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Gastrointestinal (GI) cancers remain a significant global health burden,

accounting for a substantial number of cases and deaths. Regrettably, the

inadequacy of dependable biomarkers hinders the precise forecasting of

patient prognosis and the selection of appropriate therapeutic sequencing for

individuals with GI cancers, leading to suboptimal outcomes for numerous

patients. The intricate interplay between tumor-infiltrating lymphocytes (TILs)

and the tumor immunemicroenvironment (TIME) has been shown to be a pivotal

determinant of response to anti-cancer therapy and consequential clinical

outcomes across a multitude of cancer types. Therefore, the assessment of

TILs has garnered global interest as a promising prognostic biomarker in

oncology, with the potential to improve clinical decision-making substantially.

Moreover, recent discoveries in immunotherapy have progressively changed the

landscape of cancer treatment and significantly prolonged the survival of

patients with advanced cancers. Nonetheless, the response rate remains

constrained within solid tumor sufferers, even when TIL landscapes appear

comparable, which calls for the development of our understanding of cellular

and molecular cross-talk between TIME and tumor. Hence, this comprehensive

review encapsulates the extant literature elucidating the TILs’ underlying

molecular pathogenesis, prognostic significance, and their relevance in the

realm of immunotherapy for patients afflicted by GI tract cancers. Within this

review, we demonstrate that the type, density, and spatial distribution of distinct

TIL subpopulations carries pivotal implications for the prediction of anti-cancer

treatment responses and patient survival. Furthermore, this review underscores

the indispensable role of TILs in modulating therapeutic responses within distinct
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molecular subtypes, such as those characterized by microsatellite stability or

programmed cell death ligand-1 expression in GI tract cancers. The review

concludes by outlining future directions in TIL-based personalized medicine,

including integrating TIL-based approaches into existing treatment regimens and

developing novel therapeutic strategies that exploit the unique properties of TILs

and their potential as a promising avenue for personalized cancer treatment.
KEYWORDS

gastrointestinal tract cancer, tumor-infiltrating lymphocytes, immunotherapy, immune
microenvironment, immune infiltration
1 Introduction

Gastrointestinal (GI) cancers are responsible for a significant

portion of the global cancer burden, accounting for 26% of all new

cases and 35.4% of all cancer-related deaths. Notably, six types of GI

cancers, including liver, stomach, colon, esophagus, pancreas, and

rectum cancers, rank among the top ten list of tumor-related

mortality rates worldwide (1).

The American Joint Committee on Cancer (AJCC) and Union

for International Cancer Control (UICC) established the tumor-

node-metastasis classification system (TNM) to assess the

histopathological parameters of tumor invasion and predict the

prognosis and chemotherapy response of individuals with GI

cancers (2, 3). However, despite receiving equivalent treatment,

patients with similar TNM stages may experience varying clinical

outcomes due to the genetic and epigenetic heterogeneity of the

cancers, as evidenced by several studies (4–6). The advent of

anticancer therapy, particularly the remarkable advancements in

immunotherapy, has significantly transformed the treatment of

cancers. Nevertheless, only a subset of GI cancer patients exhibits

a favorable response to these treatments, and the underlying causes

of treatment failure in other patients remain poorly understood (7,

8). Therefore, gaining a comprehensive understanding of the

molecular mechanisms that drive cancer progression is critical to

facilitating the development of effective prognostic and predictive

biomarkers for clinical research and practice (9).

Cancer cells require a conducive microenvironment to thrive

and proliferate. The tumor microenvironment (TME) comprises a

dynamic and complex network of factors, including immune cells,

cancer-associated fibroblasts, stroma, and blood vessels, which

create a favorable milieu for tumor growth, i.e., a low oxygen

concentration, an acidic pH, and immunosuppression, which are

known to promote tumor development and progression (10, 11).

Tumor-infiltrating lymphocytes (TILs) are a crucial component

of the TME, playing a critical role in modulating the immune

response to cancer cells. TILs are thought to exert both pro-tumor

and anti-tumoral effects (12), and their presence and abundance in

the TME have been implicated in cancer prognosis and response to

therapy in various malignancies, including breast, lung, and ovarian

cancers (13–15). Considering the pivotal role of TILs in cancer

development and their impact on the efficacy of various anticancer
02
therapies, this review conducts a comprehensive assessment of the

molecular mechanisms of TILs in GI cancers. Furthermore, this

review evaluates the responsiveness of different therapeutic

strategies currently in clinical development to TILs, providing

crucial insights into their clinical utility.
2 Method

2.1 Search strategy

The authors conducted an extensive literature search to gather

relevant studies on the subject. The investigation was conducted

using PubMed and several high-impact journals, with diverse

search terms such as “Tumor-infiltrating lymphocytes”, “T cells”,

“CD8+”, “CD4+”, “CD3+”, “CD45RO+”, “FOXP3+”, “B cell”,

“Immunoscore”, “Immunotherapy”, “Checkpoint inhibitor”,

“Chemotherapy”, “Microsatellite*”, “Esophageal cancer”,

“Stomach cancer”, “Gastric cancer”, “Pancreatic cancer”,

“Hepatocellular cancer”, “Colorectal cancer”, “ Prognosis”, and

“Survival”. The authors prioritized studies published from 2018 to

2023, and when no studies were available, older literature was

included. The comprehensive search strategy ensured that the

study’s findings were based on the most up-to-date and relevant

available evidence.
2.2 Eligibility criteria

The research included studies investigating immune infiltrates

in non-metastatic and metastatic GI cancer patients. The studies

analyzed various oncological outcomes, including response rate and

survival, while also considering patients’ clinicopathological

features and molecular assessments, such as the MMR status of

microsatellite stability or instability. To ensure the quality of the

evidence, the researchers excluded preclinical studies, narrative

reviews, editorials, letters, opinions, non-English language

publications, and conference abstracts that lacked sufficient

methodological details. By applying these strict inclusion and

exclusion criteria, the authors aimed to provide a comprehensive

analysis of high-quality studies to support their findings.
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3 Cellular and molecular dynamics of
the tumor immune microenvironment

The tumor immune microenvironment (TIME) is an integral

component of the TME. It comprises a complex and dynamic

network of immune cells and their associated molecules that engage

in intricate interactions with tumor cells. The TIME is composed of

a diverse array of immune cell types, including tumor-associated

macrophages, myeloid-derived suppressor cells (MDSCs), tumor-

associated neutrophils, mast cells, natural killer (NK) cells, dendritic

cells (DCs), and T and B lymphocytes, that infiltrate cancerous

tissues (16). The functions of these immune cells in the TIME are

tightly linked to their inherent properties and the molecules they

express, such as cytokines or inhibitory ligands, and play a crucial

role in tumor evolution and growth (17, 18). Hence, the primary

focus of recent translational clinical research is to enhance patients’

immune systems to enhance their ability to combat and eliminate

cancer cells effectively. However, it is essential to note that, similar

to the two-faced ancient Roman god Janus, immune system cells

can exhibit dual roles, either mounting a protective antitumor

response or inadvertently facilitating cancer progression. This

duality largely depends on the composition of immune cell

infiltrates within the tumor and the intricate communication

between these cells and the tumor cells. Figure 1 illustrates an

overall view of the intricate workings of the TME and multifaceted

interactions with tumor cells.
3.1 Immune evasion

The presence of tumor-associated immune cells within the

TME poses a critical question that remains one of the foremost

challenges in oncology: How do cancer cells evade the immune
Frontiers in Immunology 03
system? To address this question, it is essential to trace the

progression from a physiologically anti-tumor microenvironment

in the early stages of cancer development to an immune-suppressive

microenvironment that promotes the survival and growth of

cancer cells, a phenomenon commonly referred to as immune

evasion (19).

Typically, During the early stages of tumor development, anti-

tumor immune cells can recognize and eliminate cancer cells. CD8+

T-cells are identified as the predominant anti-tumor cells. Once

they are stimulated and activated by Antigen-presenting cells

(APCs), CD8+ T-cells undergo differentiation into cytotoxic T

lymphocytes (CTLs). These CTLs execute a potent anti-tumoral

response by releasing granules containing perforin and granzyme,

which directly destroy cancer cells (20–22). Moreover, activation of

CD4+ T-cells results in the release of cytokines such as interferon-

gamma (IFN-g) (which increases expression of MHC-I, increases

expression of major histocompatibility complex [MHC] molecules

on APCs, promotes antigen presentation, promotes differentiation

of CD4+ T-cells into a T helper-1 [Th1]) and interleukin-2 (IL-2)

(which is a proliferative cytokine that activates other CD4 + and

promotes CD8+ T-cell maturation into CTLs) (23) (Figure 2).

Nevertheless, many types of human tumors can suppress the

immune system to enhance their survival (24, 25). Inflammation is

thought to play a significant role in establishing an immune-

suppressive TME. The significance of inflammation in cancer

progression is not a recent hypothesis; Rudolph Virchow first

proposed it in 1863. In his study, Virchow observed leukocytes

surrounding cancer cells and suggested that cancer might arise from

chronic inflammation (26). Inflammation is a host immune

response that aims to limit infections or repair damaged tissue.

While it can be beneficial for healing, persistent chronic

inflammation can lead to cell and tissue alteration, increasing

cancer risk (27).
FIGURE 1

Orchestra of the Tumor microenvironment (TME): The tumor microenvironment is the environment surrounding a tumor inside the body. It includes
immune cells, the extracellular matrix, blood vessels, and other cells, like fibroblasts; different TME cells and components are mentioned in the figure
(Created with BioRender.com).
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In the present understanding of cancer, chronic inflammation is

widely acknowledged as a crucial characteristic, with potential

causes including persistent microbial infections, autoimmune

disorders, and immune dysregulation. An illustrative example of

this relationship is the increased risk of gastric cancer associated

with chronic infection by Helicobacter pylori (28). Similarly,

immune dysregulation observed in inflammatory bowel disease

contributes to a higher incidence of colorectal cancer (29).

Long-term inflammation can also increase the risk of cancer

development by releasing reactive oxygen species (ROS) and reactive

nitrogen species (RNS), which can cause harm to the cellular

components, including DNA. As a result, it may lead to genetic

mutations that influence genes responsible for cell growth and

division, triggering abnormal cell growth and tumor formation (30, 31).

As the tumor grows and the tumor TME undergoes alterations,

excessive tumor-associated antigens are produced during

tumorigenesis. Consequently, the immune system’s ability to

prime new repertoires of T cells and direct them toward the

tumor is affected, leading to changes in the effectiveness of tumor

containment. In parallel, cancer cells and the TME employ

mechanisms to suppress the anti-tumor function of the immune

system, often through the recruitment of regulatory CD4+ T-cells

(Tregs) (32). Tregs play a critical role in the priming, activation, and

cytotoxicity of other effector immune cells, including CTLs, Th1

CD4+ T-cells, NK cells, macrophages, and neutrophils (33, 34).

