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Foxp3+ regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg)

developmental origin are thought to synergistically act to ensure immune

homeostasis, with self-reactive tTreg cells primarily constraining autoimmune

responses. Here we exploited a Foxp3-dependent reporter with thymus-specific

GFP/Cre activity to selectively ablate either tTreg (DtTreg) or pTreg (DpTreg) cell
development, while sparing the respective sister populations. We found that, in

contrast to the tTreg cell behavior in DpTreg mice, pTreg cells acquired a highly

activated suppressor phenotype and replenished the Treg cell pool of DtTreg
mice on a non-autoimmune C57BL/6 background. Despite the absence of tTreg

cells, pTreg cells prevented early mortality and fatal autoimmunity commonly

observed in Foxp3-deficient models of complete Treg cell deficiency, and largely

maintained immune tolerance even as the DtTreg mice aged. However, only two

generations of backcrossing to the autoimmune-prone non-obese diabetic

(NOD) background were sufficient to cause severe disease lethality associated

with different, partially overlapping patterns of organ-specific autoimmunity. This

included a particularly severe form of autoimmune diabetes characterized by an

early onset and abrogation of the sex bias usually observed in the NOD mouse

model of human type 1 diabetes. Genetic association studies further allowed us

to define a small set of autoimmune risk loci sufficient to promote b cell

autoimmunity, including genes known to impinge on Treg cell biology. Overall,

these studies show an unexpectedly high functional adaptability of pTreg cells,

emphasizing their important role as mediators of bystander effects to ensure

self-tolerance.
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Introduction

The discovery of genetic Foxp3 gene mutations as the culprit of

the fatal autoimmune syndrome in the spontaneous scurfy mouse

mutant (1, 2) and human IPEX patients (3, 4) provided the basis for

unraveling the key role of Foxp3+ regulatory T (Treg) cells in

dominant immunological tolerance. Observations in Foxp3 gene-

targeted mice further corroborated Treg cell paucity as the primary

cause of early death and multi-organ autoimmunity in Foxp3-

deficient mice (5) but also revealed the peripheral accumulation

of Treg cell-like ‘wanna-be’ CD4+ T cells with self-reactive

specificities (6–8) that contribute to the disease pathology (9, 10).

Acute Foxp3+ Treg cell ablation recapitulated some, but not all

aspects of the scurfy syndrome in non-autoimmune-prone mice (11,

12) and highlighted the continuous requirement of Treg cells to

constrain organ-specific autoimmune responses in the spontaneous

non-obese diabetic (NOD) mouse model of human type 1 diabetes

(T1D) (13).

Since then, it has become clear that the physiologic Treg cell pool

is developmentally heterogeneous (14–16), consisting of

intrathymically (tTreg) and peripherally (pTreg) induced Treg cells

that originate from distinct CD4+CD25highFoxp3– precursor cells

residing in thymus (17) and peripheral lymphoid tissues (18),

respectively. In the thymus, distinct CD4+CD8– single-positive

(CD4SP) precursor cells, which exhibit low levels of Foxp3 protein

preceding the up-regulation of CD25 expression, further expand the

mature tTreg cell repertoire (19). In early studies examining the

functional specialization of Treg cell developmental subsets by

adoptive transfer immunotherapy of newborn scurfy mice (20),

total Foxp3+ Treg cells prevented disease lethality, but did not

suppress chronic inflammation and autoimmunity, which required

the provision of Foxp3-sufficient CD4+ T cells to facilitate the

extrathymic conversion of initially Foxp3– T cells into functional

Foxp3+ Treg cells (20). According to the prevailing view, tTreg cells

are primarily positively selected by self-antigens during intrathymic

development and are functionally specialized to control immune

homeostasis and autoimmune responses (14, 21). The tTreg cell

compartment in the spleen (SPL) and lymph nodes (LNs) has also

been proposed to harbor Foxp3+ST2+ common precursors for tissue-

type Treg cells (22) that accumulate and perform homeostatic and

regenerative functions in nonlymphoid tissues (23), such as the

visceral adipose tissue (24, 25). Consistent with tTreg cells as

primary regulators of autoimmune responses, studies in mice with

Foxp3 gene-targeted deletion of conserved non-coding region 1

(CNS1) (Foxp3.CNS1–/–), which exhibit a significant, albeit

incomplete block of pTreg cell development (26), failed to reveal

severe autoimmune symptoms and have implicated pTreg cells in the

control of immune responses at mucosal surfaces (27) and maternal-

fetal tolerance (28). More recently, pTreg cells dependent on the gut

microbiota have been shown to mediate functions beyond dominant

suppression by facilitating muscle regeneration (29). With regard to a

putative role of pTreg cells in the control of autoimmune responses,

previous studies in the NOD model showed that dendritic cell (DC)-

targeted self-antigen can encourage highly diabetogenic CD4+Foxp3–

T cells to acquire a Foxp3+ pTreg cell phenotype (30, 31), and that

naturally induced, b cell-reactive pTreg cells are superior to tTreg
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cells with the same T cell receptor (TCR) specificity in constraining

the manifestation of overt diabetes in a NOD.Rag1–/– adoptive

transfer model (32). While Foxp3-deficient NOD mice failed to

develop insulitis and overt diabetes (33), studies in Foxp3.CNS1–/–

NOD mice have provided ambiguous results, providing evidence for

either a dispensable (34) or nonredundant function (35) of

Foxp3.CNS1-dependent pTreg cells in the control of destructive b
cell autoimmunity. In these studies, the relative contribution of tTreg

cells to autoimmune b cell protection has not been directly addressed,
owing to the lack of mouse models with selective tTreg cell paucity.

Here, we have exploited tTreg cell lineage-specific GFP/Cre

recombinase activity in dual Foxp3RFP/GFP reporter mice (32, 36) to

generate complementary mouse lines that are deficient in either the

tTreg (37) or pTreg cell lineage, while sparing the respective sister

population. The results of subsequent loss-of-function studies

revealed an unexpectedly high functional adaptability of naturally

occurring pTreg cells in mice with selective tTreg cell paucity,

thereby preventing the manifestation of severe scurfy-like

symptoms commonly observed in mice with complete Treg cell

deficiency. However, the acquisition of an increased genetic

autoimmune risk associated with compromised Treg cell activity

unleashed high mortality and a distinct pattern of autoimmune

diseases, including severe b cell autoimmunity and overt diabetes.
Materials and methods

Selective in vivo ablation of developmental
Treg cell sublineages

Foxp3RFP/GFP mice (Figure 1A) (32), congenic CD45.1 scurfy

mice, and Rag2–/– mice were on the C57BL/6 (B6) background.

NOD.Foxp3RFP/GFP mice were obtained by backcrossing

B6.Foxp3RFP/GFP mice onto the NOD/ShiLtJ background (Jackson

Laboratories, Bar Harbor, USA) for ≥ 14 generations (32). For tTreg

cell ablation (Figure 1B), B6.R26DTA mice with Cre-activatable

diphtheria toxin A (DTA) expression from the ubiquitous Rosa26

gene locus (38) were crossed with B6.Foxp3RFP/GFP mice (32, 37) or

backcrossed to NOD.Foxp3RFP/GFP mice, as indicated. For pTreg

cell ablation (Figure 1C), a conditional Foxp3-STOP allele with Cre-

activatable Foxp3 expression was crossed to B6.Foxp3RFP/GFP mice,

or backcrossed to NOD.Foxp3RFP/GFP mice, as indicated. The

Foxp3-STOP allele was developed at the University of Leuven

(Genome Engineering Platform). In brief, a transcriptional STOP

cassette, consisting of two loxP-flanked SV40 polyadenylation sites,

was introduced by conventional gene targeting in E14 ES cells

between exon 4 and 5 of the Foxp3 gene, followed by excision of an

FRT-flanked neomycin resistance gene using deleter mice [Gt

(ROSA)26Sortm1(FLP1)Dym/J; Stock No. 003946] (39). The

conditional Foxp3-STOP allele was then backcrossed onto the B6

background for ≥ 10 generations and crossed with B6.Rag2–/– mice,

protecting B6.Foxp3-STOP mice from severe autoimmunity due to

complete Foxp3+ Treg cell deficiency. All NOD mouse lines were

fed with NIH #31M rodent diet (Altromin, Germany), and their

blood glucose levels were routinely determined once a week using

whole blood from the tail vein and Accu-Chek® Aviva (Roche).
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Mice were considered diabetic at blood glucose levels above 200 mg/

dl on at least two consecutive measurements or with blood glucose

levels once above 400 mg/dl. All mice were housed and bred at the

Animal Facility of the CRTD under specific pathogen-free

conditions. Animal experiments were performed as approved by

the Landesdirektion Dresden (25-5131/502/5, TVA 5/2020; 25-

5131/522/43, TVV41/2021).
Histopathology

After euthanizing the mice using CO2 inhalation, organs were

collected and briefly washed in PBS. Subsequently, the tissues were

fixed in a 4% paraformaldehyde solution (Sigma-Aldrich), paraffin-

embedded, and 5 µm sections were cut. These sections were then

stained with hematoxylin and eosin to assess histopathological
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changes. A total of 13 organs were examined (lung, heart,

thymus, thyroid gland, stomach, liver, intestine, kidney, pancreas,

urinary bladder, mesenteric adipose tissue, reproductive tract,

brain) in a blinded manner to evaluate the presence and extent of

inflammation and necrosis (none: 0; mild: +; moderate: ++; severe:

