5’ v2

Reagent Kit according to the manufacturer’s instructions (10×

Genomics). Each sequencing library was generated by using a

unique sample index. The libraries were sequenced using an

Illumina Nova6000.
Single-cell RNA data pre-processing
and analysis

The raw 5′ scRNA-seq data were processed using CellRanger

software (version 6.1.1). The transcripts were aligned to the human

reference genome h38 using the function of “cellranger count” with

the default parameter. All processed data were input into the

respective folder, and downstream analysis was performed.

Main analyses in downstream were performed on Seurat R

package (version 4.0.10) (18). Cells with less than 300 detected

genes were filtered. After data filtering, raw counts were normalized

to 10,000 reads by “NormalizeData” function with the default

parameters. By using “FindVariableFeatures” function with the

method of “vst” and 2000 highly variable genes were identified to

perform principal component analysis (PCA). By using function of

“FindIntegrationAnchors” and “IntegrateData”, we reduced batch

effect to reasonable degree and integrated the data from different

batches to one Seurat object. The data were then scaled again using

“ScaleData” and run a principal component analysis (PCA) and

uniform manifold approximation and projection (UMAP)

dimensionality reduction by using function of “RunPCA” and

“RunUMAP.” A nearest-neighbor graph using 30 dimensions of

the PCA reduction was calculated using ‘FindNeighbors,’ followed

by clustering using ‘FindClusters’ with a resolution of 0.6. Gene

ontology enrichment analysis was performed by the clusterProfiler

R package (version 3.9.0) (19). Lineage scores were calculated

according to a published article (20) by calculating the sum of the

logarithm of cpms among selected genes (see Table S2). Venn

diagrams were constructed using the Venn R package (version

1.10). Statistical analyses were performed by ggsignif R packages

(version 0.6.0).
Gene regulatory network analyses

To infer gene regulatory networks (GRNs) between fertile and

infertile group, we used pySCENIC (version 0.12.0) (21) to perform

regulatory networks analysis. The analysis steps consisted of three

parts: creating a co-expression module via GRNBoost2, refining

modules with cisTarget, and estimating the regulon activity by

AUCell. The specific regulons among different groups (Health,

MENO, PCOS and POI) were identified using the Regulon

Specificity Score (RSS) according to standard tutorials. Gene
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regulatory networks were visualized with customization by

cytoscape (version 3.16.1).
Receptor and ligand interactions analysis

To assess the cell–cell interactions and significant pathways, we

performed all cell matrix from different group on CellChat R

packages (version 1.1.3) (22). For put data into CellChat, we

extracted large dgCMatrix from Seurat objects by using function

of “GetAssayData.” Briefly, we followed official supported workflow

and loaded normalized data into CellChat by function of

“createCellChat.” We used CellChatDB in human secreted

signaling as a ligand–receptor interaction database for subsequent

analysis. Then, by using ‘computeNetSimilarityPairwise’ function,

we identified signaling between healthy and POI. Differential

expression of signaling pathway between healthy and POI was

identified by function of ‘identifyOverExpressedGenes.’ To

explore selected signaling pathway among different cell types, we

ranked similarity of the shared signaling pathways by applying

function of ‘rankSimilarity.’
Statistical analysis

The bioinformatics data were statistically analyzed using

ordinary one-way ANOVA or wilcox test with Graphpad Prism

(version 9.4.1) and P < 0.05 was considered statistically significant.

In this paper, one, two and three asterisks indicate p < 0.05, p < 0.01

and p < 0.001 respectively.
Results

Study design and single immune cell
profiling among individuals with
ovulation dysfunction

To characterize the immune properties of females who have

experienced ovulation dysfunction, we generated an scRNA-seq

dataset consisting of eight infertile females, including two females

with menopause (MENO), three patients with polycystic ovary

syndrome (PCOS), three patients with primary ovarian

insufficiency (POI), and a control group of three healthy females

(Figure 1A). Using the uniform manifold approximation and

projection (UMAP) technique, we analyzed the distribution of

various cell lineages in peripheral blood mononuclear cells

(PBMCs) based on the expression of canonical cell markers. We

observed that major cell types were present in all groups

(Figures 1B, C). Specifically, we identified seven major cell

clusters: CD4 T cells (CD3D, CD4), CD8 T cells (CD3D, CD8),

natural killer (NK) cells (GNLY, CD16), B cells (CD79A, CD19),

myeloid cells (CD14, LYZ), platelets (PPBP), and red blood cells

(RBC) (Figure 1D). The distribution patterns of these major cell

populations were comparable across patient groups (PCOS/POI/

MENO) (Figure 1E).
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Cellular characterization of individuals with
ovulation disorder