Moreover, some tumor cells escape immune detection by

decreasing the expression of specific antigen-presenting proteins

(for example, MHC-I) at their surface, rendering them invisible to

CTL (35, 36). But more often, tumors secrete proteins that inhibit
Frontiers in Immunology 04
CTLs to suppress immune responses. For example, Fas ligand

(FasL) has been reported to be expressed by the tumor cells,

MDSCs, and vascular endothelium in many human solid tumors

(37, 38). Consequently, the presence of FasL triggers apoptosis in

the CTLs (39).

Tumor cells employ various factors, such as Cyclooxygenase-2

(COX-2), Prostaglandin E2 (PGE2), IL-6, Granulocyte-macrophage

colony-stimulating factor (GM-CSF), S100 proteins, and Snail, to

recruit and expand MDSCs within the TME. MDSCs, in turn, exert

immunosuppressive effects on T-cell activation through multiple

mechanisms. These include the depletion of essential amino acids

like L-arginine and cysteine from the TME, the production of ROS

and peroxynitrite, and the downregulation of CD62L and T-cell

activation. MDSCs also contribute to the induction of Tregs via the

production of IL-10 and transforming growth factor-beta (TGF-b).
Additionally, MDSC expansion and IL-10 production inhibit DC

antigen presentation, further contributing to immune suppression

within the TME (40).

The secretion of certain growth factors, including TGF-b and

epidermal growth factor (EGF), can also lead to increased cell

proliferation and decreased responsiveness to signals that usually

trigger programmed cancer-cell death (41, 42). Over time, this

unregulated growth can lead to the emergence of cancer (Figure 2).
3.2 Tumor-infiltrating lymphocyte

Amidst the diverse immune cell types that infiltrate cancerous

tissues within the TIME, tumor-infiltrating lymphocytes are gaining
FIGURE 2

(A) Early stage of cancer development: Cytotoxic T lymphocytes (CTL), which are differentiated from CD8+ T-cells via IL-2, are able to destroy tumor
cells by releasing perforin and granzymes. IL-2 plus IFN-g is released by CD4+ cells after activation through MHC presented by APC cells. IFN-g
increases the expression of represented MHC by APCs to CD8+ T-cells and also enhances the differentiation of CD4+ cells into T helper-1(Th1). (B)
Immune evasion mechanisms: 1) Genomic instability, immune evasion, angiogenesis, and metastatic dissemination are among the elements that lead
to tumor progression. One factor that leads to the stimulation of cases is said to be chronic inflammation, which plays a vital role in the
development of cancer. 2) various factors, including Tregs, suppress or activate effector immune cells. Inhibiting the immune system using
suppressive molecules or different surface receptors, inhibiting the function of dendritic cells (DC), and releasing inflammatory cytokines are among
the parts of Treg in this system. Also, inhibition of Teff activation in 2 ways by limiting TCR ligand binding and using granzyme and metabolic
disorders are other functions of Tregs. 3) Furthermore, CTLs fail to recognize tumor cells, and this is due to the reduction of MHC-I presented by
APCs to CD8+ T-cells. 4) Tumor cells use FAS ligand (FasL) proteins to suppress CTLs, leading to their apoptosis, and finally induce inhibition of
immune response (Created with BioRender.com).
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recognition as a critical component due to their versatile functions

and clinical potential (43). The formation of TILs from circulating

lymphocytes is a complex process that begins with the migration of

immune cells across the tumor endothelial barrier to reach the

tumor site. However, the tumor endothelium is often disrupted and

can directly suppress T cell function, impeding TIL infiltration.

Notably, vessels carrying circulating lymphocytes are

predominantly absent from the tumor core, instead localizing in

the surrounding stroma and/or invasive margin, suggesting a

directional aspect to TIL infiltration. These findings highlight the

pivotal role of the tumor endothelium in regulating T-cell migration

and infiltration and underscore the importance of the stroma in

tumor development (44). Histopathological analyses of tumor

samples have revealed distinct TIL distribution patterns across

tumor types, with different immune cell types found in specific

locations around and within the tumor. Interestingly, TIL

distribution was observed to be non-random and organized in

particular areas (45).

TILs generally encompass a diverse assortment of immune cell

types, such as clusters of T-cells and B-cells (46, 47).

In the realm of cancer research, T-cells have received significant

attention due to their prominence as the second most prevalent

immune cell type found in human tumors across diverse cancer

types. In the early stages of tumor development, if a sufficient

number of immunogenic antigens are generated, naïve T cells

undergo priming within the draining lymph nodes and/or

bloodstream. This priming event is accompanied by their

ac t iva t ion and subsequent migra t ion to the tumor

microenvironment (TME). Among the various types of T cells,

the most widely recognized and extensively studied are the CD8+ T-

cells (cytotoxic T-cells, or killer T-cells) and CD4+ T-cells (helper T-

cells) (48).

Cytotoxic CD8+ T-cells (CTLs) of the adaptive immune system

are the most potent effectors in the anti-cancer immune response.

Activation of CTL is an antigen-specific process requiring the

interaction of the T-cell receptor (TCR) complex with a processed

tumor antigen–derived peptide bound to a MHC class I molecule

presented by APCs or tumor cells (49). There are two mechanisms

through which the CTLs carry out their function of combating

cancer: granule exocytosis and the death ligand/death receptor

system. The secretory granules comprising perforin and

granzymes fuse with the plasma membrane and release their

content, eliminating tumor cells. During death ligand/death

receptor-mediated apoptosis, when CTLs are activated, FasL and

TNF-related apoptosis-inducing ligands (TRAIL) are expressed

on their surface. These ligands can kill susceptible cancer cells

by interacting with their respective death receptors (50–

52) (Figure 3A).

CD4+ T lymphocytes play a crucial role in regulating the

immune response and, in turn, are subdivided into at least Th1,

Th2, Th9, Th17, and T regulatory (Treg) groups based on cytokine

profiles and immune functions (53, 54). CD4+ T-cells interact with

antigens in the context of MHC class II. This interaction causes the

secretion of cytokines from the CD4+ cells to regulate various

immune cells (55).
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CD4+ Th1 cells, characterized by their secretion of high levels of

proinflammatory cytokines such as IL-2, tumor necrosis factor-a
(TNF-a), and IFN-g, play a crucial role in the anti-tumoral

response. Their activities include promoting T-cell priming and

activation, enhancing the cytotoxicity of CTLs, boosting the anti-

tumoral activity of macrophages and NK cells, and increasing the

presentation of tumor antigens (24, 56) (Figure 3B).

CD4+ Th2 cells exhibit the secretion of a distinctive array of

cytokines, including IL-4, IL-5, IL-10, IL-13, and IL-17. However, it

is noteworthy that not all of these cytokines confer beneficial effects

in the context of cancer, as some have been implicated in promoting

tumor progression within the Th2 subtype (57). Specifically, IL-4,

IL-5, and IL-13 have been extensively demonstrated to contribute to

cancer growth and metastasis (57) actively.

Tregs are identified by their expression of the transcription

factor Forkhead box p3 (FOXP3) along with a specific combination

of cell surface markers, including CD4+, CD25+, and CD127low/−.

Among these markers, FOXP3 is considered the most reliable and

specific cell marker for identifying Tregs. Its presence indicates the

suppressive and regulatory functions associated with Tregs in

immune responses (58). FOXP3+ Tregs are responsible for

maintaining immune tolerance, which can prevent allergic and

other kinds of autoimmune diseases as well as inhibit the anti-

tumor immune responses (59, 60). Tregs exert their

immunomodulatory effects by utilizing several suppressive

molecules and mechanisms. They employ programmed death-1

(PD-1), cytotoxic T lymphocyte-associated antigen (CTLA-4),

CD39, and diverse surface receptors to suppress immune

responses. Tregs inhibit the function of DCs, which are crucial

for initiating immune responses. Additionally, Tregs secrete anti-

inflammatory cytokines such as IL-10, TGF-b, and IL-35, which

dampen immune activation and promote an immunosuppressive

environment. Furthermore, Tregs directly inhibit CTLs by eliciting

cytolysis through the release of granzyme and by inducing

metabolic disruptions (61, 62).

The balance between these CD4+ T-cell subsets is critical for

maintaining immune homeostasis and preventing immune

dysfunction in the TME (63).

B lymphocytes are the main cellular components of the humoral

compartment of adaptive immunity (64). CD20 is a transmembrane

protein found on the surface of B-cells. CD20 is a transmembrane

protein found on the surface of B-cells. It is a marker of B-cells and

is involved in B-cell development, differentiation, and B-cell

receptor signaling (65).

CD20+ B-cells can exert both pro-tumor and anti-tumor effects

on cancer growth (66). The balance between these opposing

functions is influenced by various factors, including the interplay

between B-cells and other immune cells, as well as the TME.

Evidence indicates that B-cells play several roles in promoting

tumor progression (67). They can release IL-10, IL-35, and TGF-b
that support Treg expansion and Th2 polarization while

suppressing effector T-cell activity, which is potentialized by B-

cell PD-L1 expression (68) (Figure 3C). Vascular endothelial

growth factor (VEGF)-producing B-cells may also promote tumor

progression through neoangiogenesis (67, 69).
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B-cells can also contribute to suppressing tumor progression

through various mechanisms. B-cells have the ability to present

tumor-derived antigens to T-cells, facilitating their activation and

the subsequent immune response against tumors. Furthermore, B-

cells secrete cytokines such as IFN-g and IL-12, which support the

polarization of CD4+ T-cells towards a Th1 phenotype and enhance

the cytotoxicity of CD8+ T-cells. Tumor-specific antibodies

produced by plasma cells, a differentiated form of B-cells, play a

crucial role in tumor immunity. These antibodies can trigger the

complement cascade, leading to the destruction of tumor cells. They

can also mediate the phagocytosis of tumor cells by immune cells

and facilitate antibody-dependent cell cytotoxicity (ADCC)

mediated by natural killer (NK) cells.