+++) as described elsewhere (40).
Flow cytometry and cell sorting

All single cell suspensions were prepared in Hank’s buffer

(1×HBSS, 5% FCS, 10mM HEPES; all ThermoFisher, Life

Technologies). For this, thymus (THY), spleen (SPL), mesenteric

lymph nodes (mLN), pancreatic LN (pLN), and a pool of

subcutaneous LN (scLN) (Lnn. mandibularis, Lnn. cervicales

superficiales, Lnn. axillares et cubiti, Lnn. inguinales superficiales,
A

B
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F

C

FIGURE 1

Selective ablation of tTreg and pTreg cell development in vivo. (A–C) Schematic overview of genetic strategy. (A) Foxp3RFP/GFP mice. RFP is expressed
from an IRES downstream of the endogenous Foxp3 gene in both pTreg and tTreg cells. Restricted activation of BAC.Foxp3GFP/Cre reporter expression
to the thymus results in tTreg cell lineage-specific GFP/Cre activity and induction of gene expression by loxP-flanked STOP cassette excision.
(B) DtTreg mice. Ablation of tTreg cells by GFP/Cre-mediated induction of diphtheria toxin A (DTA) expression. (C) DpTreg mice. A Foxp3.STOP
cassette precludes pTreg cell development, while tTreg cell development can proceed after GFP/Cre-mediated induction of endogenous Foxp3 gene
expression. For this, the Foxp3IRES-RFP reporter in (A) was replaced by a Cre-activatable Foxp3.STOP cassette. (D–F) Flow cytometry of Treg cells in
peripheral lymphoid tissues. (D) Representative dot plots of (left) FSC/SSC-gated and (middle, right) CD4-gated cells from subcutaneous lymph nodes
(scLNs) of 21-22-week-old males of indicated mouse lines. Numbers in dot plots represent mean percentages of cells ± SD within the respective gate.
(E) Percentages of CD4-gated Foxp3-fluorochrome+ Treg cells in scLNs, mesenteric LNs (mLNs), and spleen (SPL) of Foxp3RFP/GFP mice (pTreg: filled
black circles, n = 5; tTreg: filled black squares, n = 5), DtTreg mice (pTreg: open red circles, n = 3), and DpTreg mice (tTreg: open green squares,
n = 4). Note that the corresponding cell numbers are shown in Supplementary Figure S1. Symbols and horizontal lines represent individual mice
and mean values, respectively. Unpaired t-test: ns, not significant; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, **** p ≤ 0.0001. (F) CD4+GFP− T cells and
CD4+CD25+GFP+ tTreg cells were FACS-purified from peripheral lymphoid organs of 3-5 males at 10 weeks of age and subjected to flow cytometric
analysis of Foxp3, Helios, and Nrp1 expression after intracellular staining using fluorochrome-conjugated mAbs. Numbers in dot plots and histograms
represent the percentage of cells within the respective gate.
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and Lnn. subiliaci) were meshed through 70 mm cell strainers (BD

Biosciences). Bone marrow (BM) cells were harvested from femurs

and tibias by flushing mechanically dissociated bones or intact bone

cavities with Hank’s buffer, followed by filtration through 70 mm cell

strainers (BD). Single cell suspensions from SPL and BM were

subjected to red blood cell lysis (erythrocyte lysis buffer, EL;

Qiagen). Monoclonal antibodies (mAbs) to B220 (RA3-6B2), CD3ϵ
(145-2C11), CD4 (RM4-5), CD8a (53-6.7), CD25 (PC61), CD62L

(MEL-14), CD44 (IM7), CD45.1 (A20), CD45.2 (104), CD103

(M290), c-Kit (2B8), GITR (DTA-1), ICOS (7E.17G9), KLRG1

(2F1), PD-1 (29F.1A12), ST2 (U29-93), IgD (11-26c), IgM (II/41),

MHC class II (I-Ab: M5/114.15.2; I-AG7: OX-6), Foxp3 (FJK-16s),

Helios (22F6), IL-10 (JES5-16E3), IFN-g (XMG1.2), IL-17a

(eBio17B7), IL-2 (JES6-5H4), IL-4 (11B11), IL-5 (TRFK5), TNF

(MP6-XT22), Fc receptor-blocking mAb against CD16/32 (93), and

fluorochrome-conjugated streptavidin (BUV395, eFlour450, APC

and PE-Cy7) were purchased from BD, eBioscience, or Biolegend.

Abs to Nrp1 (polyclonal goat IgG-AF700) were purchased from R&D

Systems. Intracellular expression of cytokines and transcription

factors was analyzed using the respective fluorochrome-coupled

mAbs in conjunction with either the BD Cytofix/Cytoperm kit

(BD) or the Foxp3 staining buffer set (eBioscience) according to

the manufacturer’s protocol. The numbers of viable cells were

determined using propidium iodide and a MACSQuant (Miltenyi

Biotec). Before cell sorting, cells were enriched for CD4+ or CD25+

cells using biotinylated mAbs directed against CD4 or CD25,

respectively, streptavidin-conjugated microbeads, fluorochrome-

conjugated streptavidin, and the AutoMACS Pro magnetic cell

separation system (Miltenyi Biotec). Samples were stained with

DRAQ7 (BioStatus) for dead cell exclusion, filtered through 40 µm

cell strainers, and analyzed on a LSR Fortessa or sorted using a FACS

Aria II or III (all BD). Data were analyzed using FlowJo software

(Version 10.8.1, Tree Star Inc.).
Adoptive T cell transfer

Single cell suspensions from pooled LNs and SPL of

B6.Foxp3RFP/GFP donors (CD45.2) were subjected to CD4-based

magnetic bead enrichment, followed by FACS-based isolation of

total CD4+ T cells (i.e., including GFP+ tTreg cells) and CD4+GFP−

T cells (i.e., depleted of GFP+ tTreg cells). 1 x 107 cells were injected

i.p. into ≤ 2-day-old congenic CD45.1 scurfy recipient mice.
T cell culture

T cells were cultured in 96-well round-bottom plates (Greiner)

at 37°C and 5% CO2 in 200 ml RPMI complete medium [RPMI 1680

medium supplemented with 1 mM Sodium pyruvate, 1 mM

HEPES, 2 mM Glutamax, 100 U/ml Penicillin, 100 µg/ml

Streptomycin, 100 µg/ml Gentamycin, 0.1 mM non-essential

amino acids, 0.55 mM b-mercaptoethanol and 10% FCS (v/v); all

ThermoFisher, Life Technologies]. Prior to the flow cytometric

analysis of intracellular cytokines, single cell suspensions were

stimulated for 4 h in RPMI complete medium, using 50 ng/ml
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phorbol 12-myristate 13-acetate (PMA) and 200 ng/ml ionomycin

(Iono), in the presence of 20 mg/ml Brefeldin A (all Merck, Sigma-

Aldrich). For in vitro suppression, CD4+CD62LhighCD25−Foxp3− T

responder (Tresp) cells and CD4+CD25+Foxp3+ Treg cells

(RFP+GFP+ tTreg or RFP+GFP− pTreg cells from B6.Foxp3RFP/

GFP mice; and GFP+ tTreg and RFP+GFP− pTreg cells from B6 mice

with selective pTreg and tTreg cell paucity, respectively) were

FACS-isolated from peripheral lymphoid tissues. After labeling

with the cell proliferation dye eFluor670 (5 µM, eBioscience), 5 ×

104 Tresp cells were cultured in triplicate wells with 105 T cell-

depleted splenocytes (magnetic bead depletion using anti-CD3,

-CD4, and -CD8 mAb) and soluble anti-CD3ϵ mAb (0.5 mg/ml),

either alone or with Treg cells at different Treg : Tresp cell ratios, as

indicated. On day 3 after initiation of cultures, Tresp cell

proliferation and CD25 expression was assessed by flow cytometry.
Genomic PCR-based Idd gene analysis

Genomic DNA was isolated from tail biopsies using the

NucleoSpin DNA RapidLyse kit (Macherey-Nagel) according to

the manufacturer’s protocol. Genomic PCR was performed using

DreamTag green DNA polymerase and buffer, dNTPs (all Thermo

Fisher, Life Technologies), a set of 36 primer pairs (Eurofins

Genomics) that cover most of the known Idd loci (see

Supplementary Materials and Methods for a complete list) (41),

and a Biometra Trio Thermocycler (Analytik Jena).
Statistical analysis

Statistical significance was assessed using Prism 8 software

(Version 8.4.3, GraphPad Software Inc., CA, USA). As indicated,

the Student’s t-test (unpaired, two-tailed), Long-rank test (multiple

comparisons with Bonferroni correction), and Chi-square test was

used to assess statistical significance. Differences were considered as

significant when *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
Results

tTreg-specific Cre activity enables selective
blockage of tTreg and pTreg
cell development

In dual Foxp3RFP/GFP reporter mice (Figure 1A), expression of the

GFP/Cre fusion protein closely correlates with Foxp3 protein

expression in the tTreg cell lineage, as transcriptional activation of

the BAC.Foxp3GFP/Cre reporter is restricted to the thymic in vivo

environment (32, 36, 37, 42). In brief, the BAC.Foxp3GFP/Cre reporter

was completely inactive in physiologic Foxp3–CD4+CD25+ pTreg cell

precursors at peripheral sites (18, 32), in various experimental

settings of pTreg cell induction in vivo, and upon artificial Foxp3

induction in naïve CD4+Foxp3– T cells in vitro (32). Accordingly,

thymic Foxp3–CD25+ CD4SP tTreg cell precursors upregulated

Foxp3-driven GFP/Cre expression during developmental
frontiersin.org
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progression in situ, or after intrathymic injection, but not in vitro in

IL-2-supplemented cultures (32).

