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Immunotherapy is a therapeutic approach that employs immunological

principles and techniques to enhance and amplify the body’s immune

response, thereby eradicating tumor cells. Immunotherapy has demonstrated

effective antitumor effects on a variety of malignant tumors. However, when

applied to humans, many immunotherapy drugs fail to target lesions with

precision, leading to an array of adverse immune-related reactions that

profoundly limit the clinical application of immunotherapy. Nanodrug delivery

systems enable the precise delivery of immunotherapeutic drugs to targeted

tissues or specific immune cells, enhancing the immune antitumor effect while

reducing the number of adverse reactions. A nanodrug delivery system provides

a feasible strategy for activating the antitumor immune response by the following

mechanisms: 1) increased targeting and uptake of vaccines by DCs, which

enhances the efficacy of the immune response; 2) increased tumor cell

immunogenicity; 3) regulation of TAMs and other cells by, for example,

regulating the polarization of TAMs and interfering with TAN formation, and

ECM remodeling by CAFs; and 4) interference with tumor immune escape

signaling pathways, namely, the PD-1/PD-L1, FGL1/LAG-3 and IDO signaling

pathways. This paper reviews the progress of nanodrug delivery system research

with respect to tumor immunotherapy based on tumor immunomodulation over

the last few years, discussing the promising future of these delivery systems

under this domain.

KEYWORDS

nanodrug delivery systems, tumor immunotherapy, tumor immunomodulation, tumor
microenvironment, immune antitumor effect
1 Introduction

Cancer is a grave health concern that poses a significant threat to human life. Currently,

the diagnosis and treatment of cancer are arduous challenges (1). According to the latest

epidemiological data, in 2020, the number of new cancer cases worldwide approximated to

19.3 million, with an associated death toll of 10 million. According to estimations, the

global cancer burden is projected to rise to 28.4 million cases by 2040, representing a 47%
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increase compared to the burden in 2020 (2). At present, the

principal approaches to cancer therapy encompass surgical

intervention, radiotherapy, chemotherapy, targeted therapy, and

immunotherapy. As a new tumor treatment method,

immunotherapy is based on immunological principles leveraged

to activate and promote the enhancement of the body’s immune

system, thus facilitating an immune response to effectively eradicate

tumor cells (3). Compared with conventional treatment, such as

chemotherapy, immunotherapy shows a superior curative effect, a

prolonged duration of action, and a lower incidence of adverse

effects. Immunotherapy has revolutionized the treatment of

multiple cancers (4), and it is the focus of recent cancer treatment

research (5).

The effectiveness of clinical immunotherapy is hindered by the

intricate mechanisms of tumor immune escape, resulting in a low

positive response rate (6). Immunotherapy shows a profound

therapeutic effect on only a portion of patients (7). Moreover, the

distribution of immunotherapy drugs always encompasses various

tissues and organs of the body, suggesting a lack of precise tumor

targeting that may result in immune-related adverse reactions

throughout the body (8, 9). Finding effective immunotherapy

regulat ion methods, increasing the posit ive effect of

immunotherapy, and reducing the incidence of immune-related

adverse reactions are hot spots in current immunotherapy

research (10).

Nanodrug delivery systems refer to nanocarriers that carry

therapeutic drugs for in vivo delivery, and they have the

advantages of preventing burst release and off-target effects of

drugs, exhibiting desirable pharmacokinetic characteristics and

flexibly controlling drug release (11). Combining cancer

therapeutic drugs with nanocarriers can enable drugs to reach a

target site or specific immune cells more accurately, leading to more

effective immune responses, higher drug efficacy, and reduced

incidence rates of adverse reactions (12). In recent years, many

studies on the immunotherapeutic regulation of nanodrug delivery

systems have been reported, and great therapeutic effects have been

achieved (13). However, due to obstacles involving relevant basic

research, production conditions, cost control and clinical trials, the

pharmacokinetic study of some nanodrug delivery systems is

insufficient, resulting in the current low conversion rate. We

believe that the problems of achieving the long-term stability,

effectiveness and safety of nanodrug delivery systems themselves,

as well as the types of nanodrug delivery systems materials,

challenges of industrialization, and cost of preparation methods

should be solved one by one. Only in this way can we help break

through this bottleneck. This paper reviews the successful

application of nanodrug delivery systems within the realm of

cancer research immunotherapy regulation over the past several

years, the related treatment strategies, and the main challenges to

this field and potential development directions.
2 Tumor immunotherapy

Tumor immunotherapy seeks to achieve the objective of

stimulating or mobilizing the body’s immune system to generate
Frontiers in Immunology 02
an immune response that is capable of eradicating tumor cells (14).