Moreover, activated B-cells can directly eliminate tumor cells by

secretion molecules such as TNF-related apoptosis-inducing ligand

(TRAIL) and granzyme B. These effector molecules induce apoptosis

in tumor cells, contributing to their elimination (67, 70, 71).
Frontiers in Immunology 06
4 Clinical significance of tumor-
infiltrating lymphocytes in
gastrointestinal tract cancers

More than two centuries ago, Rosenberg et al. (72) conducted a

study that indisputably proved that TILs can enhance the condition

of more than 50% of colon adenocarcinoma-bearing mice with

hepatic or pulmonary metastasis when combined with

cyclophosphamide and IL-2 (72, 73). Despite this conclusive

discovery, the use of TILs in cancer treatment is still not

prevalent in clinical settings. This unequivocally emphasizes the

dire need for further research and adoption of TILs as a potential

solution in GI cancer treatment. Here, we present a comprehensive

overview of recent scientific advancements in the role of TILs in

Esophageal cancer (Table 1), Pancreatic cancer (Table 2), Gastric

cancer (Table 3), Colorectal cancer (Table 4), and Hepatocellular
FIGURE 3

Immune cell differentiation in tissue. (A) Tumor cells are killed by two mechanisms when confronting cytotoxic T lymphocytes (CTL) activated by
antigen-presenting cells (APC): first, cytolysis by releasing perforin and granzyme from CTLs. Second, the expression of death ligands FasL and TNF-
related apoptosis-inducing ligands (TRAIL) on the surface of CTLs, whose interaction with the relevant death receptors leads to cancer cell
apoptosis. (B) After penetrating the tissue and being activated by APCs, Naive CD4+ T cells differentiate into three different forms and have different
functions: 1) Th1, secretion of IFN-g, TNF-a, and IL-2 to increase the toxicity and antitumor activity of CTLs, macrophages, and NK cells. 2) Th 2, by
secreting different cytokines, promotes tumor cells to develop cancer. 3) Treg suppresses the cytotoxic activity of CTLs by using suppressor
molecules. (C) After the penetration of naive B cells into the tissue, they are distinguished in three ways with specific functions: 1) Tumor-infiltrating
B cells cause Th1 polarization and toxicity of cells by secreting IFN-g and IL-12. 2) Plasma cells secrete tumor-specific antibodies and cause
phagocytosis of tumor cells and stimulation of complement cascade. 3) Bregs, secretion of immune regulatory cytokines to Th2 polarization and
inhibit the activity of CTLs (Created with BioRender.com).
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cancer (Table 5). Specifically, we summarize these developments in

the context of cancer prognosis, treatment strategies, and the

associated challenges and opportunities for further advancement.
4.1 Esophageal cancer

Based on recent advances in cancer treatment, immunotherapy is

crucial in the therapeutic strategy for various cancers, including

esophageal cancer (EC) (112). Despite the advances ,

immunotherapy is not a highly effective treatment for EC patients

as the overall response rate is less than 30%, and despite being initially

treated with immunotherapy, most patients tend to develop acquired

resistance over time (113). Due to the heterogenicity of the TIME in

EC, the cause of resistance to immune therapy is still unclear (114).

TILs, as extrinsic factors, can participate in cancer development and

response to immunotherapy (79). The presence and number of TILs

in the tumor environment might predict patients’ prognosis and

cancer outcome (115).
Frontiers in Immunology 07
Haddad R et al. (77) explored the association between

neoadjuvant treatment, TILs, and survival in patients with EC who

underwent esophagectomy. Their investigation of Forty-three

specimens of EC showed higher abundant of CD8+, CD4+, CD3+,

and CD45R0+ cells was positively correlated with praising

pathological response to neoadjuvant chemotherapy, disease-free

survival (DFS), and overall survival (OS) (77). Findings from the

multivariate analysis also showed that CD8+ in the stroma is an

independent factor in the prognosis of EC patients (77) (Table 1). In

another study, the expressions of CD8+, CD4+, FOXP3+,

Immunoglobulin G4 (IgG4), and IL-10 and clinical information of

118 patients with esophageal squamous cell carcinoma (ESCC) were

assessed with hematoxylin and eosin (H&E), immunohistochemistry

(IHC) staining and multi-color Immunofluorescence (81). The

higher expression of CD4+ (OS, hazard ratio [HR]= 0.395, P-

value= 0.007) and CD4+ plus CD8+ (OS, HR= 0.478, P-value=

0.013) was positively correlated with better prognosis and survival,

and also CD4+ (OS, HR= 0.317, P-value= 0.008) was an independent

protective factor for ESCC patients. Higher IgG4 in serum was shown
TABLE 1 Esophageal cancer.

First author Cancer Tumor
stage

No. of
patients

Markers Result (s)

Zhou et al. (2020)
(74)

nCRT for
EC

II-IVa 138 IDO1/PD-L1/CD8 Elevated post-nCRT CD8+ density associated with
improved OS and recurrence-free survival/The reduced
IDO1 expression and increased CD8+ density following
CRT were linked to improved survival outcomes.

Kovaleva et al. (2020)
(75)

ESCC I–IV 48 Macrophages/CD3/CD8/CD68/
CD163/CD206/PU.1/iNOS/
FOXP3/PD-L1

FOXP3+ cells connected to good prognosis in the analysis
of OS/no notable correlations between CD3+ and CD8+
cells and the tumor’s clinical characteristics.

Conroy et al. (2021)
(76)

SCC/EAC I–IV 95 CD3/CD8/CD45RO/CD56/
CD68/CD69/CD107/IFN-g/IL-
4/IL-10/IL-17/TGF-b/FOXP3

Higher expression of CD45RO+, CD8+, and CD3+ within
SCC stroma than EAC. Pro- and anti-inflammatory profile
of EC expression of IL-17 and TGF-b in the stroma of
both EAC and SCC higher expression of IFN-g and FoxP3
in SCC. Higher IL-10 expression in EAC. CD3+, CD8+,

and CD45RO+ are not associated with OS.

Haddad et al. (2022)
(77)

EAC I-II-III 43 CD3/CD4/CD8/CD20/
CD45RO/CD68/
CD163/FOXP3

CD8+ independent prognostic factor for OS. High levels of
CD3+, CD4+, CD8, and CD45R0 TILs correlate with better
DFS. Higher level of TILs (CD3+, CD4+, CD8+, and
CD45R0+) associated with tumor response after
neoadjuvant chemotherapy

Soeratram et al. (2022)
(78)

EAC I–IV 188 PD-L1/FOXP3/CD8/TAICs The high density of CD8+, FOXP3+, PD-1+, and TAICs is
associated with a better response. Increased density of
TAICs in pretreatment biopsies related to response to
nCRT. High PD-1+TAIC density associated with worse OS

Nomoto et al. (2022)
(79)

EC I–IV 433 PD-1/PD-L1/CD57/CD8/CD27 ↑ PD-1 expression on TILs is associated with high overall
mortality, ↑PD-1 and PD-L1 expression is associated with
worse OS

Noma et al. (2023)
(80)

EC I–IV 300 CD3/CD8 IS as an independent prognostic factor positively
associated with better OS

Hui Wang et al. (2023)
(81)

ESCC I–IV 118 CD4/CD8/FOXP3/IL-10/IgG4 CD4+ is associated with better prognosis, higher density of
CD4+ + CD8+ correlates with better survival, IgG4 positive
B-cells in serum are associated with poor prognosis
ALC, Absolute lymphocyte count; CSS, Cancer-specific survival; CT, Tumor center; DFS, Disease-free survival; EAC, Esophageal adenocarcinoma; EC, Esophageal cancer; ESCC, Esophageal
squamous cell carcinoma; IDO1, Indoleamine 2;3-dioxygenase-1; IFN-g, Interferon-gamma; IgG4, Immunoglobulin G4; IL-10, Interleukin-10; iNOS, Inducible nitric oxide synthase. MAGE-C2,
Melanoma-associated Ag-C2; nCRT, Neoadjuvant chemoradiation therapy; OS, Overall survival; PD-1, Programmed Cell Death Protein 1; PDL-1, Programmed Cell Death Ligand 1; PFS,
Progression-free survival; PSCCE, Primary small cell carcinoma of the esophagus; sTIL, Stromal tumor-infiltrating lymphocytes; TAICs, Tumor-associated immune cells; TC, Tissue microarray;
TGF-b, Transforming growth factor-b; TP, Tumor periphery.
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to be associated with poorer prognosis. Additionally, CD4+ regulates

IgG4-positive B lymphocytes in TME by producing IL-10 (81).

Within developing and inspiring immunotherapies, immune

checkpoint inhibitors (ICBs) targeting the programmed cell death

1/programmed cell death ligand 1 (PD1/PDL1) axis have garnered

notable recognition, including the prestigious Nobel Prize in 2018
Frontiers in Immunology 08
(116). These inhibitors have been granted approval for application

across various solid tumors. Upon encountering the MHCs, T-cells

release IFN-g, thereby augmenting the efficiency of tumor

eradication. In response to IFN-g released by CD8+ T-cells, the

expression of PDL1 is upregulated on tumor cells. Concurrently,

TCR signaling triggers the upregulation of PD1 on the surface of T-
TABLE 2 Pancreatic cancer.

First
author

Year Cancer Tumor
stage

No. of
patients

Markers Result(s)

Lianyuan
et al.
(82)

2018 PDAC I–IV 155 TIL(CD45) Low stromal TIL associated with lower OS and
higher liver metastasis

Zhang
et al.
(83)

2018 PDAC I–IV 143 CD8/CD4 CD8+ T-cell independently contributes as a
favorable factor for OS. CD4+ T-cells had a
controversial role in prognosis.

Tahkola
et al.
(84)

2019 PDAC I–III 79 CD3/CD8 Higher ICS is associated with better OS

Delayre
et al. (85)

2020 PAC I–IV 43 CD4/CD8/CD3/CD45/FOXP3 High CD3+ favorable pathological characteristic.
High CD4+/CD3+ ratio linked to reduced
survival. Low FOXP3+/CD8+ ratio associated
with longer DFS

Fraune
(86)

2020 PDAC adenocarcinomas of
the ampulla of Vater and
acinar cell carcinomas

II 597 MMR proteins MLH1, PMS2,
MSH2, or MSH6/
CD8

MMR deficiency is associated with higher CD8+
infiltration

Bas ̧oğlu
et al.
(87)

2022 PDAC I–III 81 CD103/CD204/
PDL-1

intra-tumoral CD103 expressing CD8+

T-cells are associated with OS and DFS. No
correlation between PDL-1 and survival
DFS, Disease-free survival; ICS, Immune cell score; MMR, Mismatch repair; OS, Overall survival; PDAC, Pancreatic ductal adenocarcinoma; PDL-1, Programmed Cell Death Ligand 1, TILs;
Tumor-infiltrating lymphocytes
TABLE 3 Gastric cancer.

First
authors

Year Cancer
Tumor
stage

No. of
patients

Markers Result(s)

Kim et al.
(88)

2017 GC
I-IV 153

CD3/CD8 PDL-1 positive and high IS are correlated with better prognosis

Jiang et al.
(89)

2019 GC
I-IV 879

CD3/CD8/CD45RO/CD66b High IS is associated with better OS and DFS

Zhang
et al. (90)

2019 GC
I-III 833

TIL High TIL correlates with better OS

Kemi et al.
(91)

2020 GC
I-IV 741

CD3, CD8, and KM grade Both IS and KMgrades are prognostic factors in GC.