In Foxp3RFP/GFP x R26DTA mice (hereafter referred to as DtTreg
mice) (37), GFP/Cre recombinase activity induces DTA expression

selectively in the tTreg cell lineage by excision of an upstream loxP-

flanked STOP cassette (38) (Figure 1B). DTA-mediated ablation (≥

99.8%) resulted in the absence of RFP+GFP+ tTreg cells in scLN

(Figure 1D) and at other peripheral sites, such as mesenteric LN and

SPL (Figure 1E). A similarly high ablation efficiency was observed in

peripheral lymphoid tissues of DtTreg mice with heterozygous

(B6.R26DTA) and homozygous (B6.R26DTA/DTA) expression of the

R26.STOP-DTA transgene, and over a wide age range (3-80 weeks;

data not shown). As compared to Foxp3RFP/GFP mice, selective

tTreg cell paucity had no appreciable impact on the proportional

distribution of CD4+ and CD8+ T cells in scLNs (Figure 1D, left),

but was accompanied by a > 6-fold increase in the percentage of

RFP+GFP– pTreg cells among CD4-gated T cells (Foxp3RFP/GFP

mice: 1.6 ± 0.5%; DtTreg mice: 10.5 ± 1.0%) (Figures 1D, E; see

Supplementary Figure S1 for CD4+ T cell and Treg cell numbers).

This marked increase in the pTreg cell population size of DtTreg
mice largely compensated for the numerical impairment of the

overall Treg cell pool in peripheral lymphoid tissues (Figure 1E;

Supplementary Figure S2A), but to a significantly lesser extent in

peripheral blood (Supplementary Figure S2B). In aged, > 1-year-old

DtTreg mice, pTreg cells even exceeded total Treg cell frequencies of

age-matched Foxp3RFP/GFP mice (Supplementary Figure S2C).

To obtain mice with selective pTreg cell paucity (hereafter

referred to as DpTreg mice), the Foxp3IRES-RFP reporter of

Foxp3RFP/GFP mice was replaced by breeding with a Cre-

activatable Foxp3.STOP cassette (Figure 1C). Hemizygous and

homozygous Foxp3.STOP mice succumb to severe scurfy disease

due to the absence of functional Foxp3 protein and Treg cells (43).

In DpTreg mice, BAC.Foxp3GFP/Cre-mediated activation of Foxp3

expression selectively in tTreg cell lineage-committed thymocytes

allowed for the formation of a robust peripheral GFP+ tTreg cell

compartment (Figures 1D, E; Supplementary Figure S1B), while the

extrathymic generation of pTreg cells remained precluded by the

Foxp3.STOP cassette. Consistently, in peripheral lymphoid tissues

of DpTreg mice, the expression of Foxp3, Helios, and Nrp1 was

absent in FACS-purified CD4+GFP– cells, but readily detectable in

CD4+GFP+ tTreg cells (Figure 1F). Interestingly, selective pTreg cell

deficiency resulted in a sustained reduction of the peripheral tTreg

cell pool in adult (Figure 1E; Supplementary Figure S2A) and aged

(Supplementary Figure S2C) DpTreg mice, consistent with previous

observations in Foxp3.CNS1−/− mice with impaired pTreg cell

development (26, 27). These data, in conjunction with the ability

of pTreg cells to compensate for the tTreg cell loss in DtTreg mice,

suggest that pTreg cells are subject to less stringent constraints of

the T cell receptor (TCR)-dependent clonal niche in peripheral

lymphoid tissues, as compared to tTreg cells (44–46).
Lymphopoiesis in DpTreg and DtTreg mice

Acute and chronic inflammatory immune responses are well-

known to modulate hematopoietic activity, as exemplified by the
Frontiers in Immunology 05
manifestation of severe lympho-hematopoietic defects during

ontogeny of scurfy mice (47–50). In the scurfy model,

autoimmune-mediated thymic aberrations include severe post-

developmental atrophy associated with enhanced apoptosis of

CD4+CD8+ double-positive (DP) cells and concomitantly

increased frequencies of CD4SP and CD8+ SP (CD8SP) cells (50).

Unexpectedly, the proportional distribution of DP and SP cells in

young (3-4-week-old; data not shown) and adult (13-22-week-old)

(Figure 2A) DtTreg mice did not significantly differ from age-

matched cohorts of DpTreg mice and Treg cell-proficient

Foxp3RFP/GFP mice. The average thymus size of adult DtTreg mice

was only moderately reduced (< 2-fold; Figures 2B, C). We

occasionally observed rare cases (≤ 10%) of severe thymic

atrophy, which were restricted to individual DtTreg mice

(Figures 2B, C) that additionally exhibited a markedly reduced

body weight (DtTreg: mouse #1, 11.4 g; mouse #2-5, 28.4 ± 2.8 g;

WT: 27.9 ± 1.4 g; DpTreg: 31.6 ± 4.1 g), while high frequencies of

pTreg cells in peripheral lymphoid tissues remained unaffected

(data not shown).

Next, we extended our observation of normal T lymphopoiesis

in the majority of DtTreg mice to the analysis of B lymphopoiesis in

the adult bone marrow (BM). In BM of scurfymice, T cell-mediated

autoimmune responses and systemically elevated levels of

inflammatory cytokines have been shown to cause a complete

block of B cell development, which is reflected by the absence of

early Pro/Pre-B-I cell precursors and newly formed IgM+ B cells

(47–50). However, our comparative flow cytometric analyses failed

to reveal evidence for dysregulated B lymphopoiesis in DtTreg and
DpTreg mice, as compared to Treg cell-proficient Foxp3RFP/GFP

mice (Supplementary Figure S3). This included comparable BM and

SPL cellularity (Supplementary Figure S3A), as well as proportions

and numbers of early B220+c-kit+ Pro/Pre-B-I precursor cells and

immature B220lowIgM+ B cells in BM (Supplementary Figures S3B,

C), and of newly formed IgDlowIgMhigh B cells in the SPL

(Supplementary Figures S3D, E).
DTA-mediated tTreg cell ablation occurs
prior to thymic exit

In the thymus of Foxp3RFP/GFP reporter mice, tTreg cell lineage

commitment induces the sequential expression of RFP and GFP in

initially Foxp3−CD25+ CD4SP cells (32, 37). Specifically, the

developmental progression of Foxp3−CD25+ CD4SP cells first

initiates the simultaneous up-regulation of Foxp3 and RFP protein

(giving rise to CD25+RFP+GFP− cells) (Figure 2D; left panel), which is

then followed by the timely delayed up-regulation of GFP/Cre

expression, giving rise to newly formed Foxp3+CD25+ tTreg cells

that are RFP+GFP+ (Figure 2E; left panel). In DpTreg mice, flow

cytometry revealed no adverse effects of selective pTreg cell paucity on

tTreg cell development (Figures 2D, E; right panels) and numbers of

newly formed Foxp3+ tTreg cells (Figure 2F). In the thymus of DtTreg
mice, tTreg cell development proceeded to the CD25+RFP+GFP−

CD4SP stage (Figure 2D; middle panel), but subsequent up-

regulation of BAC.Foxp3GFP/Cre reporter expression promoted DTA-

mediated induction of apoptosis prior to thymic exit of newly formed
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CD25+RFP+GFP+ tTreg cells (Figure 2E; middle panel; Figure 2F).

Thus, the observed deficiency in RFP+GFP+ tTreg cells at peripheral

sites (Figures 1D, E) was already established within the thymus.

Whereas, the proportional increase of CD4-gated RFP+GFP− cells in

DtTreg mice (Figures 2D, E) could be attributed to the intrathymic

accumulation of mature pTreg cells (Supplementary Figure S4A) that

originated from peripheral lymphoid tissues recirculating to the

thymus, as indicated by heterogeneous CD25 expression levels and a

‘recirculating’ CD62L−CD69+CD44high phenotype (Supplementary

Figure S4B) (51, 52).
pTreg cells prevent the early manifestation
of severe autoimmunity in DtTreg mice

In our B6 scurfy colony maintained under specific-pathogen-free

(SPF) conditions, approximately 50% of mice succumb to premature

death by 35 days of age due to fatal autoimmunity associated with

Foxp3 deficiency, and no mice live beyond 50 days (50). Within 35

days after birth, DtTreg (Figure 3A) and DpTreg (Figure 3B) mice

appeared overall healthy, showing no appreciable spontaneous

mortality (Figures 3A, B) or other scurfy-like symptoms (scaliness
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and crusting of eyelids/ears/tail, hepatomegaly, splenomegaly,

lymphadenopathy, etc.) (data not shown). Consistently, our analysis

of genotype distribution among 5-week-old mice revealed an unbiased

heredity of the DtTreg (Figure 3C) and DpTreg (Figure 3D) phenotype.
The impaired generation of pTreg cells in Foxp3.CNS1−/−mice has

been reported to impinge on maternal-fetal tolerance by increasing the

resorption of semiallogeneic fetuses (28). Our data show that the

number of viable offspring produced by syngeneic DtTreg pair

mating did not significantly differ from that of Foxp3RFP/GFP mice

(Figure 3E). In contrast, interstrain breeding of DpTreg mice gave rise

to significantly reduced numbers of offspring, correlating with the

DpTreg phenotype of the breeding female (Figure 3F). These findings

in DtTreg and DpTreg mice, in conjunction with impaired

implantation of syngeneic embryos after maternal Foxp3+ Treg cell

depletion (53, 54), imply that pTreg cells may contribute to maternal-

fetal tolerance even in syngeneic pregnancy.