According to a mechanism classification system, tumor

immunotherapy regimens can be categorized as “passive

immunotherapy” and “active immunotherapy” . Passive

immunotherapy refers to treatment that directly kills tumors

mediated by anti-immune checkpoint-blocking antibodies and

cytokines or immune cells expressing immune checkpoints.

Passive immunotherapy mainly includes cytokine therapy,

immune checkpoint inhibitors and adoptive cell therapy (15).

Active immunotherapy refers to therapy that specifically activates

the human autoimmune system and induces an active antitumor

immune response. Tumor vaccines are the main types of therapies

representing active immunotherapy (16).

In tumor immunotherapy, T-cell-mediated immune response

activation follows several key steps. Tumor cells release antigens

that are taken up by antigen-presenting cells (APCs). APCs reach

local lymph nodes through the lymphatic system and then present

antigens to naive T cells through the major histocompatibility

complex I (MHC I) pathway, thereby triggering the initiation and

activation of effector T cells. Effector T cells reach a local tumor site

through the blood flow and recognize and kill tumor cells (17, 18).

Dead tumor cells release tumor-specific antigens, and APCs capture

and take up these antigens, which also activate effector T cells,

completing the cancer-immunity cycle (Figure 1). The active

participation of CD4+ T cells is also needed for immune response

activation. CD4+ T cells are important in the human immune

system. They can bind to the non-polypeptide region of MHC II

molecules and participate in the signal transduction of antigen

recognition by T cell antigen receptors. In tumor immune

responses, CD4+ T cells can activate CD8+ T cells through a

variety of mechanisms, so that CD8+ T cells can differentiate into

cytotoxic T lymphocytes while maintaining and strengthening the

antitumor response. On the other hand, even in the absence of

CD8+ T cells, CD4+ T cells can also kill tumor cells directly by

mechanisms involving IFN-g (19).
However, due to factors such as defective tumor antigen release,

impaired T-cell priming in local lymph nodes, and tumor

immunosuppressive signals (such as the downregulation of MHC

expression by tumor cells) that enable tumor cells to escape

immune surveillance, the cancer-immunity cycle may be

impaired, causing tumor progression (20). Therefore, because of

dysfunction in the cancer-immunity cycle, formulating

personalized immunotherapy leads to better therapeutic effects for

patients (21).
3 Overview of nanodrug delivery
systems for cancer treatment

In recent years, with the wide application of nanotechnology in

medicine, nanodrug delivery systems have been rapidly developed

(22). Consequently, these systems can be classified as either

naturally occurring natural carriers and synthetic carriers, based

on their respective origins. These systems can be categorized into

three subtypes: organic nanocarriers, inorganic nanocarriers and

composite nanocarriers based on their composition (23). Organic
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1297493
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1297493
nanocarriers consist of organic materials and include lipid-based

carriers, viral capsids, polysaccharides and protein particles, while

inorganic nanocarriers include metal nanoparticles such as gold or

silver nanoparticles, ceramic nanoparticles, quantum dots, and

carbon nanoparticles (24). As novel nanocarriers continue to

emerge, the clinical and translational applications of

nanomedicine will be expanded (25). To date, nanodrug delivery

systems have shown many advantages. First, a nanodrug delivery

system can reduce the number or degree of adverse reactions

induced by chemotherapy drugs. Chemotherapy drugs usually

have disadvantages such as low water solubility, instability under

physiological conditions and can induce drug resistance and high

toxicity. When chemotherapeutic drugs are integrated into

nanodrug delivery systems by covalent bonding, physical packing,

electrostatic forces or coordination complexation, the limitations of

these chemotherapeutic drugs can be reduced (26, 27). The

commonly used nanocarriers mainly include proteins, nucleic

acids, small-molecule chemotherapeutics, and imaging agents

(28–30). Second, the size effect of the nanodrug delivery system

also affects the pharmacokinetics, cellular uptake rate, and the

penetration and accumulation of drugs in tumor tissues (31, 32).