Based on graph-based clustering of uniform manifold

approximation and projection (UMAP) and specific gene

markers, our data identified 25 cell subtypes, including CD4 naive

T cells, CD4 central memory T cells, CD4 T helper cells, CD4

effector memory T cells, Treg, CD8 naive T cells, CD8 effector

memory T cells, CD8 effector T cells, CD8 central memory T cells,

mucosal associated invariant T cells, interferon-activated T cells,

gamma-delta T cells, circulating NK cells, adaptive NK

cells, regulatory NK cells, naive B cells, memory B cells, switch

memory B cells, plasmblasts, CD14 monocytes, CD16 monocytes,

conventional dendritic cells (cDCs), plasmacytoid dendritic cells

(pDCs), platelets, and red blood cells (RBCs) (Figures 2A, B).

Specifically, within the CD4-positive T cell population, we

distinguished CD4 naive T cells (marked by CCR7, LEF1, and

TCF7), CD4 central memory T cells (characterized by high CCR7

expression and increased AQP3 and CD69 compared to CD4 naive

T cells), CD4 effector memory T cells (identified by PRDM1 and

low CCR7 expression), Tregs (expressing IL2RA and FOXP3), and

CD4 Th1 cells (marked by CXCR3). In the CD8-positive T cell

population, we identified CD8 naive T cells (marked by CCR7,

LEF1, and TCF7), CD8 central memory T cells (showing high CCR7

expression and increased AQP3 and CD69 compared to CD8 naive

T cells), CD8 effector memory T cells (characterized by GZMK

expression), CD8 effector T cells (exhibiting high levels of GZMB,

GNLY, and PRF1 but lacking CCR7 and IL7R expression), and
Frontiers in Immunology 04
mucosal-associated invariant T cells (MAIT) (marked by GZMK

and high IL7R expression). Additionally, we identified CD4 and

CD8 negative T cell subtypes, including gamma-delta T cells

(expressing TRGC1, TRGC2, and TRDC) and interferon-activated

cells (TIFN) (identified by ISG15 expression) (Figure 2B). We

observed three distinct sub-clusters within the NK cell

population: circulating NK cells (expressing FCGR3A and

exhibiting dim NCAM1 expression), adaptive NK cells (marked

by KLRC2 and dim NCAM1 expression), and regulatory NK cells

(expressing FCGR3A, bright NCAM1, and KLRC1) (Figure 2B). We

identified four different subtypes of B cells based on their gene

expression profiles. Switched memory B cells expressed CD19 and

CD27 but lacked IGHD expression, naive B cells expressed IGHD

but lacked CD27 expression, memory B cells expressed both CD27

and IGHD, mature B cells expressed CD19 and MS4A1 but lacked

CD27 expression, and plasmablasts expressed high levels of

TNFRSF17 and CD27. Additionally, we identified CD14

monocytes (expressing CD14), CD16 monocytes (expressing

FCGR3A), cDCs (marked by CD1C and ITGAX expression), and

pDCs (expressing IL3RA, CLEC4C, and NRP1) (Figure 2B).

Comparing these cell subtypes across the anovulation groups

with healthy females, we observed decreased proportions of CD4

naive T cells, CD8 naive T cells, and CD4 effector memory T cells,

whereas all NK cell subtypes showed an increase (Figures 2C, S1) in

the ovulation-dysfunction group. Specifically, the number of CD8

naive T cells significantly decreased in the MENO group, whereas

CD4 effector memory T cells significantly decreased in the PCOS

group (Figure 2D). The percentages of circulating and regulatory
B C

D E

A

FIGURE 1

Single-cell transcriptomic profiles of PBMCs in ovulation-dysfunctional and healthy females. (A) Overview of sample collection, sequencing, and
downstream analyses. (B) UMAP plot of the scRNA-seq profiled dataset for seven major cell types. (C) UMAP plot of the distribution of single cells
among the different groups. (D). Violin plots showing marker genes for diverse immune cell subsets. (E) Bar plot showing the percentage of major
cell types in PBMCs of each individual. The cell counts for each sample are listed on the right-hand side.
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NK cells exhibited dramatic increases in the PCOS and POI

groups (Figure 2D).
cDC-mediated cell–cell communication
tends to disorder in ovulation-
dysfunction groups