Yun et al.
(92)

2021 GC
II/III 389

CD3, CD8, and FOXP3
High IS associated with better DFS and OS in both MSS/MSI-low

and MSI-high group

Zou et al.
(93)

2021 GC
II-III 101

CD3 and CD8 IS positively correlated with better OS and DFS

Ni et al.
(94)

2021 GC
I-IV 584

CD20 High CD20+ B cell associated with better OS and DFS

Yan et al.
(95)

2021 GC
I/III 273 DC, Mast cell, CD4, CD8,

Th17, CD56, Ba, Bm
Low IS group had longer DFS and OS. Low IS with more TIL had

better response to adjuvant chemotherapy
DFS, Disease-free survival; GC, Gastric cancer; IS, Immunoscore; KM grade, Klintrup–Mäkinen grade; MSI, Microsatellite instability; MSS, Microsatellite Stability; OS, Overall survival; PDL-1,
Programmed Cell Death Ligand 1; Th17, T-helper 17; TILs, Tumor-infiltrating lymphocytes.
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cells. The interaction between PD1 and PDL1 imposes negative

regulatory effects, attenuating the anti-tumor function of T-cells

(117, 118) (Figure 4). T-cells previously rendered inactive can be

revitalized by targeting the PD1/PDL1 interaction through
Frontiers in Immunology 09
immunotherapy, reinstating their potent anti-tumor capabilities.

The PD1/PDL1 blockade is emerging as a hopeful treatment option

for cancer, showing impressive antitumor reactions while causing

only minor side effects (119).
TABLE 4 Colorectal cancer.

First
author

Year
Cancer

Tumor
stage

No. of
patients

Markers Result(s)

Williams
et al. (96)

2019
CRC II/III 1256 TIL Despite the MSI status, TIL-low status showed poor DFS

Chalabi
et al. (97)

2020
CRC I-III 40 CD8, PD-1

CD8+ PD-1+ T-cell infiltration predicted pathologic response neoadjuvant
chemotherapy in pMMR tumors (27% of patients)

Pagès et al.
(98)

2020
CRC III 1322

CD3 and
CD8 (CT+ IM)

IS was notably independently linked to DFS when considering adjustments for
sex, histological grade, T/N stage, and MSI.

Mlecnik
et al.
(99)

2020
CRC III 763

CD3 and
CD8 (CT+ IM)

IS as a predictor for CRC patients’ survival.
RFS was 56.9%, 65.9%, and 76.4% in patients with low, intermediate, and high IS,
respectively

Reichling
et al. (100)

2020
CRC III 1018

CD3, CD8
(CT+ IM)

Higher CD3+CT, CD3
+
IM, and CD8+CT densities were significantly associated with

a more prolonged RFS.

Zou et al.
(101)

2021

CRC I-IV

Two
cohorts:
282 and
335

CD8 MeTIL
A lower CD8+ MeTIL score (abundance of CD8+ TILs) was linked to MSI-H
tumors and predicted enhanced survival in cohorts of CRC patients.

Marie et al.
(102)

2021
CRC IV 24

PDL-1, CD20
and CD73

A B-cell transcriptome signature and B-cell density increase were present in post-
treatment samples from patients with prolonged RFS.

Johnson
et al. (103)

2022
CRC IV 29 CD8

Higher initial density of CD8+ TIL was linked to an increased probability of
deriving benefits from immunotherapy.

Kuang
et al. (104)

2022
CRC IV 30 CD8

Higher initial density of CD8+ TIL was linked to an increased probability of
deriving benefits from immunotherapy.

Elomaa
et al. (105)

2022
CRC I-IV 983

CD3 and
CD8

A high T-cell proximity score was associated with longer CSS

Xin et al.
(106)

2023
CRC IV 111

CD4, CD8,
and PDL-1

CD8+ infiltration in primary tumors independently served as a predictive factor
for OS.
CD8+ MeTIL, DNA methylation signature for CD8+ TILs; CRC, colorectal cancer; CSS, cancer-specific surviva; CT, Tumor center; DFS, Disease-free survival; IM, Invasive margin; IS, Immunoscore;
MSI, Microsatellite instability; OS, Overall survival; pMMR, Proficient mismatch repair, RFS, Relapse-free survival; T/N stage, Tumor/Nodal stage; TIL, Tumor-infiltrating lymphocytes.
TABLE 5 Hepatocellular cancer.

Author Year Cancer Tumor
stage

No. of
patients

Markers Result(s)

Wang
et al.
(107)

2019 HCC I-IV 40 TOX on CD8 T-
cell

Elevated levels of TOX in peripheral CD8+ T-cells are associated with
diminished effectiveness of anti-PD1 treatments and poorer prognosis

Kim et al.
(108)

2020 HCC I-IV 79 4-1BB Increased 4-1BB (pos) cell expression on CD8+ TILs is linked to tumor
reactivity, T-cell activation, and better prognosis.

Gao et al.
(109)

2021 HCC I-IV Two
phases:
315 and
343

TIL Higher TILs are associated with OS and DFS

Stulpinas
et al.
(110)

2023 HCC I-IV 106 CD8 in tumoral
and non-tumoral

region

High CD8+ density in tumor edge and low CD8+ density within non-tumoral is
associated with OS. Higher CD8+ density in the epithelial stroma is associated

with higher RFS.

Kuwano
et al.
(111)

2023 HCC I-IV 39 CD8 T-cell High CD8+ TILs group had longer PFS Atezolizumab plus bevacizumab group.
DFS, Disease-free survival; HCC, Hepatocellular carcinoma; OS, Overall survival; PD-1, Programmed Cell Death Protein 1; TILs, Tumor-infiltrating lymphocyte; TOX, Thymocyte selection-
associated HMG BOX.
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Despite recognizing anti-PD1/PDL1 therapy as a significant

breakthrough, clinical data have revealed limited response rates.

Studies have shown that a substantial proportion of patients exhibit

primary resistance, failing to respond to PD1/PDL1 blockade, while

some other initial responders eventually develop acquired resistance

(120). The association between the expression of PDL1 and PD1

and its impact on cancer prognosis continues to be a subject of

ongoing scientific debate (121). Furthermore, the underlying

mechanisms contributing to primary and acquired resistance to

PD1/PDL1 therapy remain largely elusive, presenting a significant

challenge in the field (122). Researchers are actively investigating

the intricate association between PD1/PDL1 expression and TIL

composition to unravel the underlying complexities and understand

these interactions more deeply. Advancements in this area promise

to improve the efficacy of PD1/PDL1-targeted therapies and

ultimately optimize clinical outcomes (121).

In a large cohort study involving 433 patients who underwent

curative resection for EC, the expression of PD-1 on TILs and

cancer cells was meticulously evaluated (79). The study assessed the

relationship between PD-1 expression and OS in patients with and

without preoperative treatment. Notably, high PD-1 expression on

TILs was found to be associated with poorer OS, specifically in

individuals who did not receive preoperative therapies. Conversely,

no significant difference in OS was observed in patients who

underwent preoperative treatments. Furthermore, the researchers

implemented a classification system that categorized patients into

three distinct groups based on the expression levels of PD-1 and

PD-L1. Group 1 encompassed individuals with high expression of

both PD-1 and PD-L1, Group 2 consisted of patients with high PD-

1 expression but low PD-L1 expression (or vice versa), and Group 3
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consisted of individuals with low expression of both PD-1 and PD-

L1. Notably, a significant disparity in OS was observed among these

three groups, as evidenced by a log-rank P-value of 0.0017.

Specifically, the 3-year OS rates were 58% in Group 1, 65% in

Group 2, and 74% in Group 3 (79).

Additionally, Soeratram et al. (78) explored immune landscape

patterns in the TME before and after neoadjuvant chemoradiation

(nCRT). They were applying a comprehensive image analysis of

digital image whole slides.; they revealed that the high mean density

of combined CD8+, FOXP3+, and PD-1+ TILs in tumor epithelium

(in tumor nest contact with tumor cells; distance < 20mm) and

stroma (in tumor stroma not contact with tumor cells; distance >

20mm) of biopsies was associated with the better histopathological

response (tumor regression grade) in 188 post‐nCRT resected

specimens, and only CD8+ was associated with outcome (78).

With the aim of evaluating the changes in immune markers after

nCRT and the prognostic significance in esophageal squamous cell

carcinoma (ESCC), Zhou et al. (74) analyzed indoleamine 2,3-

dioxygenase 1 (IDO1), CD8+, and PD-L1 expression in 138 patients

with ESCC who underwent nCRT and esophagectomy without

achieving complete pathologic response were included for

analysis. They demonstrated that the expression levels of IDO1

[an immune inhibitor that suppresses T-cell function (123, 124)],

PD-L1, and CD8+ density increased significantly after nCRT (P-

value < 0.01 for all). Patients with high IDO1 expression after nCRT

had poorer OS (P-value = 0.001). High post-CRT CD8+ density was

significantly correlated with more favorable OS (P-value = 0.01) and

relapse-free survival (RFS) (P-value = 0.008). However, neither pre-

nor post-CRT PD-L1 expression was an independent prognostic

factor for survival (74).
FIGURE 4

Mechanism of inhibition of PD1/PDL1 axis by tumor cells: After activation of CD 8+ T-Cell by MHC-I, IFN is secreted and activates the transcription
factor IRF in the nucleus and, finally, the expression of PDL 1 in tumor cells. On the other hand, TCR signaling leads to an increase in the PD1
expression on the surface of T cells and the activation of the PD 1/PDL 1 axis, and the interactions between these two ultimately reduce the
antitumor effects of T cells. Anti-PD1/PDL1 antibodies, as an effective treatment method, block the PD1/PDL1 function and increase immune cells’
antitumor activity (Created with BioRender.com).
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Interestingly, infiltration of TILs can be divergent in different

types of EC, in which a study in 2021 by Conroy et al. showed that

expression of CD8+ and, CD45RO+, and FOXP3+ are higher in

squamous cell carcinoma (SCC) in comparison to esophageal

adenocarcinoma (EAC) (76). However, this study also claims that

there is no association between the expression of CD3+, CD8+, and

CD45RO+ in the tumoral and stromal regions of EAC and SCC with

OS (76). Despite all, a recent meta-analysis of 30 articles comprising

5,122 patients for the role of TILs in the prognosis of EC patients

revealed that increased levels of generalized TILs (HR= 0.67, 95%

CI= 0.47–0.95, P-value = 0.02), CD8+[HR= 0.68, 95% confidence

interval (95% CI)= 0.60–0.78, P-value <0.001], and CD4+(HR=

0.70, 95% CI= 0.57–0.85, P-value <0.001) were associated with

better OS and is not correlated with DFS. However, high levels of

CD3+ and FOXP3+ were not correlated with OS and DFS of EC

patients (125).
4.2 Pancreatic cancer

Pancreatic cancer (PC) is one of the poor prognosis cancers

with a survival rate of 5 years below 5% (126). Poor perfusion

environment, which leads to a reduction in the distribution of

treatment agents and immune cells into the tumor, and also low

TILs infiltration in the core of the tumor, which is called “cold

tumor,” are the main reasons for treatment challenges and

progression of PC cancer (127, 128)

Tahkola et al. (84) assessed the density of CD8+ and CD3+ in

tumor area and invasive margin (IM) in 79 pancreatic ductal

adenocarcinomas (PDAC) patients after surgery by digital image

analyses and introduced immune cell score (ICS) (84). The patients

were divided into three groups with a range of ICS 0 (low CD3+ and

CD8+ densities) to ICS 4 (high CD3+ and CD8+ densities) in both

regions. The results revealed that higher ICS is associated with

better OS and prognosis (84). They also compared two techniques

for evaluating TILs in tumoral tissues. They found that the

correlation of TIL density in the whole-section technique with

survival is higher than in the hotspot technique (84) (Table 2).