Third, a nanodrug delivery system can also simultaneously deliver

tracer drugs, enabling the integration of tumor disease diagnosis
Frontiers in Immunology 03
and treatment (33). Finally, a nanodrug delivery system may carry

multiple therapeutic drugs, thereby achieving the superposition

effects of the therapeutic drugs (34).

Nanodrug delivery systems are usually divided into active and

passive targeting effects, both of which have their own advantages

and disadvantages (35–37). The active targeting effect refers to a

combination of nanoparticles with overexpressed tumor cell

receptors to achieve the targeting effect. The commonly used

targeting receptors include mainly folate, transferrin and

epidermal growth factor receptor (38). The passive targeting effect

refers to the accumulation of nanoparticles that move through the

circulatory systems of the human body and then accumulate in

tumors, thereby playing a therapeutic role. Therefore, the passive

targeting effect is particularly dependent on the physiological

characteristics of the tumor microenvironment (39). A research

showed that nanoparticles with diameters in the range of 40-400 nm

stayed in the circulatory system for a long time, enabling their high

accumulation in tumors, and reduced renal clearance (40).

Moreover, the passive targeting effect may result in a random

targeting effect, which may lead to insufficient diffusion of drugs

in tumors.

After a nanodrug delivery system enters the human body, it

needs to overcome many obstacles to achieve a therapeutic effect on
FIGURE 1

Mechanism of T cell-mediated antitumor immune response activation.
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tumor cells (41, 42). First, nanoparticles present in the blood

circulatory system interact in a remarkable fashion with the

plasma proteins, eventual ly being sequestered by the

reticuloendothelial system (RES). Therefore, circulating

nanoparticles must first escape the RES before they can

accumulate in tumor tissues. When a nanodrug reaches a tumor

tissue, although the tumor blood vessels allow the nanodrug to

accumulate, parietal cells may limit nanodrug passage through

openings in the capillary wall, thereby decreasing the rate of

convective transport of the nanodrug. Moreover, the dense

extracellular matrix (ECM) can inhibit the passive diffusion of

nanodrugs due to high osmotic pressure. All these factors present

obstacles to the transportation of nanodrugs through tumor blood

vessels (Figure 2). The transportation of nanodrug delivery systems

is a thorny problem. It remains difficult to correctly specify

nanodrug delivery systems, and further follow-up research is still

needed to accurately adjust the size, shape and hydrophilicity/

hydrophobicity of the nanodrug delivery systems to solve the

transportation problem.
4 Tumor immunotherapy regulation
via a nanodrug delivery system

4.1 Nanodrug delivery systems increase
tumor cell vaccine uptake rates
and efficiency

Tumor vaccines can specifically activate the human

autoimmune system and contribute to the regulation of the

antitumor immune response (43). Tumor vaccines are mainly

divided into cell vector vaccines, protein vaccines, peptide

vaccines and nucleic acid vaccines (44). Nanodrug delivery

systems encapsulate tumor antigens and adjuvants into the same

carrier (called nano vaccines, particle vaccines, or nanoparticle
Frontiers in Immunology 04
vaccines) and deliver them into the same APC, preventing

immune tolerance caused by the absence of an adjuvant (45). In

addition, a nanodrug delivery system also significantly increases the

uptake efficiency of tumor antigens by APCs, thereby increasing the

antitumor immune response effect. To achieve a stronger immune

response effect, nanoparticle vaccines need to meet several

conditions, including effective antigen-loading capacity, efficient

lymphatic drainage efficiency, and enhanced APC uptake

capacity (46).

Dendritic cells (DCs) are important target cells of nanoparticle

vaccines. They are important APCs that can take up, process and

present antigens, produce cytokines and chemokines, and initiate

T-cell-mediated immune responses (47). Specific ligands modified

on the surface of nanoparticle vaccines target receptors on the

surface of DCs, which increases the uptake efficiency of the DCs

through specific endocytic pathways (48). J Chen developed

mannose-modified PLL-RT (Man-PLL-RT)-media ted

nanovaccines with DC-targeting ability. Man-PLL-RT with

antigens (ovalbumin, OVA) and adjuvants (unmethylated

cytosine-phosphate-guanine, CpG) coencapsulated by electrostatic

interaction that facilitated antigen endocytosis, maturation and

cross presentation by DCs (49).