To investigate specific gene expression alterations for ovulation

dysfunction, we conducted a detailed comparison of gene expression

in five major cell types, CD4 T cells, CD8 T cells, NK cells, dendritic

cells (DCs), and monocytes, between the ovulation-dysfunction

group and the healthy group (Figure 3A). Interestingly, we

observed that DCs exhibited the highest number of differentially

expressed genes (both upregulated and downregulated) among the

three ovulation-dysfunction groups, suggesting a potential key role

for DCs in immune alterations associated with ovulation dysfunction

(Figure 3A). Through interaction plots, we discovered that most of

the differentially expressed genes were shared among the ovulation

groups, with 264 common genes being upregulated and 329 common

genes being downregulated (Figure 3B). Gene ontology (GO) analysis

revealed that the upregulated genes were enriched for MHC-II

antigen processing and presentation and regulation of immune cell

activation, while the downregulated genes were enriched for oxidative

phosphorylation and cellular respiration (Figure 3C).
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To examine whether changes in DC function were related to the

dynamics of NK cell subpopulations, we explored the strength of

the interaction among different cell populations between the

healthy and ovulation-dysfunction groups using the CellChat R

package (Figure S2). The results demonstrated that the interaction

strength sourcing from cDCs was significantly increased in all

ovulation-dysfunction groups compared to that in the healthy

group (Figures 3D, S2). Furthermore, to elucidate the specific

signaling pathways involved in cDC-mediated cell–cell

communication, we compared the communication probabilities

mediated by ligand–receptor pairs from cDCs to almost other cell

populations. Our findings revealed a predominant presence of

signaling pathways involving MHC-I, MHC-II, and BAFF, which

are known to play a significant role in promoting inflammatory

responses in cDC-mediated cell–cell communication (Figure 3E).

We found that the ligand–receptor pair of HLA-DRB5-CD4, HLA-

DRB1-CD4, HLA-DRA-CD4, HLA-DQB1-CD4, HLA-DQA1-

CD4, HLA-DPB1-CD4, HLA-DPA1-CD4, and HLA-DMA-CD4

significantly contributed to communication from cDCs to CD4 T

cells and monocytes. HLA-A-CD8A/B, HLA-B-CD8 A/B, HLA-C-

CD8 A/B significantly influenced communication from cDCs to

CD8 T cells and TNFSF13B-TNFRSF13B/C significantly affected

communication between cDCs and B cells (Figure 3E). These results

collectively indicate that cDC may play an essential role in the

progression of inflammation during ovulation dysfunction.
B

CA

D

FIGURE 2

Immunological alterations in patients with ovulation disorders. (A) UMAP plot showing all the identified cells from ovulated and healthy females. (B)
Violin plots showing special markers for all sub-cell types. (C) Table showing the percentages of each cell type among different groups (health/
menopause/PCOS/POI). Ovulation-dysfunctional and healthy groups were expressed as percentages of the total immune cell types. (D) Boxplot
showing the proportions of cells with significant differences in each sample colored by individual. The x-axis corresponds to each patient group.
Significant differences compared to control samples were calculated by ordinary one-way ANOVA.
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Expression dynamics show abnormal
immune activation in ovulation disorder

Given the substantial upregulation of pro-inflammatory pathways

mediated by cDCs, we investigated alterations in pro-inflammatory

factors among major inflammation-related cell types, such as CD8 T

cells, monocytes, and B cells. To better estimate functional dynamics

comprehensively, we calculated the lineage score according to

published articles (20). Compared with the healthy group, all

ovulation-dysfunction groups showed a significant increase in pro-

inflammatory factors in CD8 T cells (Figure 4A). Furthermore, we

observed a significant increase in cytotoxic factors in CD14 and CD16

monocytes in the ovulation-dysfunction groups (Figure 4B). These

findings indicated the presence of aggravated inflammatory responses
Frontiers in Immunology 06
and immune disorders during the progression of ovulation dysfunction.