The study evaluated the density of TILs in 155 surgically

resected PDAC tissues using H&E staining. The tissues were

divided into two groups based on their TIL density: stromal TIL-

positive and stromal TIL-negative. Results showed that stromal

TIL-negative status was an independent predictor of both worse OS

(HR=2.80, 95% CI= 1.75-4.48, P-value <0.01) and liver metastasis

(HR=2.7, 95% CI= 1.80-4.06, P-value <0.01) (82). Interestingly, this

study claimed that TILs can hinder cancer progression through the

secretion of TNF-alpha on tumoral cells (82). Previous studies

propose that TNF-alpha can induce apoptosis in cancer cells, and

its role in different cancers, such as pancreatic and colorectal cancer,

has been proved (129–131).

Zhang and colleagues (83) reported that the location and

distribution of TILs in the TME can impact the prognosis of

patients with PDAC. They conducted IHC staining on 143 PDAC

samples to evaluate TILs in the intraepithelial (lymphocytes in

direct contact with tumor cells) and intratumoral (lymphocytes

within the tumor tissue) regions. The study found that CD8+ T-cell
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intraepithelial attack was an independent favorable prognostic

factor for OS and negatively correlated with vascular invasion.

Conversely, high intratumoral CD8+ T-cell infiltration without

CD8+ T-cell intraepithelial attack was a poor prognostic factor,

accompanied by T-stage progression. The study highlights the

potential importance of intraepithelial immune responses in

developing and treating PDAC (83).

Delayre et al. (85) used tissue microarray from 43 patients with

left-sided (body and tail) PC specimens that went through IHC of

TILs (CD8+, CD 45+, CD3+, CD4+, FOXP3+), CAFs (vimentin, a-
smooth muscle actin aSMA), and functional markers (PD-L1 and

Ki-67) to examine their association with DFS and OS using

computer-assisted quantitative analysis (85). Results proposed

that a high CD4+/CD3+ lymphocyte ratio, along with a low

aSMA/vimentin ratio, is correlated with poorer survival. Further,

a high FOXP3+/CD8+ ratio was also associated with poorly

differentiated tumors (85).

CD8+ memory T-cells (like non-circulating tissue-resident

memory cells) stay long in tumoral tissue and play a crucial role

in immune suppression (132). The members of tissue-resident

memory T-cells induce their anti-cancer effects through

overexpression of E-cadherin and improve the cytotoxicity of T-

cells (133). A study on 81 operated PDAC patients was done to

investigate the prognostic role of tissue-resident memory T-cell and

TME features (87). Samples from intra-tumoral and peritumoral

areas for evaluating tissue-resident memory cells, TILs, CD204+

macrophages, tumor stroma, and PDL1+ have been collected and

underwent the staining process. Higher expression of intra-tumoral

tissue-resident memory cell counts was associated with better

survival (P-value = 0.84) in PDAC patients (87). Decreased

survival was observed in tumors with increased CD204+ tumor-

associated macrophages, which were immunosuppressive elements

of the microenvironment (P-value = 0.29). Also, there was no

correlation between the expression of PDL-1+ and survival in 81

operated PDAC tissues (87).

A systematic review and meta-analysis, which included 39

investigations on PDAC, was done by Orhan et al. (134) in 2020.

They revealed that upregulation of CD8+ and CD3+ are associated

with better OS (HR= 0.58, 95% CI= 0.50-0.68) and (HR= 0.58, 95%

CI= 0.50-0.68) respectively, but increased levels of FOXP3+ is

correlates with worse OS (HR= 1.48, 95% CI= 1.20-1.83).

Interestingly, the role of CD4+ in OS is ambiguous (134). Also,

there was no significant difference in the location of immune cell

infiltration in the tumoral tissue (134).

Microsatellites are short, repetitive DNA sequences that are

susceptible to errors when DNA replicates. Microsatellite instability

(MSI) arises from DNA mismatch repair system errors, causing the

accumulation of mutations in microsatellites. There are three MSI

categories: MSI-high (MSI-H), MSI-low (MSI-L), and microsatellite

stable (MSS) (135, 136). Notably, MSI-H/deficient MMR (dMMR)

tumors have a 20-fold higher mutation rate compared to MSS

tumors, and over 80% of MSI-High tumors exhibit a high tumor

mutation burden (TMB) exceeding 20 mutations per megabase

(Mb). TMB positively correlates with the number of neoantigens in

various cancer types (137). TMB is recognized as a predictive

marker for the response to cancer immunotherapy (138, 139).
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High TMB can generate numerous neoantigens that stimulate an

anti-tumor immune response, potentially leading to improved

responses to immunotherapy (140). The elevated mutational

burden and frequent frameshift mutations in MSI-H/dMMR

tumors result in the production of numerous neoantigens

recognized by the immune system, which can trigger lymphocytic

infiltrates (135, 141) (Figure 5).

To study the heterogeneity of MSI status in PC, a tissue

microarray containing 597 tumors was examined through IHC

using MutL protein homolog 1 (MLH1), postmeiotic segregation

increased-2 (PMS2), MutS homolog 2 (MSH2), and MSH6

antibodies to detect MMR proteins and automated digital image

analysis of CD8+. The results demonstrated markedly higher

CD8 + in tumors “with” than “without” MMR deficiency (P-

value < 0.0001), suggesting a role of MSI in the immune response.

The significantly higher CD8 density in MMR deficient compared

with MMR intact PCs may thus provide an additional hint towards

a potential utility of ICI in the PCs (86). In a study involving 108

patients with PDAC, Tahkola et al. (142) assessed the Immune Cell

Score (ICS) by quantifying the number of immune cells (CD3+ and

CD8+) within the tumor core and invasive margin. The evaluation

involved the utilization of tissue microarrays, IHC, and digital

analysis, along with the application of MLH1 immunostaining to

identify tumor tissues with MSI. The study found a significant
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correlation between a high ICS and improved disease-specific

survival (DSS) and OS in PDAC patients. Notably, there was no

observed connection between MSI status and ICS or the survival

outcomes of individuals with PC (142). Still, more efforts must be

made to investigate the association of MSI and TIL infiltration in

patients’ prognosis and clinical characterization.
4.3 Gastric cancer

Advanced gastric cancer (GC) continues to pose a significant

challenge, with a relatively low median survival of approximately

12-15 months (143, 144). It has become evident that relying solely

on the TNM staging system is insufficient for accurately predicting

prognosis and determining the appropriate benefits of adjuvant

chemotherapy for patients with stage II and III GC following

surgical intervention. As a result, researchers are actively

investigating additional factors that can complement the TNM

staging system in order to improve prognostic accuracy and guide

treatment decisions for these patients.

Early in 1922, McCarty was the first one who brought up the

concept of TILs, and considered the infiltration of lymphocytes into

tumor tissue as an antitumor activity of the immune system and

suspected that this could be a positive factor for the post-operative

life of GC patients (145). Considering the role of the immune

system in cancer development, in recent years, many efforts have

been made to develop a comprehensive immune system to provide

more accurate prognoses for GC patients.

A study investigated an Immunoscore system that assessed the

density of CD3+, CD8+, and PD-L1 in the epithelial and stromal

compartments of the tumor center (CT) and IM in 153 patients

with MSI-H GC. Combining the analysis of PD-L1 expression and

Immunoscore, the patients were classified into four distinct

subgroups, demonstrating a significant difference in OS. The PD-

L1 (+)/Immunoscore Low group exhibited the worst prognosis,

while the PD-L1 (+)/Immunoscore High group showed the best

prognosis. Multivariate analysis identified the combined status of

PD-L1 expression and Immunoscore as an independent and

significant prognostic factor for OS in patients with MSI-H GC

(88) (Table 3). In a subsequent study by Jiang et al. (89) involving

879 gastric cancer (GC) patients, it was demonstrated that a higher

Immunoscore group was associated with a significant survival

advantage in terms of overall survival (OS). The study employed

the least absolute shrinkage and selection operator (LASSO) Cox

regression model to construct a classifier. The Immunoscore was

calculated using a specific formula incorporating the densities of

four distinct immune cell types (CD3+, CD8+, CD45RO+, and

CD66b) from both the CT and IM regions (89).

Zou et al. (93) conducted a retrospective analysis of 101 GC

patients (stage II-III) who underwent gastrectomy followed by

chemoradiotherapy. The study aimed to assess the prognostic

value of IS, which was determined by IHC staining of CD3+ and

CD8+ T-cell counts in both the CT and IM regions. Based on the IS

levels, patients were categorized into three groups. The results

revealed that GC patients with higher IS levels exhibited

significantly improved DFS (P-value < 0.001) and OS (P-value <
FIGURE 5

MSI status leads to a potent immune response. Neoantigens are
produced by tumor cells due to genomic mutations, such as
mutations in the DNA mismatch repair system (MMR) that lead to
microsatellite instability (MSI). These antigens interact with T cell
receptors (TCR) to increase the production of TILs. TILs recognize
these antigens and induce a robust immune response (Created with
BioRender.com).
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0.001). The IS demonstrated superior predictive ability compared to

the traditional pathological TNM (pTNM) staging system (Area

Under the ROC Curve [AUC]: 0.801 vs. 0.677 and 0.800 vs. 0.660

for DFS and OS, respectively) (93).

In a study by Zhang et al. (146), a scoring system incorporated

intratumoral and stromal TILs in a cohort of 833 patients with stage

I-III GC. The analysis revealed a significant association between

TILs and various clinicopathological parameters, including tumor

size, histological grade, lymph node metastasis, nerve invasion,

tumor thrombus, pathological TNM stage, and World Health

Organization subtypes. Moreover, high levels of TILs (hi-TIL)

were identified as a positive and significant predictor of OS using

Kaplan-Meier survival analysis (P-value < 0.001) and multivariate

Cox regression analysis (HR = 0.431, 95% CI: 0.347-0.534, P-value <

0.001). Additionally, patients with high-TIL tumors demonstrated

improved DFS and OS following curative surgery compared to

those with low-TIL tumors (146).