Conventional tumor vaccines activate specific T cells through

the action of DCs to induce immune responses indirectly. The

efficacy of a tumor vaccine usually contingents upon the suboptimal

activation of T cells. S Go developed a nanovaccine that enhanced

the T-cell response through its interactions with DCs and T cells to

treat cancer. This nanovaccine consisted of a cancer cell membrane

nanoparticle (CCM-MPLA) decorated with monophosphoryl lipid

A (MPLA). Researchers conjugated anti-CD28 antibodies (aCD28)

to the CCM-MPLA particles to produce CCM-MPLA-aCD28

nanoparticles, which induced direct interactions between

nanovaccines and tumor-specific T cells. Regardless of the

presence or absence of DCs, this nanovaccine activated tumor-

specific CD8 T cells, exhibiting more effective induction of tumor-
FIGURE 2

Biological barriers that a nanodrug may encounter in the human body.
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specific CD8 T-cell responses and exhibiting high antitumor

efficacy in tumor-bearing mice (50).

Activation of the stimulator of interference genes (STING)

pathway enhanced the antigen-presenting efficiency of DCs,

thereby promoting the antitumor immune response of T cells (51,

52). X Jiang developed a PC7A nanovaccine that activated STING.

This vaccine induced antigen-specific T cells to undergo robust

tumor infiltration, generate a strong antitumor T-cell response, and

induce antitumor immune responses and showed higher efficacy

when intratumorally administered compared to when it was

subcutaneously injected (53).

In addition to utilizing receptor-mediated endocytosis to

increase the uptake efficiency of nanovaccines by DCs, strategies

based on macropinocytosis were used to increase the internalization

efficiency of DCs (54). Macropinocytosis is a transient, actin-driven

endocytic process based on membrane folding to create a vacuole

that engulfs exogenous fluids and particles on a large scale into cells

(55). In contrast to other cells, DCs show efficient uptake of

exogenous antigens through macropinocytosis, which can

potentially compensate for the insufficient of expression of

specific receptors on DCs and thus increase their antigen uptake

efficiency. C Yang developed a nanoparticulate vaccine based on a

reactive oxygen species (ROS)-responsive nanoparticle core and

macropinocytosis-inducing peptide-fused cancer membrane shell.

The vaccine was taken up by DCs at a significantly higher rate via

CXC-chemokine receptor type 4 (CXCR4)-media ted

macropinocytosis and jointly promoted DCs maturation and the

T-cell immune response by activating the STING pathway (56).

Spherical nucleic acids (SNAs) are capable of rapid uptake by

antigen-presenting cells through receptor-mediated endocytosis. For

innate immune responses, the unique adjuvant nucleic acid three-

dimensional structure of the SNA shell can provide improved

recognition of Toll-like receptors. Nanovaccines have been used in

clinical practice for the treatment of prostate cancer, but the efficacy is

high, and further research is imminent (57). SNA vaccines developed

by researchers can improve the production and secretion of cytokines

and can increase polyfunctional cytotoxic T cells and effector

memory. In this nanovaccine, human prostate-specific membrane

antigen or T-cell receptor g alternate reading frame protein was

integrated into the optimized structure, resulting in a high immune

activation rate and a high cytolytic capacity of humanized mouse and

human peripheral blood mononuclear cells (hPBMCs) (58). Some

researchers have developed immunostimulatory SNA (IS-SNA)

nanostructures composed of CpG oligonucleotides as an adjuvant

and prostate cancer peptide antigen. This nanovaccine increases the

codelivery of CpG and antigen to DCs, thereby improving the cross-

priming of antitumor CD8 T cells and generating more effective

antitumor immune responses (59).
4.2 Nanodrug delivery systems enhance
tumor cell immunogenicity

Low immunogenicity and an immunosuppressive tumor

microenvironment are major impediments to efficacious tumor

immunotherapy (60). At present, some immunogenic cell death
Frontiers in Immunology 05
(ICD) inducers, have been confirmed to promote tumor

immunotherapy by triggering ICD (61). When tumor cells

undergo ICD, they release a variety of tumor-associated antigens

and damage-associated molecular patterns (DAMPs) (62–64), such

as high mobility group protein 1 (HMGB1), calreticulin (CRT),

adenosine-triphosphate (ATP) and heat shock protein (HSP90a)
(Figure 3). DAMP promotes the activation of APCs, induces the

activation of antigen-specific T cells, promotes the intratumoral

infiltration of immune cells, and thus enhances the immune

response in tumors (65, 66). Compared with other therapies,

DAMPs released by ICD inducers can mobilize immune

stimulation, promote the maturation of DCs, and activate T cells,

thus achieving a positive tumor chemoimmunotherapy effect (67).