To investigate which genes contributed to these immune changes, we

examined the expression of all genes used to calculate the lineage score

in Figures 5C, D across different cell types. Our analysis revealed

substantial upregulation of numerous pro-inflammatory factors,

including KLRB1, KLRD1, GZMA, GZMB, GZMK, PRF1, CCL5,

and TNFRSF1A, in CD8 T cells in all ovulation-dysfunctional groups

(Figure 4C). Compared to healthy individuals, pro-inflammatory

cytokines such as ANPEP, TNF, and CCL5 were significantly

elevated in both CD14 and CD16 monocytes of ovulation-

dysfunction individuals (Figure 4D). It is well established that

immunoglobulin class switching plays a crucial role in effective

immune responses by allowing the immune system to adapt

antibody production to different types of pathogens and immune
B

C

D

E

A

FIGURE 3

Detailed characterization of DCs in each ovulation-dysfunction group. (A) Heatmaps showing the distribution of DEGs between PCOS, POI, Meno,
and Health groups in major cell subtypes. The red box shows the differential genes of DC cells by comparing PCOS, POI, and Meno to Health. (B)
Upset plot showing upregulated (left) and downregulated (right) DEGs in DC. (C) The representative GO terms of upregulated and downregulated
DEGs overlapped among PCOS, POI, and Meno in DCs. (D) A scatter plot of the outgoing and incoming interaction strengths identified significant
changes in sending or receiving signals among diverse cell types in each group. (E) Overview of communication probabilities mediated by ligand–
receptor pairs from cDCs to rested cell types significantly increased in the anovulatory groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1297484
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2023.1297484
challenges (23). Our data indicated that B cells in the healthy group

predominantly expressed IGHD/IGHM, whereas B cells in the

ovulation-dysfunction groups mainly exhibited IGHA and IGHG.

Together, our data revealed that CCL5 largely contributes to

ovulation-related inflammation and indicates that the

immunoglobulin class switch from IGHD/IGHM to IGHA/IGHG

contributes to chronic inflammation during ovulation dysfunction.
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Gene regulatory network analyses revealed
key regulators involving in immune
changes of cDC among ovulation-
dysfunction patients

In view of the significant alterations in gene cluster expression

in cDCs, we considered that some transcription factors may be the
B

C D E

A

FIGURE 5

Identification of key regulons of DCs in ovulation disorders. (A) Rank of regulons in cDCs between healthy subjects and others (PCOS, POI, and
MENO) based on the Regulon Specificity Score (RSS). The top-ranked regulon activities are shown in the picture. (B) Dotplot showing the AUC score
for each regulon in each group. (C) Network of selected regulons and their target genes in group of ovulation-dysfunction and healthy group. (D)
Venn diagram showing the overlapping genes that were upregulated in DCs and regulated by ovulation-specific regulons in (C). (E) Bar plots of the
representative GO terms of the overlapping genes.
B C

D E

A

FIGURE 4

Abnormally activated cell cytotoxins and inflammatory response in ovulation dysfunction. (A, B) Box plot showing the lineage score of (A) pro-
inflammatory factors in CD8 T cells and (B) cytotoxic mediators in both CD14 and CD16 monocytes and the different groups. (C, D) Dotplot
depicting the expression of detailed genes for calculating the (C) pro-inflammatory factor score in CD8 T cells and (D) cytotoxic mediator score in
CD14/CD16 monocytes among different groups. (D) Dotplot showing the expression of genes involved in immunoglobulin in the B cells of
each group.
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main regulators resulting in immunological changes. All cDC were

subjected to SCENIC analysis to construct the gene regulatory

networks. Our results identified essential regulons among the four

groups, and the top five most-active regulons in the healthy and

each ovulation-dysfunction group are shown in Figure 5A. When

considering the rank score, we observed that EHF, ZFP91, RUNX1,

MBD1, and SP3 were specifically upregulated in the healthy group,

whereas YY1, BCLAF1, and MAX were specifically upregulated in

the ovulation-dysfunction groups (Figures 5A, B). Using the eight

regulons mentioned above, we constructed predicted regulatory

networks (Figure 5C, Table S3). By mapping these networks with

794 unique upregulated DEGs in DCs (Figure 3A), an overlap of 62

genes, representing nearly 30% of the DEGs, was identified

(Figure 5D). To gain further insight, we performed gene ontology

(GO) analysis of these overlapping genes. The DEGs were enriched

in functions such as antigen processing and presentation, Th1 and

Th2 cell differentiation, and the HIF-1 signaling pathway

(Figure 5E). These findings suggest that YY1, BCLAF1, and MAX

play pivotal roles in immune changes in cDCs and cDC-mediated

inflammatory response pathways. Overall, these results shed light

on the transcriptional regulatory landscape of cDCs in the context

of blood ovulation-dysfunction, highlighting the activation of

specific transcription factors during immunological changes.
Frontiers in Immunology 08
Global oxidative stress enhances in
ovulation disorder