Studies have shown that B-cells in the TME have a dual role in

promoting or inhibiting tumor growth (147). Consistent with the

potential role of B-cells in anti-tumor immunity, Ni et al. (94)

conducted a study involving 584 GC patients who underwent

radical gastrectomy and found that increased infiltration of

CD20+ B-cells in GC was independently associated with

significantly improved OS and DFS. The study also revealed high

CD20+ B-cell infiltration levels correlated with lower lymph node

metastasis rates and lower pathological TNM stage. Furthermore,

both univariate and multivariate Cox regression analyses

demonstrated that CD20+ B-cell infiltration served as an

independent protective factor for prognosis (94).

In a meta-analysis conducted in 2020, it was observed that

elevated infiltration of CD3+, CD8+, and CD4+ T-cells within the

TME of GC was significantly associated with improved OS

outcomes. While it has been postulated that FOXP3+ Tregs may

induce immune suppression within the TME and consequently

exacerbate GC prognosis, the meta-analysis revealed that FOXP3+

Treg infiltration did not exhibit a definitive association with clinical

outcomes. These findings suggest a potential complex interplay

between T-cell subsets and Tregs in the context of GC

immunobiology. This necessitates further investigations to

elucidate their precise roles and the mechanisms underlying their

impact on disease progression (148).

The Klintrup–Mäkinen grade classifies tumor inflammatory cell

infiltrates (including the number of lymphoid cells, neutrophilic

and eosinophilic granulocytes) at the tumor IM using H&E-stained

slides (149). Several studies suggest an association between high

Klintrup–Mäkinen grade and good prognosis in colorectal cancer

(149, 150). In 2020, Kemi et al. (91) conducted a study to assess and

compare the prognostic significance of Immunocore (based on

CD3+ and CD8+ lymphocyte densities at the tumor CT and IM)

and Klintrup–Mäkinen grades and examine the consistency of

Klintrup–Mäkinen grade assessment in GC (91). The study

revealed that a high Klintrup–Mäkinen grade independently

predicted a longer 5-year overall survival (adjusted HR = 0.59,

95% CI: 0.45–0.77) in both the intestinal (adjusted HR = 0.61, 95%

CI = 0.44–0.85) and diffuse subgroups (adjusted HR = 0.52, 95%

CI = 0.31–0.86). Both Immunocore and Klintrup–Mäkinen grades
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emerged as prognostic factors in gastric adenocarcinoma.

Moreover, the Spearman correlation coefficient between the three-

tiered Immunoscore and the two-tiered Klintrup–Mäkinen grade

was found to be 0.425 (91). Recently, Yun et al. (92) established an

IS based on the densities of CD3+, CD8+, and Foxp3+ T-

lymphocytes in CT and IM regions of 389 patients who

underwent surgical resection for stage II/III GC and received

adjuvant chemotherapy with 5-FU. They examined the impact of

this IS on patient survival. The study found that individuals with a

high IS experienced significantly longer DFS (P-value <0.001).

Moreover, the IS was consistent between patients with MSI-H

and Microsatellite Stable (MSS)/MSI-Low status (83.3% and

80.5%, respectively). Further subgroup analysis based on MSI

status revealed that patients with a high IS experienced

substantial DFS and OS benefits in both the MSS/MSI-Low group

(DFS: HR= 0.527, P-value= 0.004; OS: HR= 0.528, P-value= 0.007)

and the MSI-H group (DFS: HR= 0.166, P-value= 0.028; OS: HR =

0.177, P-value = 0.035) (92).

In the study conducted by Yuan et al. (151), the research focus

was on establishing connections between blood markers such as

lymphocytes, monocytes, platelets, and neutrophils and the primary

TME. In order to achieve this, the researchers employed

multiplexed IHC to quantitatively assess proteins within the

tumor environment at a sub-cellular level in a cohort of 80 GC

patients. The study’s findings revealed a significant correlation

between a higher lymphocyte-to-monocyte ratio (LMR) at the

initial assessment and improved immune-related progression-free

survival (PFS), as well as a tendency toward enhanced immune-

related OS. Conversely, a higher neutrophil-to-lymphocyte ratio

(NLR) was linked to poorer immune-related OS (151).
4.4 Colorectal cancer

The relationship between TILs and colorectal cancer (CRC)

patient prognosis was first reported in 1998. Specifically, the study

demonstrated that the infiltration of CD8+ T-cells within cancer cell

nests was associated with patient prognosis in the human CRC

(152). This finding has since been corroborated by subsequent

research and underscores the importance of TILs in progressing

and managing CRC (153–155). In a recent study, Xin et al. (106)

determined that more CD8+ lymphocyte infiltration in either

primary tumors or paired distant metastases predicted an

excellent prognosis (P-value =0.036 and 0.031, respectively). In

multivariate analysis, CD8+ TIL density in primary tumors was an

independent predictive factor for OS (HR= 0.28, 95% CI= 0.09-0.93,

P-value =0.038) (106).

Elomaa et al. (105) conducted a study to assess the prognostic

significance of the spatial distribution of T-cells in CRC. The study

involved using IHC and digital image analysis to identify CD3+ and

CD8+ cells and tumor cells in a total of 1229 CRC samples. The

authors introduced the T-cell proximity score as a novel prognostic

parameter based on evaluating the co-localization of tumor cells

with T-cells. The study’s findings demonstrated that a high T-cell

proximity score was significantly correlated with favorable

outcomes in CRC. Importantly, this association remained
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significant even after accounting for potential confounding factors

such as disease stage, MMR status, and T-cell density score (105)

(Table 4). These results suggest that the spatial arrangement and

proximity between T-cells and tumor cells could be a valuable

prognostic factor in CRC.

Immunotherapy with ICIs has demonstrated clinical benefits in

colon cancer patients, particularly those with microsatellite MSI-H

status. In a clinical study conducted in 2020, pembrolizumab, an

anti-PD-1 agent, exhibited significant improvements in PFS (16.5

vs. 8.2 months) compared to standard treatments as a first-line

therapy for metastatic MSI-H colon cancer patients (156). Although

MSI-H has shown promise as a predictive biomarker for

immunotherapy across pan-cancer, its clinical applicability in

colorectal cancer is limited by its relatively low prevalence among

CRC patients. Additionally, some colon cancer patients with MSI-H

status may still exhibit intrinsic or acquired resistance to

immunotherapy (157). Therefore, the efficacy of MSI status as a

biomarker for immunotherapy in colon cancer patients may be

limited, and alternative or complementary biomarkers should be

explored. Extensive lymphocytic infiltration is more frequently

observed in MSI tumors than in MSS tumors. The relationship

between TILs and MSI status can provide further insight into

differentiating CRC patients with better prognostic outcomes.

Understanding this relationship may help identify additional

factors for predicting prognosis and response to immunotherapy

in colon cancer patients.

In line with the concept mentioned above, Williams et al. (96)

developed a TIL/MMR-based classification system to stratify the

prognosis of CRC subtypes in patients with stage II/III tumors.

Interestingly, the study found that even in the presence of MSI, a

TIL-low status was associated with a clinically aggressive phenotype

(96). This suggests that TIL status can provide additional prognostic

information beyond MSI status alone and may help identify

patients with poorer outcomes despite having MSI-positive tumors.

Indeed, immunotherapies have demonstrated limited efficacy in

the treatment of MSS and MMR-proficient (pMMR) metastatic

colorectal cancer (mCRC) patients (158). However, within the

subset of MSS mCRC patients, evidence indicates that a higher

baseline density of CD8+ TILs is associated with an increased

likelihood of benefiting from immunotherapy. Specifically, a study

involving durvalumab (anti-PD-1) in combination with trametinib

(a mitogen-activated protein kinase inhibitor) demonstrated that

MSS mCRC patients with higher levels of CD8+ TILs at baseline

were more likely to experience positive treatment responses or

clinical benefits (103).

In a study of neoadjuvant immunotherapy (nivolumab [anti-

PD-1] plus ipilimumab [anti-CTLA-4]) for stage I-III colon cancer

patients, CD8+PD-1+ T-cell infiltration was a predictive biomarker

of response in pMMR patients (97).

In a single-arm phase 2 clinical trial conducted by Kuang et al.

(104), the researchers investigated the potential of concurrent

treatment with the DNA methyltransferase inhibitor azacitidine

to enhance the antitumor activity of pembrolizumab in mCRC

patients. The trial enrolled 30 patients who were refractory to

chemotherapy, and the participants received a median of three

cycles of the combined therapy. Notably, the density of CD8+ TILs
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before treatment initiation. Furthermore, a higher baseline CD8+

TIL density was associated with a greater likelihood of benefiting

from the treatment. In addition, the study also observed a

correlation between tumor demethylation during treatment and

tumor CD8+ TIL density increases (104). This suggests that the

demethylation process may play a role in modulating the immune

microenvironment by influencing the density of CD8+ TILs.

In an open-label, single-center pilot trial, combination therapy

of perioperative durvalumab and tremelimumab (an anti-cytotoxic

T lymphocyte-associated antigen 4 antibody) was investigated as a

potential treatment for patients with resectable liver metastasis CRC

—the trial aimed to assess whether this combination therapy could

enhance immune responses in this disease setting. The study

enrolled 24 patients, and the findings showed that four of them

achieved a complete pathological response. Among them, two had

dMMR status, and the other two had POLE (DNA polymerase ϵ)
mutations. Pre- and post-treatment tumor tissue analysis indicated

comparable levels of T-cell infiltration, but there was evidence of

CD8+ and CD4+ activation after treatment. Also, post-treatment

samples from patients with prolonged RFS showed increased B-cell

transcriptome signature and B-cell density (102).

Changes in the epigenetic makeup of TILs have been linked to

how cancer patients respond to immunotherapy. More precisely,

modifications in DNA methylation and histone structure can

impact the activation and functioning of T-cells, potentially

affecting how well TILs can identify and eradicate cancer cells

(159). Zou et al. (101) devised a DNA methylation signature

tailored for CD8+ TILs to assess immune response and prognosis

in CRC. Using Illumina EPIC methylation arrays, they identified

specific DNA methylation patterns in CD8+ T-cells and created a

signature score. Their study revealed that a low CD8+ MeTIL score,

which signifies an abundance of CD8+ TILs, was linked to MSI-H

tumors and predicted improved survival among CRC cohorts.

These findings suggest that the CD8+ MeTIL signature score

could be a valuable prognostic biomarker for CRC, highlighting

the potential of epigenetic signatures in assessing immune response

and prognosis in cancer (101).