The unexpected absence of severe scurfy-like symptoms in

young B6.DtTreg mice suggested that selective tTreg cell paucity

can be largely compensated by increased pTreg cell numbers

(Figures 1D, E). We next asked whether the observed pTreg cell

behavior in the DtTreg model can be recapitulated in scurfy mice

neonatally injected with CD4+GFP– T cell populations (including
A
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FIGURE 2

Thymopoiesis in adult DtTreg and DpTreg mice. Flow cytometry of thymic T cell development in Foxp3RFP/GFP, DtTreg, and DpTreg mice. (A–C) T cell
development. (A) Representative flow cytometry of CD4 and CD8 expression among FSC/SSC-gated cells from the thymus (THY) of 17-22-week-old
males, as indicated. (B) Total thymic cellularity (left) and thymus size (right). (C) Numbers of DP, CD4SP, and CD8SP cells. (D–F) tTreg cell
development. Representative flow cytometry of (D) CD25 and Foxp3IRES-driven RFP expression, and (E) RFP and BAC. Foxp3GFP/Cre-driven GFP
expression among gated CD4SP cells, as depicted in (A). (F) Numbers of CD25+RFP-GFP- (left), CD25+RFP+GFP- (middle, pre-gated on CD62L+ cells
to exclude mature recirculating CD62L- Treg cells) and CD25+GFP+ (right) thymocytes. Note that DpTreg mice lack the Foxp3IRES-RFP reporter (n.d.,
not detectable). Numbers in dot plots in (A, D, E) represent mean percentages of cells ± SD within the respective gate. Symbols and bars in (B, C, F)
represent individual mice and mean values ± SD, respectively. Unpaired t-test: ns, not significant; *p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.0001. Data are
from a single experiment (5 mice per group) representative of 4 experiments performed (3-6 mice per experiment).
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RFP+GFP– pTreg cells) that had been FACS-isolated from

peripheral lymphoid tissues of Foxp3RFP/GFP mice for RFP+GFP+

tTreg cell depletion (Figure 3G, bottom left). In these experiments,

total CD4+ T cells (including RFP+GFP– pTreg and RFP+GFP+

tTreg cells) were included for comparison (Figure 3G, top left). Both

cohorts of scurfy recipients were viable (Figure 3H) and appeared

phenotypically healthy until the end of the observation period, apart

from mild symptoms of delayed growth and exfoliative dermatitis

in individual mice that received tTreg cell-depleted CD4+GFP– T

cells (data not shown). In the absence of tTreg cells, the adoptive

CD4+GFP– T cell transfer resulted in a marked accumulation of

RFP+GFP– pTreg cells among CD4+ T cells (day 0: 4.1%; day 25:

78.4 ± 2.6%) in scurfy recipients (Figure 3G, bottom panels), most

likely due to both the proliferative expansion of preformed pTreg

cells and the conversion of initially CD4+Foxp3– T cells (20). In

scurfy recipients of total CD4+ T cells, RFP+GFP– pTreg cell
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frequencies among CD4-gated cells also increased (day 0: 3.5%;

day 25: 20.7 ± 1.1%), but the initial pTreg:tTreg cell ratio of 1:3 was

preserved (Figure 3G, top panels). Overall, these data indicate that

pTreg cells can fill up the tTreg cell niche in both DtTreg
(Figures 1D, E) and scurfy mice (Figures 3G, H) while

maintaining a stable RFP+GFP– phenotype.
Maintenance of T cell homeostasis in adult
DtTreg mice

Our initial characterization of young DtTreg mice failed to reveal

evidence for disease symptoms associated with selective tTreg cell

paucity. Consistently, mild immune infiltrations were limited to the

salivary gland (mouse #1), and the lung (mouse #1) of individual

DtTreg mice, but could not be observed in other organs, such as the
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FIGURE 3

Viability and reproductive ability of DtTreg and DpTreg mice. (A, B) Kaplan-Meier survival curves of offspring produced by (A) DtTreg and (B) DpTreg
pair mating. Newborn mice produced by indicated parental genotype combinations were monitored for the occurrence of spontaneous cases of
mortality from birth onwards for up to 35 days (parental genotype, number of offspring; (A): wild-type (WT) x WT, n = 342; DtTreg x WT, n = 227;
WT x DtTreg, n = 398; DtTreg x DtTreg, n = 463. (B): WT x WT, n = 103; DpTreg x WT, n = 62; DpTreg x DpTreg, n = 69). (C, D) Expected (E) and
observed (O) distribution of offspring according to their genotype produced by (C) DtTreg (♂ DTA+/−GFP+/− x ♀ DTA+/−GFP+/−; n = 187) and (D) DpTreg
(♂ Rag2+/−Foxp3.Stop+GFP/Cre+ x ♀ Rag2+/−Foxp3.Stop+/+ GFP/Cre+/+; n = 62) pair mating. Chi-square test: X2, Chi-square. (E, F) The cumulative
number of newborn pups produced by (E) DtTreg and (F) DpTreg pair mating of indicated parental genotype combinations. DtTreg: DTA+/− or +/+,
BAC.Foxp3GFP/Cre+; DpTreg: Rag2+/−, Foxp3.Stophemi/homo, BAC.Foxp3GFP/Cre+. Parental genotype, number of litters: (E): WT x WT, n = 52; DtTreg x WT,
n = 42; WT x DtTreg, n = 66; DtTreg x DtTreg, n = 72. (F): WT x WT, n = 75; DpTreg x WT, n = 25; DpTreg x DpTreg, n = 60). Symbols and bars
represent individual litters and mean values, respectively. (G, H) Adoptive Treg cell transfer into neonatal scurfy mice. (G) Flow cytometry of RFP and
GFP expression among CD4-gated T cells before (post sort, left panels) and after (day 25, right panels) injection into conventional scurfy recipient
mice. Numbers in dot plots represent percentages of cells (left) or mean percentages of cells ± SD (right) within the respective gate. (H) Kaplan-Meyer
survival curves of scurfy mice that had either been left untreated (closed black circles, n = 14) or neonatally injected i.p. (5 x 105 cells, day 0) with
either total CD4+ T cells (open black squares, n = 4) or CD4+GFP− T cells (open green triangles, n = 3) that had been FACS-purified from peripheral
lymphoid tissues of Foxp3RFP/GFP mice. At day 25, adoptively transferred CD4+CD45.2+ cells were tracked by flow cytometry in scLNs of congenic
CD45.1+ recipient mice and analyzed for RFP and GFP expression. (A, B, H) Log-rank test and Bonferroni correction: ns, not significant. (E, F) Unpaired
t-test: ns, not significant; **p ≤ 0.01, ****p ≤ 0.0001.
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liver or thyroid gland (Figure 4A). Interestingly, although B6.DtTreg
mice maintained normoglycemia, histological analyses consistently

revealed pronounced immune infiltrates in the pancreas (Figure 4A,

bottom panels), which is in contrast to previous studies in other

settings of tTreg cell deficiency, including Foxp3-deficient mice (33)

and acute Treg cell ablation in the ‘Depletion of Regulatory T cells’

(DEREG) mouse model on the B6 and NOD genetic background (13).

With the advancing age of DtTreg mice, we noticed rare cases of

spontaneous deaths, which became first apparent at the age of 7

weeks (R26DTA: 18.7%, R26DTA/DTA: 19.0%; Figure 4B). The

mortality of DtTreg mice further increased thereafter, reaching a

plateau by 10 weeks that was maintained until the end of the 20-

week observation period (R26DTA: 25.5%, R26DTA/DTA: 30.7%),

remaining well below the high mortality of scurfy mice

(Figure 4B). We rarely observed cases of spontaneous mortality

among immunodeficient Rag2–/– mice, or cohorts of tTreg cell-

proficient, BAC.Foxp3GFP/Cre– DtTreg littermates, DpTreg mice, and

Foxp3RFP/GFP mice (Figure 4B). We further noticed that mortality

appeared to be associated in part with a reduced body weight and

thymic atrophy of the affected DtTreg mice (Figure 2B). Our

subsequent analyses showed that the majority of DtTreg mice had

a body weight corresponding to their age (85.3%), but also
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confirmed that individual mice failed to keep up with

physiological body weight gain (Figure 4C), while the small and

large intestine yielded an unsuspicious histopathological result

(data not shown).