Analysis of DEGs revealed that in most PBMC cell types, genes

involved in reducing oxidative stress, such as JUN and JUND, were

significantly downregulated, whereas some genes associated with

mitochondrial respiration, such as MT-ATP8 and MT-ND4L,

exhibited high expression levels (Figure S3). To assess whether

increased oxidative stress is widely present during ovulation, we

obtained data from monkeys and mice and investigated gene

expression changes in oocytes and granulosa cells in high-fat

mice and aged monkeys (24, 25) (Figures 6A, B). A comparison

between oocytes and granulosa cells revealed a higher number of

upregulated DEGs in the latter, including genes shared between

mice and monkeys (Figures 6C, D). Gene ontology (GO) analysis

demonstrated that the commonly upregulated DEGs in granulosa

cells of both mice and monkeys were primarily associated with

cellular responses to oxidative stress and DNA damage stimulus,

mitochondrial translation, apoptotic process, and cell chemotaxis

(Figure 6E). We further presented the expression profiles of DEGs

involved in these pathways as a dot plot (Figure 6F) and observed

that many of the genes involved in oxidative stress and

mitochondrial energy metabolism (such as NDUFV3, NDUFB6,
B C

D

E F G

A

FIGURE 6

Integrated data analysis revealed that aberrant oxidative stress occurs in both granulosa cells and PBMCs during ovulation disorders. (A) UMAP plot
of all identified cells from the HFD and RD mice. (B) UMAP plot of all the identified cells from young and aged monkeys. (C) Venn diagram showing
the upregulation in HFD and aging granulosa cells. (D) Venn diagram showing the upregulation in HFD and aging oocytes. (E) Dotplot depicting
representative GO terms of genes upregulated in both mouse and monkey granulosa cells. (F,G) Dotplot showing the expression of genes involved
in representative GO terms in (F) granulosa cells of mice and monkeys separately and (G) PBMCs of humans in each group.
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NFE2L2, PARK7, and GPX7), mitochondrial translation (such as

MRPL49, MRPL50, andMRPS9), DNA damage stimulus response

(GADD45GIP1, RBX1, UBE2B, BTG2, and UFL1), and apoptosis

(ZFP36L1, PKN2, and JTB) that were highly expressed in granulosa

cells were also highly expressed in human PBMCs (Figure 6G).
Discussion

This study investigated the immunological changes in patients

with anovulation, including PCOS, POI, and menopause. Our

findings suggest that aberrant changes in T and NK cell

populations, augmented inflammatory responses mediated by

cDCs, and global oxidative stress in PBMCs are common

characteristics of ovarian dysfunction. Importantly, these

aberrations may pose a high risk for long-term chronic

inflammation and have detrimental effects on ovarian function. In

summary, this study provides valuable insights into the

immunological changes associated with anovulation, shedding

light on the potential mechanisms and implications of

therapeutic interventions.

Although long-term inflammatory reactions have been reported

to potentially damage tissues and cells, affecting their function and

structure (26), our study provides essential insights into the

inflammatory response in various types of anovulation. CD8 T

cells, CD14 monocytes, and CD16 monocytes are known to play

critical roles in both cytotoxic and pro-inflammatory responses,

contributing to immune defense against infections and regulation of

inflammatory processes in different disease contexts (27, 28). Our

findings demonstrated that a hyperinflammatory phenotype is

significantly enhanced during anovulation, characterized by the

upregulation of pro-inflammatory factors such as CCL5 in CD8 T

cells and CD14/CD16 monocytes. Furthermore, we observed a shift

in immunoglobulin production from IgD/IgM to IgA/IgG during

anovulation. Previous research has suggested that IgA and IgG are

two proinflammatory immunoglobulins (29), and immunoglobulin

isotypes such as IgG can interact with Fc gamma receptors on

immune cells to regulate their effector functions, including

inflammation (30). These insights significantly advance our

understanding of chronic inflammation in ovulatory disorders,

emphasizing the crucial role of increased cytokine production

from CD8+ T cells and monocytes, global oxidative stress, and

immunoglobulin switching in inflammatory mediation. Targeting

of these processes has the potential to alleviate chronic

inflammation and restore normal ovulatory function.