Consensus molecular subtypes (CMS) is a classification system

that stratifies CRC into four distinct subtypes based on gene

expression profiling, providing insights into the tumors’

underlying biology and clinical behavior (160). The CMS

classification system has been shown to have prognostic and

predictive value and may help guide treatment decisions and

improve outcomes for patients with colorectal cancer (161). In a

recent study, Hu et al. (162) conducted a comprehensive analysis of

CMS subtypes’ molecular characteristics and immunotherapy

responses using multiple bioinformatics databases. Their findings

suggest that CMS1 patients are more likely to respond positively to

immunotherapy than the other CMS subtypes. This is attributed to

the presence of immune infiltration and activation, which is

significantly higher in the CMS1 subtype than in the other

subtypes. In particular, TILs were found to be significantly more

abundant in the CMS1 subtype (163). These results provide

important insights into the potential use of CMS subtyping to

predict immunotherapy response in colorectal cancer patients.
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ImmunoScore® (IS®) is a novel diagnostic tool that has gained

attention in recent years to predict the risk of cancer recurrence in

patients with CRC. Developed by the Society for Immunotherapy of

Cancer, IS® measures the density of immune cells in tumor tissue,

providing valuable information about the patient’s immune

response to the cancer. The use of IS® has been shown to be an

effective means of predicting the risk of recurrence in CRC patients,

making it a promising tool in the fight against this deadly disease

(164). IS® quantified the density of two types of immune cells,

CD3+ and CD8+ T-cells, in the CT and IM for each case, using a

standardized IHC staining protocol. The stained tissue samples are

then scanned and analyzed using digital pathology software to

generate a score reflecting the immune cells’ density. Next, the

means of four percentiles (two markers and two regions) are

calculated and converted into the IS®. In a three-category IS®

analysis, TIL densities between 0-25%, 25-70%, and 70-100% are

scored as “low,” “intermediate,” and “high,” respectively. In a two-

category analysis, TIL densities between 0-25% are scored as “low,”

while densities between 25-100% are scored as “intermediate-high”

(165) (Figure 6).

Several studies have reported the validity of IS®as a prognostic

marker in patients with CRC, regardless of the type of

chemotherapy regimen used in the treatment (166, 167). In 2018,

the Society for Immunotherapy of Cancer aimed to validate the

Consensus IS®’s accuracy and prognostic value in classifying CRC

patients. The study enrolled 2,681 stage I-III colon cancer patients
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from 14 different international centers. The IS® was determined by

quantifying the density of CD3+ and CD8+ T-cells in the tumor core

and IM using a standardized protocol. The study found that the

patients with a high IS® had the lowest risk of recurrence at five

years vs. patients with a low IS® (HR= 0.20, 95% CI= 0.10-0.38; P-

value <0·0001) (164). Two years later, the Society for

Immunotherapy of Cancer conducted another multicenter study

to explore the association between the IS® and the effect of

chemotherapy on time to recurrence (TTR) in patients with stage

III colon cancer. As expected, the study found that patients with a

high IS® had a significantly prolonged TTR, OS, and DFS (all

P-values < 0.001). Among patients with MSS tumors, the high IS®

was significantly associated with prolonged TTR (HR= 0.36; 95%

CI= 0.21-0.62; P-value = 0.0003). Although, in the high-IS® group,

chemotherapy was significantly associated with survival for both

low-risk [HR (chemotherapy vs. no chemotherapy)= 0.42; 95%

CI= 0.25-0.71; P-value = 0.0011] and high-risk [HR (chemotherapy

vs. no chemotherapy)= 0.5; 95% CI= 0.33-0.77; P-value = 0.0015]

patients; this association was not observed for the low-IS® group (P-

value > 0.12) (99). These results support the implementation of the

consensus IS® as a new component of a TNM-Immune

cancer classification.

In a study by Pagès et al. (98), the three-category IS® was used

to investigate its efficacy in predicting response to oxaliplatin-based

adjuvant chemotherapy in stage III CRC patients. The study found

that patients with a low IS® were at a higher risk of relapse or death

compared to those with an intermediate-high IS® (HR= 1.54; 95%

CI= 1.24-1.93, P-value = 0.0001). The IS® remained significantly

associated with DFS in multivariable analysis when adjusted for

gender, histological grade, T/N stage, and MSI (P-value = 0.003). In

patients treated with mFOLFOX6 [leucovorin calcium (folinic

acid), fluorouracil, and oxaliplatin], a statistically significant

interaction was observed between IS® and treatment duration (3

vs. 6 months) in terms of predicting DFS (P-value = 0.057) (98).

Collectively, these findings suggest that the IS® may be a

valuable prognostic biomarker for predicting patient outcomes

and guiding treatment decisions in colon cancer. In addition,

these studies provide strong evidence for implementing the

consensus IS® as a new component of a TNM-Immune

classification of cancer. The standardized protocol used in the

studies may also pave the way for further international

collaborations and standardization of immune biomarkers in

cancer research.
4.5 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) represents a significant global

health burden, accounting for the third-highest cancer-related

mortality worldwide (1). Recent advances in managing HCC

introduced new therapeutic drugs, such as Lenvatinib, as a first-

line therapeutic agent in unresectable HCC patients (168).

However, the prognosis of HCC cases is poor, and the rate of

recurrence and metastasis is still high (169, 170). Anticipation of

discovering new predictor biomarkers in survival and treatment
FIGURE 6

Schematic Illustration of the Immunoscore (IS) determination. In the
top left image, digital pathology software is used to automatically
identify tumor (CT) tissue, invasive margin (IM), and normal tissue in
colon cancer samples. In the top right images, the software also
automatically detects the numbers of CD3+ and CD8+ T-cells. The
bottom chart illustrates the calculation of the IS for colon cancer.
The method involves converting the densities of CD3+ and CD8+ T-
cells in both the CT and IM into percentile values. Then, the means
of four percentiles are calculated for the IS. In a three-category IS
analysis, the mean densities within the ranges of 0-25%, 25-70%,
and 70-100% are categorized as “low,” “intermediate,” and “high,”
respectively. In a two-category analysis, the mean densities between
0-25% are labeled as “low,” while densities ranging from 25-100%
are classified as “intermediate-high.”
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response of HCC patients and generating personalized treatment

strategies will be increased in the near future.

Several recent studies have assessed the role of CD8+ T-cells as a

significant tumor-infiltrating lymphocyte in the prognosis of HCC.

The result was controversial; Sun et al. showed that high levels of

CD8+ are associated with better prognosis (171) (Table 5).

However, two other studies found no relation or even worse

association between CD8+ density and the survival of patients

(172, 173). Stulpinas et al. hypothesized that the region of

assessment of CD8+ density in HCC samples can affect the

results. Infiltration of lymphocytes in tumor microenvironment

and non-tumoral nearby parenchyma can independently manage

the survival of patients (110). In this study, the samples of 106

patients with HCC underwent H&E staining and hexagonal grid-

based digital image analysis. The density of CD8+ T-cells was

measured in malignant and non-malignant regions of the

samples. Outcomes revealed that an increase in the standard

deviation of CD8+ density in tumors is positively associated with

better OS (HR= 0.41, P-value= 0.0026). In apposition, higher mean

CD8+ density in non-tumoral parenchyma is an independent factor

in worsening OS (110). Interestingly, in the next step, the authors

create a new score for the prognosis of HCC patients by measuring

another parameter. The combined OS risk score consists of 5 items.

A higher score is correlated with intravascular invasion of the

tumor, long duration of surgery, blood Basophil count > 0.055 ×

109/L, and aspartate transaminase (AST) level > 135 U/L, which

causes worsened OS. Also, stage pT1 of HCC, bigger tumor size,

higher mean CD8+ density in the non-malignant region, wider

tumor-free margin, and shorter time of surgery are associated with

shorter regression‐free survival (110).

In another theory, the controversial effect of CD8+ T-cells in the

prognosis of cancer can result from regulatory cells in the tumor

microenvironment, which can affect the function of CD8+ T-cells

(174). Exhausted CD8+ T-cells lose their effective cytotoxic capacity.

Also, cytokine secretion and proliferative ability of the T-cell is

decreased (175). Exhaustion in CD8+ T-cell causes expression of

inhibitory receptors such as PD1 and T-cell immunoglobulin and

mucin-domain-containing-3 (TIM3) (176). Despite advances in

PD-1 blocked therapy in different cancers, the optimal response

still depends on T-cell infiltration and function in the tumor

environment (177). As a result, discovering the proteins and cells

that can affect the CD8+ T-cell function can help to increase the

quality of PD-1 blocked therapy.

In a recent study, Wang et al. assessed the expression level of

thymocyte selection-associated high mobility group box protein

(TOX) in 40 specimens of HCC (107). The role of TOX in T-cell

differentiation has been proved in studies (107, 178). Wang et al.

divided the HCC samples into three groups for evaluating the CD8+

T-cell, including good effector function (PD-1-TIM3-), moderate

exhaustion (PD-1int TIM3+) and severe exhaustion (PD-1hi TIM3+).

Under transcriptome sequencing analysis, the expression of TOX

was higher in the group of PD-1hi TIM3+ CD8+ T-cells (107).

Additionally, the knockdown of the TOX gene is associated with

better anti-tumor function of CD8+ T-cells. In fact, TOX promotes

PD-1 recycling on CD8+ T-cells through inhibiting RAS and PI3K-
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Akt pathways, which hinder the lysosomal digestion of PD-1 on

CD8+ T-cells (107). In addition, lower levels of TOX on CD8+ T-

cells in the periphery are associated with better prognosis and lower

TNM stages in HCC patients (107). These findings open new

insights into improving the PD-1 blocked therapy by

downregulating TOX expression, which enhances CD8+ T-cells

from exhaustion level.

Another way to increase the quality of PD-1 blocked therapy is

to select co-stimulatory receptors, which enhance T-cell

differentiation and cytotoxic functions (179). Kim et al. showed

that CD137L is one of the most co-stimulatory receptors expressed

in HCC. This study was performed on 79 patients with HCC and

demonstrated that CD137L expression is higher in PD-1high CD8+

T-cells (108). To evaluate the effect of CD137L expression on PD-

1high CD8+ T-cells function, the amount of CD39+CD103+ CD8+

TIL subsets was measured and demonstrated that an increased level

of CD39+CD103+ is observed in CD137L positive cells, which is

associated with activation of T-cells and tumor responsiveness.

Besides, the CD137L expression on PD-1high CD8+ T-cells

renovates the potency and proliferation of T-cells (108). In vitro

assay of CD137L agonistic antibody effect on CD8+ TILs

demonstrated a notable increase in proliferation of CD8+ T-cells

and production of IFN-g and TNF-a. Kim et al. proved that

combination therapy of T-cells with 4-1BB co-stimulatory

agonists and PD-1 blocked can improve the strength of T-cells in

HCC (108).

Altogether, finding new pathways of markers that affect the T-

cell Exhaustion and regulate their expression besides PD-1 blocked

therapy can provide new promising immunotherapeutic strategies

in managing HCC.

Advances in immune checkpoint inhibitor therapy, such as PD-

1 blockade and targeted molecular therapy, have unveiled novel

systematic approaches to anti-cancer treatment for HCC patients.