With regard to peripheral T cell homeostasis in adult DtTreg
mice, total cellularity of scLNs (but not of mLNs and SPL; see also

Supplementary Figure S3A) was moderately, although significantly

increased, as compared to Foxp3RFP/GFP and DpTreg mice

(Figure 5A). We only occasionally observed adult DtTreg mice

with pronounced lymphadenopathy and splenomegaly (< 10%;

Figure 5A). The analysis of inflammatory cytokine production

indicated moderately increased proportions of IFN-g- and IL-4-

producing CD4+ T cells (Figure 5B, top), and of IFN-g-producing
CD8+ T cells (Figure 5B, bottom) in scLNs (but not in mLN or SPL;

data not shown) of DtTreg mice. Increased expression of other

cytokines (e.g., IL-2, IL-10, IL-17) could also not be observed (data

not shown). Consistent with largely normal frequencies of CD4+

and CD8+ T cells in the majority of DtTreg mice (Figure 1D), our

flow cytometric analysis of CD62L and CD44 expression revealed

no evidence for systemically uncontrolled activation of CD4+ and

CD8+ T effector cells, neither in scLNs (Figures 5C–E) or other

peripheral lymphoid tissues, such as mLN or SPL (Figures 5D, E).
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FIGURE 4

Autoimmune pathology and mortality of DtTreg mice. (A) Histological analysis. Organs of 4-week-old Foxp3RFP/GFP (WT, left) and DtTreg (mouse #1
and #2) male mice were fixed in 4% PFA, and cut sections were stained with hematoxylin and eosin. In contrast to WT controls, individual DtTreg
mice show mild leukocytic infiltrations in the salivary gland (mouse #1: +; mouse #2: ±), lungs (mouse #1: ++; mouse #2: ±), and pancreas (mouse
#1: ++; mouse #2: ++). Sections from the liver and thyroid gland of WT and DtTreg mice lack leukocytic infiltrates and show normal organ
structure. Magnifications: Salivary gland, lung, pancreas: 400x (bar = 40 µm); liver, thyroid gland: 100x (bar = 200 µm). (B) Kaplan-Meier survival
analysis. Cohorts of Foxp3RFP/GFP mice (n = 167), DtTreg mice (DTA+/−GFP+, n = 235; DTA+/+GFP+, n = 163), and DpTreg mice (n = 245) were
monitored for the occurrence of spontaneous cases of mortality from birth onwards for up to 20 weeks, as indicated. R26DTA mice lacking the
BAC.Foxp3GFP/Cre transgene (DTA+/−GFP−, n = 62; DTA+/+GFP−, n = 87), Foxp3-deficient scurfy mice (n = 26), and immunodeficient Rag2-/- mice
(n = 196) were included for comparison. Log-rank test and Bonferroni correction: ns, not significant; ****p ≤ 0.0001. (C) Age-dependent body
weight gain of Foxp3RFP/GFP (WT, closed black circles, n = 92), DtTreg (open red squares, n = 38), and DpTreg (open red triangles, n = 60) mice.
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Compensatory adaptation of pTreg cell
activity in the absence of tTreg cells

Despite its already high percentage share in steady-state

Foxp3RFP/GFP mice (32), flow cytometric immunophenotyping

(Figure 6A) indicated that the percentage of pTreg cells with a

CD62LlowCD44high effector/memory-like phenotype further

increased in LNs of adult DtTreg mice (Figure 6B), which was in

contrast to tTreg cells in DpTreg (Figure 6C) mice. Consistent with

an overall activated phenotype, pTreg cells in peripheral lymphoid

tissues of DtTreg mice exhibited significantly upregulated

expression of CD25 and several other ‘Treg cell signature’

proteins with functional relevance (including CD103, ICOS, ST2,

and KLRG1), as compared to pTreg cells from Foxp3RFP/GFP mice

(Figure 6D; Supplementary Figure S5, top panels). In contrast, the
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reduced accumulation of pTreg cells in peripheral blood of DtTreg
mice (Supplementary Figure S2B) was accompanied by low levels of

CD25 expression (Figure 6D; left panel). Additionally, tTreg cells of

DpTreg mice exhibited neither an increased effector/memory-like

compartment (Figure 6C) nor up-regulated ‘Treg cell signature’

protein expression (Figure 6D; Supplementary Figure S5, bottom

panels), as compared to their tTreg cell counterparts in Foxp3RFP/

GFP mice. Consistently, pTreg cells isolated from DtTreg mice

suppressed the activity of Tresp cells more efficiently in standard

cocultures, as judged by the inhibition of Tresp cell proliferation

and CD25 expression, and as compared with tTreg cells from

DpTreg mice or total Treg cells from Foxp3RFP/GFP mice

(Figures 6E, F). In summary, in contrast to tTreg cells of DpTreg
mice, pTreg cells in peripheral lymphoid tissues (but not blood) of

DtTreg mice acquire a highly activated state and increased
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FIGURE 5

Peripheral T cell homeostasis in adult DtTreg and DpTreg mice. (A) Total cellularity of scLN (top), mLN, (middle), and SPL (bottom) of 13-22-week-old
Foxp3RFP/GFP (WT, n = 24), DtTreg (n = 13) and, DpTreg (n = 22) male mice. Symbols and bars represent individual mice and mean values ± SD,
respectively. (B–E) Flow cytometry of CD4+ and CD8+ T effector cells in peripheral lymphoid tissues. (B) Representative dot plots of IFN-g and IL-4
expression among gated CD4+Foxp3− (top), and IFN-g and IL-4 expression among gated CD8+ (bottom) T cells in scLN of 38-40-week-old WT
(Foxp3RFP/GFP), DtTreg, and DpTreg male mice, as indicated (2-3 mice per group). (C) Representative dot plots of CD44 and CD62L expression
among gated CD4+Foxp3− (top) and CD8+ (bottom) T cells in scLN of 17-22-week-old WT (Foxp3RFP/GFP), DtTreg, and DpTreg male mice, as
indicated (4-5 mice per group). (Gates: CD62LhighCD44low, naïve; CD62LlowCD44high, effector/memory; CD62LhighCD44high, central memory).
(D, E) Composite percentages of T cell effector subsets in 17-22-week-old Foxp3RFP/GFP (WT), DtTreg, and DpTreg mice (4-5 male mice per group).
(D) Naïve (CD62LhighCD44low) and effector/memory (CD62LlowCD44high) CD4+ T cell compartments. (E) Naïve (CD62LhighCD44low), central memory
(CD62LhighCD44high), and effector/memory (CD62LlowCD44high) CD8+ T cell compartments. Naïve: black closed circles; central memory: open green
triangles; effector/memory: open red squares. Symbols and horizontal lines in (A, D, E) represent individual mice and mean percentages of cells ±
SD, respectively. Numbers in dot plots in (B, C) indicate mean percentages of cells ± SD within the respective gate or quadrant. Unpaired t-test: ns,
not significant; *p ≤ 0.05, **p ≤ 0.01.
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FIGURE 6

pTreg cell adaptation to tTreg cell paucity. (A–C) Flow cytometry of naïve and memory/effector-type Treg cell subsets. (A) Representative flow
cytometry and cumulative percentages of (B) pTreg cells and (C) tTreg cells with a naïve (CD62LhighCD44low, black filled circles) and effector/
memory-type (CD62LlowCD44high, red open squares) phenotype in peripheral lymphoid tissues (scLN, mLN, SPL) of DtTreg mice and DpTreg mice,
respectively. Foxp3RFP/GFP (WT) mice were included for comparison. Treg cell gating was as in Figure 1D. (D) Signature protein expression.
Composite percentages of surface marker expression among Foxp3-fluorochrome reporter-gated CD4+ Treg cells (See Supplementary Figure S5 for
representative flow cytometry). Treg cell gating was as indicated in Figure 1D: pTreg (closed black circles) and tTreg cells (closed black squares) of
Foxp3RFP/GFP mice; pTreg cells of DtTreg mice (open red circles); and tTreg cells of DpTreg mice (open green squares). Symbols and horizontal lines
indicate individual mice and mean values ± SD, respectively. Data are from a single experiment, representative of 4 independent experiments
performed (n = 3-6 per group; age: 13-22 weeks). (E, F) Suppressor function in vitro. (E) Representative flow cytometry of T responder (Tresp) cell
proliferation based on dilution of the proliferation dye (CPD) ef670 (left) and CD25 expression levels (right). Numbers in histograms indicate mean
percentages of cells ± SD within the respective gate or quadrant. (F) Composite percentages of cell division (left, closed symbols) and CD25
expression (right, open symbols) of CD4+ Tresp cells at day 3 of co-culture, using total Treg cells of Foxp3RFP/GFP mice (WT, black circles), pTreg
cells of DtTreg mice (red squares), and tTreg cells (green triangles) of DpTreg mice at indicated Tresp : Treg ratios. For this, FACS-purified
CD4+CD62L+Foxp3−CD25− Tresp cells were co-cultured with APCs and 0.5 mg/ml a-CD3ϵ mAb, in the absence or presence of total Treg cells from
scLN of Foxp3RFP/GFP mice (WT, tTreg + pTreg), pTreg cells of DtTreg, or tTreg cells of DpTreg mice. Symbols and error bars in graphs indicate mean
percentages ± SD of technical replicates (n = 2-3) from one experiment, representative of three independent experiments (5-10 mice per group at
20-22 weeks of age). Unpaired t-test: ns, not significant; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2023.1298938
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yilmazer et al. 10.3389/fimmu.2023.1298938
suppressor function, which is indicative for their active involvement

in constraining chronic immune dysregulation in the absence of

tTreg cells (Figure 4).
Fatal autoimmune pathology in DtTreg
mice on a mixed (B6>NOD) background