According to their ability to activate cell death or release DAMPs,

ICD inducers can be divided into two different categories: type I and

type II (68). Type I ICD inducers do not induce tumor cell death by

increasing endoplasmic reticulum stress, but the effects of lateral

endoplasmic reticulum stress produce immunogenicity; type II ICD

inducers selectively target the endoplasmic reticulum and release

danger and apoptosis signaling molecules because of ROS-

dependent endoplasmic reticulum stress. Most chemotherapeutic

drugs are type I ICD inducers, while radiotherapy and

photodynamic therapy are type II ICD inducers. Due to strong

adverse reactions and low tumor-targeting efficiency, ICD inducers

use has been limited. A combination of a nanodrug delivery system

and ICD inducers makes possible the clinical use of ICD inducers

during tumor immunotherapy (69). S Liu developed a doxorubicin

(DOX) and 4-(hydroxymethyl) phenylboronic acid pinacol ester

(PBAP) prodrug polymer and encapsulated it with chlorin e6 (Ce6)

in nanoparticles to obtain hyaluronidase (HAase) and HO dual-

sensitive responsive nanoparticles (Ce6/HDP NPs). The NPs

displayed efficient intratumoral accumulation and cellular

internalization properties due to the active targeting of hyaluronic

acid (HA). The strong ICD stimuli, which were induced by ROS

production and GSH depletion, led to amplified immunogenicity to

activate tumor immunotherapy. The DNA damage caused by the

dual effects of chemotherapy and ROS production directly caused

tumor cell apoptosis (70).

Radiotherapy, photodynamic therapy and sonodynamic

therapy induce the ICD effect of tumor cells through the effects of

ROS-induced endoplasmic reticulum stress (71). However, the

hypoxic environment of tumors profoundly affects ROS

production, which indirectly leads to an insufficient immune

response to ICD. Alleviating hypoxia is a key problem that

urgently needs to be solved to enable the use of nanodrug

delivery systems (72). To solve this problem, M Wang created an

albumin-based nanoplatform codelivering IR780, a NLG919 dimer

and the hypoxia-activated prodrug tirapazamine (TPZ) as a dual

enhancer of synergistic cancer therapy. TPZ-mediated

chemotherapy by increasing the photodynamic therapy-induced

tumor ICD rate, which induced a stronger antitumor immune

response, including an increase in the number of tumor-specific

cytotoxic T lymphocytes (73).

In addition to a ROS-based strategy, an endoplasmic reticulum

targeting strategy can enhance the ICD effects (74, 75). H Luo found

that inhibiting the endoplasmic reticulum-associated protein
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degradation pathway stimulated the ICD-induced lysate emission

from dying esophageal cancer cells in a dose-dependent manner.

Dual therapy with an endoplasmic reticulum-associated protein

degradation inhibitor combined with medium-dose radiotherapy

triggered an antitumor immune response by increasing the

maturation and phagocytosis rates of DCs (76).
4.3 Nanodrug delivery systems regulate the
tumor microenvironment

The tumor microenvironment (TME) plays a crucial role in the

interaction between tumors and immunotherapy (77). As shown in

Figure 4, the TME is the surrounding microenvironment in which

tumor cells exist and is composed of neutrophils, DCs, T cells,

fibroblasts, macrophages, microvessels, various signaling molecules

and molecular cytokines (78). Tumor cells can release various cell

signaling molecules, which in turn affect their immune

microenvironment, induce immune tolerance, and inhibit

antitumor immune responses (79). In addition, regulatory T

(Treg) cells, tumor-associated macrophages, tumor-associated

fibroblasts, and myeloid-derived suppressor cells in the TME can

increase immunosuppressive effect and tumor cell evasion rate,

further increasing the complexity of the TME (80). Therefore, a

nanodrug del ivery system can be designed to target

immunosuppress ive ce l ls or pathways to reduce the

immunosuppressive effect of the TME, which is anticipated to

increase the efficacy of tumor immunotherapy (81).
Frontiers in Immunology 06
4.3.1 Regulation of tumor-
associated macrophages

Tumor-associated macrophages (TAMs) are essential

interstitial cells in the TME and are composed of two types of

cells that either inhibit or promote tumor cell proliferation (82, 83).