Finn et al. proved that combination therapy with Atezolizumab

(anti-PD-L1) plus Bevacizumab (anti-VEGF monoclonal antibody)

increases OS and PFS of HCC patients and replaced as the primary

chemotherapy line in advanced HCC patients (180). Despite this,

HCC is still a poorly controlled cancer, and new personalized

therapeutic strategies are needed. Kuwano et al. measured CD8+

T-cell as a predictive marker for progression-free survival in

patients who underwent Atezolizumab plus Bevacizumab and

Lenvatinib alone treatments. Lenvatinib is a molecular inhibitor

of multiple receptor tyrosine kinases such as fibroblast growth

factor (FGF), VEGF, and platelet-derived growth factor (PDGF)

receptors. It is one of the first-line choices in treating unresectable

HCC (181). Computed tomography (CT) or magnetic resonance

imaging (MRI) were tools used in this study to evaluate the response

to treatment every 6 to 12 weeks. Immunohistochemistry of CD8+

T-cells of HCC biopsy in 24 patients before treatment with

atezolizumab plus bevacizumab demonstrated that higher CD8+

T-cells are associated with better progression-free survival.

However, no correlation has been found between high CD8+ T-

cell density in tumoral biopsy and Lenvatinib alone treatment (111).

This study suggests a personal therapeutic strategy in HCC patients,

though tumor liver biopsy is invasive. Nevertheless, new non-
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invasive strategies are needed to find markers for predicting

treatment response in HCC patients.

The existence of TILs in the tumor microenvironment of the

cancer is an essential component for the response and activation of

immunotherapeutic agents (182)

Gao et al. showed that evaluating the prognosis of overall

immune markers of TILs can bring newer approaches in HCC

management and eliminate the limitation and biased information of

valuing the subpopulations of TILs individually (109). This study

was accomplished in two phases. The first phase was estimating the

TILs density in 315 samples of HCC patients by H&E staining,

which is called WCH set, and the next phase was validating the

prognosis of TILs in 370 HCC patients from The Cancer Genome

Atlas (TCGA). The tumors were categorized into three groups: high

TILs ≧ at 50%, intermediate TILs between 10% and 50%, and low

TILs < 10%. The results prove that OS and DFS is better in higher

(OS, HR= 0.33 (0.13-0.83), P-value= 0.02, DFS, HR= 0.21 (0.09-

0.52), P-value= 7.86 × 10-4) and intermediate (OS, HR= 0.54 (0.34-

0.86), P-value= 0.01, DFS, HR= 0.34 (0.21-0.56), P-value= 1.56 ×

10-5) TILs groups in WCH set. Also, this data is validated in the

TCGA set, confirming that low TIL density was associated with

worse OS and DFS. In conclusion, the result of this study suggests a

promising approach to using TIL density for determining the

prognosis of HCC patients in clinical assessments (109).
5 Future directions toward
precision medicine

There are a considerable number of studies on the function of

TILs in GI tract cancers, which fully show an active immune

response correlates with survival and provides a rationale for TIL

therapy in GI cancers. The intricate interplay between TILs and

tumor cells in TIME has been demonstrated to be a key determinant

of the response to immunotherapy. Currently, PD-L1 expression,

tumor mutation burden (TMB), and MSI-H/dMMR are the sole

predictive biomarkers to determine eligibility for treatment with

ICI, yet they lack robustness (183).

Considering the previously discussed concept, the assessment of

TILs can offer valuable insights into tumor immune response and

potentially serve as an additional parameter for evaluating

treatment outcomes. Considering TILs as a predictive factor for

response to neoadjuvant therapy in preoperative prognostication

could be a significant advancement toward personalized treatment

approaches. In certain cancer types, biopsies have been effectively

employed to assess TILs as predictors of treatment response (184,

185). This demonstrates the potential utility of TIL evaluation in the

clinical practice of GI cancer patients, allowing for identifying

patients who are more likely to respond favorably to specific

therapies, thereby enabling tailored treatment strategies.

In the wake of an immunotherapy revolution and given the

prognostic promise of the Immunoscore classification system in

various cancers. Perhaps the Immunoscore® for colorectal cancer

was the most successful one among all human cancers, which has

demonstrated significant potential as an adjunct or alternative to
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the TNM cancer staging system. Therefore, the International

Immunoscore Project has attempted to standardize immune

measurements in other GI cancers (4). Notwithstanding

encouraging evaluation of its efficacy in CRC, some studies

addressed some shortfalls of the IS system for other cancers. For

instance, in EC, a study utilizing a similar approach as

Immunoscore® failed to detect significant associations between

patient survival and the expression of CD3+, CD8+, or CD45RO+

(5). IS has been subject to scrutiny in other types of cancer, with

several studies raising concerns about its failure in efficacy for not

considering other immune cell infiltrates, including macrophages

and NK cells, as well as the heterogeneity of T-cell infiltrates within

the TIME (6).

Indeed, the individual lymphocyte subsets within the TME are

crucial but insufficient for effective tumor immune control. The

success of an antitumor immune response depends on various

factors, including the proper localization of TILs, clustering,

interplay, and costimulation of all lymphocyte subsets. These

subsets coordinated, and synergistic action contributes to an

effective immune response against tumors. Proper identification

of the presence and location of TILs within the tumor tissue and

their distribution and proximity to tumor cells can provide valuable

information for predicting prognosis and therapy response.

This may suggest that a more extensive IS may be required for

other GI cancers compared to what is currently proving successful

for CRC. Among others, Wen et al. (7) have proposed a novel four-

score system for GC that integrates the expression of CD8+, PD-L1

on tumor cells and immune cells, and PD-1+ on immune cells. This

approach exhibits potential for superior prognostic application

compared to existing models for GC patients. There is another

challenge to incorporating the assessment of TILs into routine

clinical practice for GI cancer oncology and pathology reporting

due to the existence of several distinct methods for histological

quantification of TIL subsets, each with its own specific scoring

technique or cut-off. To establish reference values and confirm the

validity of such approaches, extensive homogenous comparative

analyses are necessary prior to the routine implementation of TIL

assessment in the pathology of GI cancers. Moreover, Artificial

intelligence (AI) is poised to transform the field of pathology by

enabling more efficient and accurate diagnoses, as well as more

personalized treatment plans. By leveraging machine learning

algorithms to analyze large datasets and identify subtle patterns,

AI has the potential to improve the accuracy and speed of pathology

diagnoses, ultimately leading to better patient outcomes (186).

Automatic digital machine learning presents a promising tool for

assessing TILs precisely and consistently. This advanced technology

allows for the simultaneous evaluation of complex TIL composition

and localization using multiple defining markers while minimizing

interobserver variability commonly encountered with manual

assessment techniques (187). The use of an automated signature

of CD8xPD-L1 has been reported as a predictive marker in non-

small-cell lung cancer patients (188). However, further investigation

is required to determine the optimal implementation and

integration of digital analysis as an independent technology into

daily clinical practice to fully leverage its potential benefits (186). A
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recent report demonstrated the agreement between manual and

computational scoring of TILs. Yoo et al. (189) developed an open-

source software-based analytic pipeline to quantify TILs from

whole-slide images of 578 stage III or high-risk stage II CRC

patients, which were stained for CD3+ and CD8+ using IHC. The

findings indicated acceptable concordance between the automatic

quantification of TILs and visual inspection by a pathologist,

supporting the reliability of the computational approach (189). A

semi-automated approach may be the most effective to optimize the

application of digital analysis findings. In this method, a pathologist

first selects the area of interest to ensure that a representative field is

evaluated. Subsequently, a computer application or software is

utilized to identify and provide an estimation of TILs in the

selected area. The recent introduction of an open-source

algorithm for the automated evaluation of TILs in melanoma is a

notable development that has generated enthusiasm among

researchers (190). This innovative tool has the potential to

significantly advance the field of digital pathology by streamlining

the evaluation process and improving the accuracy and reliability of

TIL assessment. Finally, adopting a universally established method

and cutoff for evaluating TILs of each cancer could make the

quantification process more effective and promote their clinical

implementation. This approach would enhance the consistency and

reproducibility of TIL assessment across different laboratories and

improve their clinical relevance and utility in cancer diagnosis and

treatment. Moving on from the role of TILs in forecasting the

prognosis into therapeutic utilities, we postulated that

combinatorial immunotherapy regimens represent a pivotal

approach for optimizing response rates and clinical outcomes in

patients undergoing immunotherapy for cancer treatment.

Specifically, the concurrent targeting of T-cells and NK cells

through ICIs has garnered attention and is currently being

translated into clinical practice. Notably, emerging agents such as

anti-NKG2A (anti-CD94/NK group 2 member A) and anti-TIGIT

(anti-T-cell immunoreceptor with immunoglobulin and ITIM

domains) are being investigated in this context (191, 192).

Another future direction for TIL-based personalized medicine

is the development of novel therapeutic strategies that exploit the

unique properties of TILs. For instance, recently, a novel approach

to immunotherapy known as adoptive cellular therapy (ACT) has

emerged, offering a potential solution to the problem of drug

resistance observed in solid tumors treated with ICI. This

innovative approach involves isolating and expanding immune

cells, such as T-cells, from a patient’s tumor or blood and their

subsequent infusion back into the patient to enhance the immune

response against the cancer (193). TIL therapy has been proven to

have impressive clinical benefits for patients with various solid

tumors such as lung cancer (194), cervical cancer (195), melanoma

(196), CRC (197), and cholangiocarcinoma (198); regarding CRC,

in phase two clinical trial involving a 50-year-old woman with

metastatic colorectal cancer, a single infusion of 1.48 × 1011 TILs

was administered. The infusion consisted of approximately 75%

CD8+ T-cells specifically engineered to recognize the KRAS G12D

mutant. Following treatment, all metastatic lesions in the patient

regressed, and a nine-month partial response was achieved (197).
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Another clinical trial of TIL therapy using CAR (chimeric antigen

receptor) cells targeting MAGE-A4 in patients with advanced solid

tumors showed that patients with EC experienced an objective

partial response in mediastinal and para-esophageal lymph nodes

(199). These promising results suggest that TIL therapy may have

significant potential as a treatment for solid cancers, and further

research in this area is warranted for other GI cancers.
6 Conclusion

Immunotherapies have made remarkable strides, but there are

still challenges to overcome. Limited response rates, unpredictable

efficacy, and potential side effects have hindered their clinical

application. However, by understanding how cancer cells and

TILs interact in a spatial coordinate system, we can gain new

insights into cancer progression and improve the efficiency of

current immunotherapies. Thanks to new technologies emerging

in the field of digital machine learning, with a focus on spatial

mapping and quantification, the systematic and comprehensive

understanding of in situ crosstalk between immune cells and

cancer cells in the TME and their dynamic changes during

treatment is within reach. These advancements are sure to propel

the clinical success of immunotherapies even further.
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