Our characterization of DtTreg mice on the B6 background

revealed neither early- or late-onset of severe morbidity nor other

signs of fatal autoimmunity (Figures 3A, 4A, B) consistently

observed in mice with complete Foxp3+ Treg cell deficiency (2,

5). However, the severity of autoimmune pathology associated with

Treg cell deficiency can be markedly shaped by genetic factors: B6

scurfy mice can survive for up to 9 weeks after birth (Figure 4B),

which is significantly longer than scurfy mice on the BALB/c

background, all of which succumb to death within < 5 weeks of

birth (20). Here, we aimed to explore how increased genetic

susceptibility impinges on the survival and immune homeostasis

of DtTreg mice by backcrossing the B6.DtTreg mouse line to

autoimmune-prone NOD mice carrying the dual Foxp3RFP/GFP

reporter. On a pure NOD background, spontaneous T1D

manifestation is under polygenic control of more than 20 insulin-

dependent diabetes (Idd) gene loci (55), which additionally confer a

broad susceptibility to multiple other autoimmune syndromes

(peripheral neuropathy, autoimmune thyroiditis, etc.), albeit often

with a low incidence (56). The analysis of (B6>NOD) hybrid mice

obtained by two consecutive backcrosses (F2) revealed that selective

tTreg cell paucity drastically decreased the survival of F2 DtTreg
mice (both I-Ag7+/– and I-Ag7+/+; see below) to ≤ 20% within 20

weeks after birth (Figure 7A), as compared to F1 DtTreg mice

(84.2%; Figure 7A) and DtTreg mice on a pure B6 background

(R26DTA: 74.5%, R26DTA/DTA: 69.3%; Figure 4B). Male and female

F2 DtTreg mice showed no significant differences in mortality (data

not shown). Continued backcrossing further exacerbated morbidity,

such that none of the F3 DtTreg mice lived beyond 14

weeks (Figure 7A).

In order to account for possible variability of disease pathology

on a mixed (B6>NOD) background, we produced independent

cohorts of F2 and F3 DtTreg mice originating from unrelated

(B6>NOD) backcross breedings and parental (B6>NOD)F1 mice

(Figures 7B–D). When we monitored the DtTreg offspring for

scurfy-like symptoms, we found that the high incidence of

spontaneous mortality depicted in Figure 7A was consistently

accompanied by signs of distinct, partially overlapping

autoimmune diseases in independent cohorts of F2 DtTreg mice

(Figures 7C, D). Most prominently, we observed signs of wasting

disease (WD; reduced body weight and size, failure to thrive),

autoimmune diabetes (hyperglycemia), and peripheral neuropathy

(PN; hindlimb paralysis). In the (B6>NOD)F3 generation, ≥ 90% of

DtTreg mice suffered from either WD (62.2%), T1D (32.4%), and/or

PN (10.8%) (Figure 7B). Histopathological analyses indicated

massive immune infiltrates of the salivary glands, the lung, the

stomach, the thyroid glands, and the pancreas associated with

severe tissue damage predominantly affecting thyroid glands and
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pancreatic islets of NOD.DtTreg F3 mice, which correlated with

their hyperglycemic state (Figure 7E; top panel). A more detailed

analysis of pancreatic islets (10 – 20 islets/mouse) revealed hardly

any signs of immune infiltrates (mouse #1: 0%; mouse #2: < 10%;

both non-diabetic) into the islets of tTreg cell-proficient (B6>NOD)

F3 mice, whereas the majority of islets of DtTreg (B6>NOD)F3 mice

(#1: > 90%, diabetic; #2: 70 – 80%; nondiabetic; #3: > 90%, diabetic)

showed marked immune infiltrates (Figure 7E; data not shown). In

these experiments, other organs commonly targeted by severe

autoimmune responses in Foxp3-deficient mice showed no or

only minimal immune infiltrates in NOD.DtTreg F3 mice, such as

the small intestine or the liver (data not shown). Notably, severe

salivary gland autoimmunity could be observed in both DtTreg and
Foxp3RFP/GFP mice (Figure 7E; left panels), and thus driven by the

increased genetic autoimmune risk of the (B6>NOD)F3

background, rather than selective tTreg cell paucity. Other

hallmarks of the fatal autoimmune syndrome affecting Foxp3-

deficient mice could not be observed, such as skin lesions or

scaliness and crusting of the eyelids, ears, and tail (data not

shown). Throughout the present study, the manifestation of WD,

T1D, and/or PN in tTreg cell-proficient littermates of (B6>NOD)

hybrid DtTreg mice has also not been observed (Figures 7B–E, 8A;

and data not shown).
Pancreatic b cell autoimmunity in
(B6>NOD) hybrid DtTreg mice

While Foxp3+ Treg cell-deficient NOD mice fail to develop

insulitis and overt diabetes (33), the data depicted in Figure 7

provided the first indications that selective tTreg cell paucity can

promote severe insulitis and overt diabetes (32.4%; Figures 7B–E) in

both males and females, despite incomplete backcrossing onto the

NOD background. However, more definite conclusions on the role

of tTreg cells in controlling pancreatic b cell autoimmunity were

hampered by the overall early onset of high morbidity and mortality

(Figure 7A). In fact, three diabetic F3 NOD.DtTreg mice

additionally exhibited signs of WD and PN (Figure 7B),

suggesting that some (B6>NOD) hybrid DtTreg mice may

succumb to death before the diabetes diagnosis. We therefore

tracked blood glucose levels in cohorts of 3-week-old, initially

normoglycemic F2 NOD.DtTreg mice that showed no signs of

WD, PN, or other scurfy-like symptoms (Figure 8A). In our

colony of conventional NOD mice, the first diabetes cases become

apparent at approximately 12 weeks of age and continuously

increase to an incidence of 70-90% in females and 0-20% in

males within 30 weeks of age (13, 57). Whereas in (B6>NOD)F2

DtTreg mice, selective tTreg cell paucity unleashed a particularly

severe form of T1D: > 50% of males rapidly progressed to overt

diabetes within < 8 weeks after birth (Figure 8A), despite the usually

observed female sex bias and kinetics difference in the NOD model

(58). Flow cytometry-based MHC class II haplotyping indicated

that diabetes manifestation in F2 DtTreg mice correlated with

homozygous expression of the diabetogenic MHC class II

molecule I-Ag7 of the NOD genetic background (Idd1), whereas
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mice co-expressing I-Ab of B6 origin remained normoglycemic

during the observation period (Figure 8A). In contrast, high

mortality (Figure 7A) and the manifestation of WD (Figure 7D)

was independent of homozygous I-Ag7 expression.

In line with the absence of severe systemic autoimmune responses,

pLNs of F2 DtTreg mice showed clear signs of lymphadenopathy,

whereas the size of non-draining LNs (scLNs, mLNs) and SPL did not

significantly differ between tTreg cell-deficient and -proficient

(B6>NOD)F2 mice (Figure 8B). Consistently, numbers of CD8+ and

CD4+ T cells (Supplementary Figure S6A, top panels) were selectively

increased in pLNs of F2 DtTreg mice.

Consistent with our data in B6.DtTreg mice (Figures 1D, E),

efficient intrathymic tTreg cell ablation in (B6>NOD)F2 DtTreg
mice (Supplementary Figure S6B) was accompanied by a
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significant, up to 5.5-fold increase in the percentage of RFP+GFP–

pTreg cells among CD4-gated T cells in peripheral lymphoid tissues

(Figures 8C, D; see Supplementary Figure S6A for Treg cell

numbers) . However , in contras t to B6 .D tTreg mice

(Supplementary Figure S2A), the population size of pTreg cells in

(B6>NOD)F2 DtTreg mice only partially compensated for the

numerical impairment of the overall Treg cell pool in the absence

of tTreg cells (Figure 8D; Supplementary Figure S6A, bottom).

Additionally, thymic cellularity (Supplementary Figure S6C) and

numbers of T cell developmental stages (Supplementary Figure

S6D) were consistently reduced in (B6>NOD)F2 DtTreg mice, as

compared to in (B6>NOD)F2 Foxp3RFP/GFP mice, probably due to

increased hyperglycemia-induced stress and/or systemically

elevated inflammatory cytokine levels.
A B

D
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FIGURE 7

Spontaneous mortality and autoimmune pathology in DtTreg mice on a mixed (B6>NOD) background. B6.DtTreg mice were backcrossed to
NOD.Foxp3RFP/GFP mice for up to 3 generations, as indicated (F1, F2, F3). (B6>NOD) hybrid offspring were analyzed by flow cytometry for the
haplotype-specific expression of MHC class II molecules (NOD: I-AG7; B6: I-Ab). (A) Kaplan-Meier survival analysis. Cohorts of DTA+/− DtTreg mice on
a mixed (B6>NOD) background and with heterozygous I-Ag7+/− (F1, n = 19; F2, n = 19) or homozygous I-Ag7+/+ (F2, n = 23; F3, n = 10) expression
were monitored for the occurrence of spontaneous cases of mortality and morbidity from birth onwards for up to 20 weeks, as indicated. Note that
tTreg cell-proficient B6.Foxp3RFP/GFP mice (DTA−/−, I-Ag7−/−; n = 13) were included for comparison. Log-rank test and Bonferroni correction: ns, not
significant; ***p ≤ 0.001, ****p ≤ 0.0001. (B) Morbidity of (B6>NOD)F3 DtTreg mice (37 males and females from 7 litters). WD: 51.4%, T1D: 24.3%,
T1D + WD + PN: 8.1%, WD + PN: 2.7%, no disease symptoms: 13.5%. (C, D) Representative pedigrees of (C) (NOD>F1) and (D) (F1>NOD) ♂ x ♀
matings and health status of resultant F2 offspring. Parental (B6>NOD)F1 mice in (B, C) were obtained from independent (B6>NOD) backcross
breedings. WD, wasting disease; T1D, type 1 diabetes; PN, peripheral neuropathy; HE, healthy (no disease symptoms); †: age of death in weeks.
(E) Histological analysis. Organs of 11-13-week-old (B6>NOD)F3 males (I-Ag7+/+) were fixed in 4% PFA and cut sections were stained with
hematoxylin and eosin. Representative histology showing pronounced leukocytic infiltrations and severe histopathological changes (score: +++) in
the salivary gland, lungs, thyroid gland, stomach, and pancreas of a hyperglycemic R26DTA NOD.DtTreg F3 mouse (top panels). R26wt/wt