M1 macrophages have antitumor effects and secrete classical

inflammatory cytokines to kill tumors by promoting tumor cell

necrosis and immune cell infiltration into the TME (84). M2

macrophages mainly play a role in promoting tumor growth,

invasion and metastasis by degrading the tumor ECM, destroying

the basement membrane, promoting angiogenesis and recruiting

immunosuppressive cells (85). The application of a nanodrug

delivery system to regulate TAM activity can enhance the

antitumor immune response (86). Commonly used therapeutic

strategies include blocking macrophage recruitment, interfering

with TAM survival programs, and remodeling M2-type TAMs

into the M1 type TAMs (87). S Ha fabricated PLGA

nanoparticles encapsulating baicalin and the melanoma antigen

Hgp peptide fragment consisting of amino acids 25-33 by using the

ultrasonic double-emulsion technique. The nanoparticles were

loaded with CpG fragments, and M2pep and a-pep peptides were

conjugated onto their surfaces to yield novel nanocomplexes. The

nanocomplexes were effectively internalized by M2-phenotype

TAMs in vitro and in vivo. The acidic lysosomal environment was

observed to trigger the disintegration of the polydopamine on the

nanoparticle surface, leading to the release of the payloads. The

release of CpG from the tumor microenvironment is a critical factor

in the transformation of M2-phenotype TAMs into M1-phenotype
FIGURE 3

Process of ICD inducers inducing immune response.
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TAMs, leading to increased secretion of inflammatory cytokines.

The decreased secretion of cytokines by TAMs subsequently

suppresses tumor angiogenes i s , enab l ing the tumor

microenvironment to undergo significant changes (88).

Tumor cells secrete a variety of stimulatory factors, such as

macrophage colony-stimulating factor, which can bind to the

tyrosine kinase CSF receptor 1 on macrophages, leading to their

conversion into the M2-phenotype macrophages. Therefore,

blocking the CSF-1R signaling pathway can remodel the M2-

phenotype to M1-phenotype macrophages (89). Y-W Chang

generated a bifunctional protein by fusing interleukin-10 to ana

anti-colony-stimulating factor-1 receptor-blocking antibody. The

fusion protein demonstrated significant antitumor activity in

multiple cancer models, especially models of head and neck

cancer. This bifunctional protein not only led to the anticipated

reduction in the number of TAMs but also triggered the

proliferation, activation, and metabolic reprogramming of CD8 T

cells (90).

4.3.2 Interference with tumor-
associated neutrophils

Neutrophils are important components of the immune system

and essential immune cells that fight against microbial infection.

Neutrophils account for a large proportion of immune cells

infiltrating tumor tissues, which are called tumor-associated

neutrophils (TANs) (91). TANs exert dual effects on tumors;

namely, they show antitumor (the N1 subpopulation) and tumor-

promoting activity (the N2 subpopulation). N1 subpopulation
Frontiers in Immunology 07
TANs induce antitumor activity through antibody-dependent

cytotoxicity and other mechanisms, while N2 subpopulation

TANs promote tumor growth by enhancing tumor cell metastasis,

promoting angiogenesis and inhibiting the action of adaptive

immune cells (92, 93).

The use of nanodrug delivery carriers to interfere with

neutrophi l development and funct ion, destroy their

immunosuppressive function and restore their anticancer

properties has gradually become a promising therapeutic strategy.

Using a nanodrug delivery system to interfere with the development

and function of TANs, particularly their immunosuppressive

function, and thus restore their anticancer effects is a promising

therapeutic strategy (94, 95). Y Wang developed a nanovaccine

constructed with SiPCCl-hybridized mesoporous silica with Fe(III)-

captopril complexes and coated with the exfoliated membrane of

mature DCs via H22-specific neoantigen stimulation. The

nanovaccines actively target H22 tumors and induce ICD.

Moreover, acid-triggered captopril release into the tumor

microenvironment polarized protumoral N2 phenotype

neutrophils into antitumor N1 phenotype neutrophils to increase

the immune effects (96).