Conventional dendritic cells (cDCs) play a crucial role in

inflammation by interacting with various immune cells including

CD4 T cells, CD8 T cells, B cells, and monocytes (31). They

influence immune responses through cell–cell signaling and

cytokine production, particularly via MHC-I, MHC-II, and BAFF

pathways (31). CD8 T cells, also known as cytotoxic T cells,

recognize antigens presented by MHC-I molecules and release

cytotoxic molecules and proinflammatory cytokines upon

activation (32). Monocytes, through MHC-II expression, scan for

foreign antigens and initiate proinflammatory responses to

modulate inflammation (33). Additionally, BAFF pathway
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activation can induce class switching in B cells, leading to the

production of specific immunoglobulin isotypes, such as IgG and

IgA, which are important for immune responses and inflammation

(34). Our data showed that abnormal upregulation of the MHC-I,

MHC-II, and BAFF pathways by cDCs was activated during

anovulation, which is likely to intensify the inflammation

response. Additionally, transcription factors such as YY1,

BCLAF1, and MAX, are enriched in cDCs from women with

ovulation disorders and are involved in antigen presentation.

Abnormal activation of these factors impairs cDC immune

activity. Targeting YY1, BCLAF1, and MAX could be a potential

therapeutic strategy to restore cDC functionality and reduce

inflammation during anovulation. Overall, the increased

inflammatory response in women with ovulation disorders is

directly linked to cDC-mediated immune signaling.

Previous studies have established that oxidative stress can

provoke immune dysfunction by affecting immune cell function,

cytokine and chemokine production, and the promotion of

inflammation (35). In our study, we observed a consistent

reduction in the expression of oxidative stress-related genes,

including JUN and FOS, in almost all cellular clusters of

peripheral blood mononuclear cells (PBMCs). Given that

granulosa cells serve as the energy source for oocytes, abnormal

levels of oxidative stress can affect oocyte development, potentially

leading to ovulation disorders (36, 37). Supplementing our findings

with transcriptome data derived from the ovaries of high-fat diet-

induced mice and aging monkeys, we identified a concurrent

upregulation of oxidative stress-related genes, specifically

NDUFV3, NDUFB6, NFE2L2, PARK7, and GPX7 (24), in both

granulosa cells and PBMCs of women suffering from ovulatory

disorders. Additionally, genes associated with DNA damage

stimulus response (GADD45GIP1, RBX1, UBE2B, BTG2, and

UFL1) and apoptosis progress (ZFP36L1, PKN2, and JTB)

concurrently increase in response to oxidative stress were

observed in our data. These findings imply that the irregular

variations in oxidative stress levels in peripheral blood parallel

those observed in granulosa cells across mammals, and aberrant

oxidative stress may exacerbate DNA damage and cellular

apoptosis. Together, our study revealed heightened oxidative

stress, characterized by an imbalance between the production of

reactive oxygen species (ROS) and antioxidant defense

mechanisms, among patients with anovulation. This phenomenon

could potentially serve as a valuable biological marker for

ovulation disorders.

In conclusion, our study provides a comprehensive comparative

analysis of the common types of ovulation disorders, revealing

significant immune alterations in affected women. These alterations

include an elevated inflammatory response and oxidative stress.

Importantly, our findings highlight the central role of the cDC-

centered signaling pathway in driving the excessive inflammatory

response observed during anovulation. Consequently, targeting this

pathway, as well as reducing oxidative stress and modulating CD8+

T cell and NK cell activity, presents a promising approach for

enhancing immune function and restoring normal ovarian function

in patients with ovulation disorders. However, it is crucial to

acknowledge the limitations of our study, particularly its small
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1297484
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2023.1297484
sample size. Therefore, further independent validation using

techniques such as flow cytometry and additional functional

experiments are necessary to confirm and strengthen these

findings. Addressing these limitations will improve the reliability

and significance of future research in this field.
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