NOD.Foxp3RFP/GFP F3 mice (WT, bottom panels) show comparably severe immune infiltrates in the salivary glands, but only marginal (lungs,
pancreas) or no (stomach, thyroid gland) autoimmune infiltration in other organs. Magnifications: Salivary gland, lung, pancreas: 400x (bar = 40 µm),
stomach, thyroid gland: 100x (bar = 200 µm).
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Contribution of NOD Idd loci to diabetes in
(B6>NOD) hybrid DtTreg mice

We found that the manifestation of overt diabetes was restricted

to I-Ag7+/+ (B6>NOD) hybrid DtTreg mice (Figures 7B–E, 8A),

consistent with the requirement of Idd1 homozygosity for high

penetrance of diabetes susceptibility in the NODmodel (59). In fact,

Idd1 was shown to confer most of the diabetes risk (60), but not to

be sufficient to precipitate diabetes in Foxp3+ Treg cell-proficient

NOD mice (60). We hypothesized that the early manifestation of

diabetes in I-Ag7+/+ F2 DtTreg males with high penetrance

(Figure 8A) was driven by the acquisition of one or more

additional, non-MHC-linked Idd loci. As expected, after only two

backcross generations, PCR-based genomic Idd gene analysis

(Supplementary Figure S7) indicated that the majority of Idd

genes included in our survey was dispersible for diabetes

development in I-Ag7+/+ F2 DtTreg mice (Idd2, Idd3/Idd10/Idd17/

Idd18, Idd4, Idd14, Idd15) (Supplementary Figure S7A). This

included Il2 gene polymorphisms (encoded by Idd3), which play

an important role in the reduced IL-2 receptor signaling strength

received by Treg cells in conventional, tTreg cell-proficient

NOD mice, resulting in their functional deficiency (61, 62).
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Additionally, Idd6 was markedly underrepresented in (B6>NOD)

F2 (Supplementary Figure S7A; Figure 8E) and F3 (Supplementary

Figure S7B; Figure 8E) DtTreg mice, as compared to their Foxp3RFP/

GFP littermates, which can be attributed to the genomic localization

of the R26-DTA transgene of DtTreg mice within the Idd6 gene

locus (http://www.informatics.jax.org/). Other Idd gene loci initially

underrepresented in diabetic F2 DtTreg mice were found to be

enriched after continued backcrossing (Idd2, Idd4, Idd3/Idd10/

Idd17/Idd18, Idd13.1/.2, Idd14, Idd15) (Supplementary Figure

S7B; Figure 8E).

In addition to Idd1, a set of 5 Idd gene loci (Idd5.1, Idd7, Idd8/

Idd12, Idd9.1/.2, Idd13.3) was detectable in ≥ 80% of diabetic F2

DtTreg mice (Figure 8E), but was not sufficient to promote diabetes

in tTreg cell-proficient I-Ag7+/+ (B6>NOD)F2 littermates

(Figure 8A; and data not shown). Interestingly, this rather small

set of Idd loci was primarily characterized by harboring genes with

well-known functions in the development, survival/maintenance,

function of pancreatic b cells [Idd7, Idd8, Idd12 (63–67)] and

Foxp3+ Treg cells (Idd5, Idd7, Idd9.1/.2, Idd13.3). In particular,

several annotated genes located in Idd5 [Cd28, Icos, Ctla4 (68, 69);

Pdcd1 (70); Irs1, Stat1 (71); Ikfz2 (72)] and the Idd9 gene locus

[(Cd30, Tnfr2, Cd137 (73, 74); p110d, mTOR (75, 76)] play key roles
A
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FIGURE 8

Pancreatic b cell autoimmunity in hybrid (B6>NOD) DtTreg mice. (A) Blood glucose levels of 3-week-old F2 DtTreg males with heterozygous (I-Ag7+/−,
n = 9) or homozygous (I-Ag7+/+, n = 10) expression of I-Ag7 were monitored once a week. I-Ag7+/− (n = 13) and I-Ag7+/+ (n = 6) F2 Foxp3RFP/GFP

mice (WT) mice were included for comparison. Note that initially normoglycemic mouse cohorts were selected based on the absence of WD, PN, or
other scurfy-like symptoms. Log-rank test: ns, not significant; ***p ≤ 0.001. (B–D) Flow cytometric immunophenotyping of (B6>NOD)F2 mice
depicted in Figure 8A. (B) Total cellularity of pLN (right) and other peripheral lymphoid tissues (scLN, mLN, SPL) of Foxp3RFP/GFP (closed black circles)
and DtTreg (open red squares) mice (all 8-week-old I-Ag7+/+ males). See Supplementary Figure S6A for corresponding numbers of CD8+ and CD4+ T
cells. (C) Representative dot plots of Foxp3-driven RFP and GFP expression among CD4-gated cells from pLN from Foxp3RFP/GFP and DtTreg mice, and
(D) cumulative percentages of total Treg (closed black squares) and pTreg (closed black circles) cells of Foxp3RFP/GFP mice, as well as pTreg cells of
DtTreg mice (open red circles) from peripheral lymphoid tissues, as indicated (all I-Ag7+/+). Symbols and horizontal lines in (B, D) indicate individual
mice and mean values of 4 mice per group, as depicted in Figure 8A. Unpaired t-test: ns, not significant; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤

0.0001. (E) Genomic DNA-based Idd gene locus analysis in cohorts of (B6>NOD) hybrid mice. Cohorts of F2 Foxp3RFP/GFP mice (WT; I-Ag7+/−: n = 17;
I-Ag7+/+, n = 11); F2 DtTreg mice (I-Ag7+/−, n = 7; I-Ag7+/+, n = 5), and F3 DtTreg mice (nondiabetic I-Ag7+/+, n = 8; diabetic I-Ag7+/+, n = 5) were
subjected to genomic PCR for Idd gene analysis. The heatmap shows the distribution of a selected set of Idd loci among different experimental
groups, as indicated. For this, the percentage of mice homozygous for the respective NOD Idd gene locus was calculated and expressed as color
code. An overview of the complete data set is provided in Supplementary Figure S7. Note that the R26-DTA transgene of DtTreg mice is embedded
within the Idd6 gene locus, resulting in a marked underrepresentation of Idd6 in F2 and F3 DtTreg mice.
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in various facets of Foxp3+ Treg cell biology (77–81), many of which

belong to the shared transcriptional signatures of tissue-type Treg

(22, 82, 83) and pTreg (32) cells. Furthermore, and directly relevant

to the autoimmune mechanisms underlying pancreatic b cell

destruction, Idd7 (containing Nfkbid) has been implicated in

modulating diabetogenic CD8+ T cell deletion in the thymus (84)

and numbers and suppressor function of Foxp3+ Treg cells in

peripheral tissues (85). Lastly, several annotated genes encoded in

Idd13 [B2m (86, 87); Mertk (88); Bcl2l11/Bim, Id1, Smox, Pdia3

(89)] play key roles in development and activation of diabetogenic T

effector cells (86, 87), including negative thymic selection (88–90).

Overall, these findings in DtTreg mice are consistent with a

scenario, in which pTreg cell-mediated maintenance of

immunological tolerance to pancreatic b cells can be abrogated by

the acquisition of a limited set of Idd risk loci, some of which unfold

their diabetogenic activity directly in pTreg cells. In support

of this interpretation, comparative flow cytometry-based

immunophenotyping revealed a correlation of some detected Idd

loci and differential protein expression in pTreg cells of F2 DtTreg
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mice, as compared to pTreg cells in tTreg cell-proficient Foxp3RFP/

GFP littermates (Figure 9). This included the absence of Idd3

(including Il2) and markedly increased expression levels of CD25

on pTreg cells from pLNs of diabetic F2 DtTreg mice, as compared

to F2 Foxp3RFP/GFP (Figures 9A, C; left panels). Relevant to their

high diabetes susceptibility, the acquisition of Idd5.1 (68) by F2

DtTreg mice correlated with increased expression levels of ICOS

(Icos) and PD-1 (Pdcd1) on pTreg cells (Figures 9A, C), and the

accumulation of an unusual ICOS+PD-1high pTreg cell subset in F2

DtTreg mice, but not in Foxp3RFP/GFP littermate controls

(Figure 9D). In F2 DtTreg mice, other Treg signature proteins

were either expressed on a higher proportion of pTreg cells (e.g.,

Nrp1, CD103, KLRG1) or were expressed at higher levels (GITR)