Enhancing the sensitivity of TANs and achieving more precise

drug delivery contribute to more profound immune effects. H Dong

proposed a novel concept that utilizes a nanoimmunotraining

strategy to rapidly activate neutrophil tumor tropism and

consequently enhance the targeting capacity of antitumor drugs.

An evaluation of this strategy demonstrated significantly increased

tumor-targeted accumulation of neutrophils harvested from
FIGURE 4

Main components of tumor microenvironment.
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nanoimmunotrained mice after either intraperitoneal or

intravenous injection of a vaccine-like nano-CpG adjuvant, which

led to the precise delivery of nanodrugs (97).

4.3.3 Targeting tumor-associated fibroblasts
Cancer-associated fibroblasts (CAFs) in the tumor

microenvironment can promote tumors by interacting with

cancer cells (98). Moreover, CAFs can form a solid physical

barrier by secreting ECM and other components, hindering the

penetration and diffusion of nanodrugs in tumor tissues and

reducing the infiltration rate of tumor-infiltrating lymphocytes

(99). In addition, CAFs can induce an microenvironment

immune tolerance by secreting cytokines (100).

Regulating the formation of CAFs, eliminating CAFs,

remodeling CAFs and other strategies can increase the efficiency

of nanodrug delivery and relieve TME immunosuppression to

enhance antitumor immunotherapy (101, 102). Y Chen developed

a nanoparticle that significantly inhibited tumor growth and

metastasis by remodeling CAFs in the TME. Y Chen found that

salvianolic acid B-loaded PEGylated liposomes (PEG-SAB-Lip)

interfere with the activation of CAFs by inhibiting the secretion

of TGF-b1. After inhibiting the activation of CAFs, the collagen

deposition rate in tumors was reduced, and the penetration rate of

nanoparticles in tumors was increased. These outcomes led to the

high expression of cytokines and chemokines (CXCL9 and

CXCL10) in T helper 1 (Th1) cells and the recruitment of CD4,

CD8 T cells, and M1 macrophages to the tumor area (103).
5 Interference with the tumor immune
escape signaling pathway

There are many immunosuppressive signaling pathways in

TAMs. Malignant cells themselves, or lymphocytes that infiltrate

tumors, can abnormally express a variety of immune checkpoint

molecules, including PD-1/PD-L1, LAG-3, TIM3, and TIGIT,

which inhibit the activation of antigen-specific T cells and

facilitate tumor cell immune escape (104, 105). Immune

regulatory molecules released by tumor cells, such as TGF-b and

indoleamine 2,3-dioxygenase (IDO), can prevent effector T-cell

function and even lead to T-cell exhaustion in tumors (106).

Exhausted T cells become dysfunctional, are unable to produce

cytotoxic effects, and lose the ability to produce antitumor cytokines

such as IL-2 and TNF-a, which leads to a reduction in tumor

immunotherapy efficiency (107, 108). Therefore, blocking the

tumor cell immune escape signaling pathway with a nanodrug

delivery system may activate or increase the antitumor

immune response.

The upregulation of immune checkpoint molecules in TAM is a

significant mechanism contributing to tumor immune evasion, and

blocking this signaling pathway can enhance the endogenous

antitumor immune effect of the body. Many studies have shown

that using immune checkpoint inhibitors to block the PD-1/PD-L1

signaling pathway reversed the immunosuppression of the TME,

restored T-cell antitumor activity, and enhanced tumor
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immunotherapy (109, 110). S Liu prepared atovaquone-loaded

human serum albumin (HSA) nanoparticles stabilized via

intramolecular disulfide bonds, calling them HSA-ATO NPs.

These nanoparticles show excellent bioavailability, tumor

targeting ability, and high biosafety. HSA-ATO NPs can promote

intratumoral CD8 T-cell recruitment by alleviating hypoxia in the

TME, thereby enhanc ing the e fficacy o f ant i -PD-1

immunotherapy (111).

However, blocking only a single immune escape signaling

pathway is not enough to induce a strong antitumor immune

effect. FGL1/LAG-3 is a newly discovered immune escape

signaling pathway. Similar to the PD-1/PD-L1 signaling pathway,

it exerts a variety of biological regulatory effects on T cells (112).

Dual blockade of the FGL1/LAG-3 and PD-1/PD-L1 signaling

pathways greatly improved the T-cell killing ability of tumor cells.

W-J Wan designed a new type of ROS-sensitive nanoparticle and

loaded it with FGL1 short interfering RNA (siRNA; siFGL1) and

PD-L1 siRNA (siPD-L1), which they formed from a stimulus-

responsive polymer with poly-l-lysine-thioketal and modified cis-

aconitate to facilitate nanoparticle endosomal escape. Furthermore,

the administration of the tumor-penetrating peptide iRGD and

ROS-responsive nanoparticles concurrently enhanced the delivery

efficiency of siFGL1 and siPD-L1, leading to a significant reduction

in the protein levels of FGL1 and PD-L1 in tumor cells (113).

IDO is a ferrous heme-containing oxidoreductase that can

degrade tryptophan to yield kynurenine, which can directly

inhibit the function of cytotoxic T lymphocytes increase Treg

activity to play an immunosuppressive role (114). The tryptophan

metabolism signaling pathway activated by IDO is important in

promoting tumor cell immune escape. Inhibition of IDO prevented

the inhibition of T-cell proliferation in the TME and activated or

enhanced autoimmune function (115). C Yang developed a

polycaprolactone-based nanoparticle to encapsulate the

tryptanthrin derivative CY-1-4. These nanoparticles both induced

ICD and inhibited IDO effects while regulating the formation of

lymphocyte subsets in the spleen and tumor (116).
6 Conclusions and prospects

Immunotherapy has been a revolutionary treatment for cancer

patients. However, due to the complex tumor cell immune escape

mechanism, many problems to be solved to increase the efficacy of

tumor immunotherapy; these problems include profound

differences among individual patients, low rates of positive effects

and adverse reactions. Nanodrug delivery systems can improve the

pharmacokinetic characteristics of drugs, increase their

bioavailability, and reduce their adverse reactions, suggesting their

use in a novel approach to cancer immunotherapy. According to the

mechanism underlying an activated antitumor immune response, a

nanodrug delivery system provides a feasible strategy if it has the

following effects: 1) increases the targeting and uptake of vaccines

by DCs, thereby enhancing the efficacy of the immune response; 2)

increases tumor cell immunogenicity; 3) regulates TAMs and other

cells by, for example, regulating the polarization of TAMs and
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interfering with TAN formation and ECM remodeling by CAFs;

and 4) interferes with tumor immune escape signaling pathways,

namely, the PD-1/PD-L1, FGL1/LAG-3 and IDO signaling

pathways. Although some achievements have been made in

research on nanodrug delivery systems, their practical application

still faces some urgent problems. 1) First, the main problems come

from the lack of long-term stability, effectiveness and safety of

nanodrug delivery systems. Other problems involve the types

of delivery systems materials available, the industrialization of

preparation methods, packaging and cost issues. The solutions to

all of these problems will necessitate comprehensive and in-depth

research in the corresponding disciplines or even between multiple

disciplines. 2) Secondly, nanodrug delivery systems and their

degradation products may not be pharmacologically inert

substances, so there are inevitably some potential safety hazards.

Current efforts to limit the toxicity of nanodrug delivery systems

involve material modification, composition optimization and the

development of new materials. 3) Thirdly, the pharmacokinetic

behavior of nanodrug delivery systems does not fully satisfy clinical

requirements, which also limits the clinical translation of nanodrug

delivery systems. Therefore, the key to the application and

development of nanodrug delivery systems is to design efficient,

safe and intelligent nanodrug delivery systems and study their

pharmacokinetics in vivo in detail. 4) Finally, tumor tissue has a

highly heterogeneous microenvironment, and differences occur

among different patients or tumors of the same patient at

different times. Widespread tumor heterogeneity presents great

difficulties for immunotherapy with nanodrug delivery systems.

With the extensive study of genomics and tumor pathological

mechanism, researchers should further study and screen for

tumor-related markers and should develop more personalized

nanodrug delivery systems from the molecular level to achieve

better therapeutic effects. With the development of nanotechnology,

nanomaterials will also be constantly updated and iterated. We

believe that with the ongoing deepening of research and
Frontiers in Immunology 09
development of science and technology, the advantages of

nanodrug delivery systems will be used more extensively in the

clinical treatment of malignant tumor diseases and will become a

powerful tool for humans to overcome cancer.
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