(Figure 9B). Importantly, functional incapacitation of PD-1 in gene-

targeted mice (91–93) and human patients treated with blocking

Abs (94) can result in overt autoimmune responses, including T1D

(94–98), indicating a primarily inhibitory function of PD-1

expression in immune effector cells. However, independent lines

of evidence in mice have pointed towards a diabetogenic role of PD-
A B

D
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FIGURE 9

Flow cytometry-based immunophenotyping of pTreg cells in (B6>NOD)F2 DtTreg mice. Expression analysis of selected Treg cell signature proteins
on gated Treg cell subsets of I-Ag7+/+ Foxp3RFP/GFP mice (total Treg: grey; tTreg: green; pTreg: blue) and pTreg cells of DtTreg mice that were either
I-Ag7+/− (orange) or I-Ag7+/+ (red). Surface expression of (A) CD25, PD-1, and ICOS, and of (B) Nrp1, GITR, CD103, and KLRG1 on pTreg cells from
F2 DtTreg mice, as compared to pTreg cells from F2 Foxp3RFP/GFP mice. Numbers in histograms indicate mean percentages of cells ± SD within the
respective gate or quadrant, with the exception of GITR in (B) showing mean fluorescence intensity (MFI) of the fluorochrome-conjugated mAb (C)
Quantification of indicated marker expression based on MFI of fluorochrome-conjugated mAbs. Symbols and bars represent individual mice and
mean values ± SD, respectively. (D) Expression of ICOS and PD-1 on pTreg cells from pLNs of Foxp3RFP/GFP mice and DtTreg mice, as indicated.
Numbers in dot plots indicate mean percentages of cells ± SD within the respective quadrant or gate. Note that gated populations of total Treg cells
and tTreg cells from Foxp3RFP/GFP mice were included for comparison. Data are from a single experiment (n = 4). Unpaired t-test: ns, not significant;
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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1 expression on Foxp3+ Treg cells, which included diabetes

amelioration in congenic B10.Idd5+ and Idd5.1+ NOD mice (69,

99), diabetes protection of NODmice with Foxp3+ Treg cell-specific

PD-1 deletion (100), and an inverse correlation of PD-1 expression

with the expression of Foxp3 and Foxp3+ Treg cell function (100,

101). Clearly, future studies are warranted to further dissect the

differential function of PD-1 on T effector and Foxp3+ Treg cells,

including pTreg cells.
Discussion

As the functional heterogeneity of pTreg and tTreg cells

promises to enable the subset-specific therapeutic manipulation of

their activity in various clinical settings, it will be important to

define their exact roles in establishing and maintaining peripheral

immune homeostasis. The selective ablation of the development of

pTreg cells (26, 27, 102) and tTreg cells, as done here, represents a

considerable improvement over previous experiments relying on

Foxp3-deficient mice and their reconstitution by adoptive Treg cell

transfer, allowing the in vivo consequences to be analyzed under

near-physiological conditions, including minimal autoimmune

perturbations. In fact, some of the pathology observed in Foxp3-

deficient mice has been attributed to the enhanced thymic export

and peripheral accumulation of Treg cell-like ‘wanna-be’ CD4+ T

cells with self-reactive specificities and distinct pathological

properties (9, 10), rather than the mere absence of a functional

Foxp3+ Treg cell pool. Additionally, some defects of Foxp3-deficient

mice (e.g., defective lympho-hematopoiesis) are refractory to

adoptive Treg cell therapy, even when total CD4+ T cell

populations were used (50). Here we have analyzed how selective

tTreg cell paucity, which was achieved by intrathymic tTreg cell

ablation while preserving pTreg cell generation, impinges on

peripheral immune homeostasis in non-autoimmune and

autoimmune-prone mice. Our data in B6.DtTreg mice reveal the

ability of pTreg cells to establish immune homeostasis after birth,

maintain immune tolerance in young mice, and constrain

catastrophic autoimmune responses during aging in the majority

of B6.DtTreg mice. Consistently, neonatal transfer of total CD4+ T

cell populations, which had been depleted of tTreg cells,

ameliorated clinical signs of Foxp3 deficiency in scurfy recipient

mice. The manifestation of some mild disease symptoms (moderate

growth delay and mild exfoliative dermatitis) can probably be

attributed to an initial lag phase after tTreg cell-depleted CD4+ T

cell transfer, which is required for seeding and proliferative

expansion of pre-formed pTreg cells, and the lymphopenia-driven

de novo generation of Foxp3+ pTreg cells (20).

Besides the absence of scurfy-like symptoms, several additional

observations in the B6.DtTreg model further support our

interpretation that physiologic pTreg cell populations can

efficiently constrain autoimmune responses in the absence of

tTreg cells. This includes an overall normal size of peripheral

lymphoid tissues and T effector cell compartments (numbers,

activation state, inflammatory cytokine production, etc.), as well
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as unperturbed lympho-hematopoiesis, representing a particularly

sensitive indicator for the absence of ongoing (auto)immune

responses. Many organs of B6.DtTreg mice, which are commonly

targeted by severe autoimmune destruction in Foxp3-deficient

mice, show no or only mild immune infi ltrations not

accompanied by any appreciable tissue destruction. Thus, the

underlying cause promoting the occurrence of spontaneous

deaths from an age of > 7 weeks onwards has remained less clear

but may involve the exacerbation of chronic, low-level

inflammation in individual organs, such as the thyroid gland or

the lungs (Figure 4A), rather than multi-organ autoimmunity

observed in Foxp3-deficient models of complete Treg cell

deficiency. Interestingly, extending our histopathological analyses

of the lungs (Figure 4A) to the upper respiratory tract of DtTreg
mice that presented with reduced body weight provided first

evidence for unexpected, severe inflammatory changes in the area

of the nasal and oral cavities, pointing towards decreased food

intake as a possible reason underlying a reduced body weight and

morbidity of this particular disease subphenotype (data not shown).

Considering the age-dependent increase in spontaneous deaths

(Figure 4B), the abrogation of immune homeostasis in individual

DtTreg mice is likely to involve immunological and/or

environmental cues (102–104), which are subject to age-related

changes. This may include differences in the exposure to antigens

derived from the diet and commensal microbiota promoting the

physiologic induction of pTreg cells (103, 105–107). Our efforts to

further analyze the immune events associated with the age-related

impairment of peripheral immune homeostasis in DtTreg mice have

been hampered by the relatively low incidence of mortality, in

conjunction with rapid disease progression. In-depth flow

cytometry-based immunophenotyping failed to reproducibly

reveal age-related changes in the peripheral immune effector

compartments of DtTreg mice, including CD4+ and CD8+ T

effector compartments (Figures 5C–E). While this could be taken

as an indication for quantitative and/or qualitative changes affecting

the pTreg cell compartment, our analyses have not provided any

evidence for an age-related reduction of pTreg cell numbers or

phenotypic changes in the peripheral pTreg pool. In contrast, we

found that the increased pTreg cell population size largely

compensated for the numerical impairment of the overall Treg

cell pool in adult DtTreg mice (Figures 1D, E; Supplementary

Figures S1B, S2), which also holds true for DtTreg mice that were

affected by reduced body weight and thymic atrophy (Figure 2B).

At present, we can only speculate on whether the pTreg cell niche

in peripheral lymphoid tissues of DtTreg mice is replenished early in

life and then maintained by proliferative expansion of pre-formed Treg

cells, or whether continuous incorporation of newly formed cells is

required to maintain a peripheral pTreg cell pool and immune

homeostasis. This raises the possibility that the observed age-

dependent increase in spontaneous mortality and morbidity is, at

least in part, associated with a reduced efficiency in pTreg cell

generation. In fact, pTreg cells are thought to be mainly, if not

exclusively drawn from initially naïve CD4+ T cells (108). However,

rates of thymic export of newly formed CD4+ T cells to peripheral sites
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of pTreg cell generation continuously decrease during aging and

involution of the thymus (109, 110), but also during thymic atrophy

due to chronic inflammatory stress (Figure 2B; Supplementary Figure

S6C). Consistently, immediate CD25highFoxp3− pTreg cell precursors

residing in peripheral lymphoid tissues of nonmanipulated mice are

strongly enriched among recent thymic emigrants (18).

Overall, our findings are consistent with a scenario, in which pTreg

cells in peripheral lymphoid tissues of B6.DtTreg mice acquire a highly

activated phenotype and increased suppressor function to cope with

latent, chronic autoimmune responses due to the absence of tTreg cells.

This intricate equilibrium can get out of control even by subtle age-

related immunological and/or microenvironmental changes, which

then tip the balance in favor of fatal autoimmunity. This may

include changes in the commensal microbiota and qualitative

differences among the pTreg cell pool, e.g., reduced rates of pTreg

cell de novo generation, in conjunction with proliferative pTreg cell

expansion narrowing the TCR repertoire.

This interpretation was further corroborated by the dramatically

increased mortality associated with the early onset of severe

autoimmune diseases that could be observed in DtTreg mice after

only two backcross generations onto the autoimmune-prone NOD

background. Here we focused our analysis on pancreatic b cell

autoimmunity, as T1D is considered a paradigmatic autoimmune

disease for the application of Treg cell-based therapies to prevent or

interfere with ongoing autoimmune destruction, although the main

regulator(s) of pancreatic b cell autoimmunity hasn’t been identified

yet. Lastly, Foxp3-deficient NOD mice with a polyclonal CD4+ T cell

repertoire fail to present with insulitis and overt diabetes before they

succumb at 3 weeks to severe inflammatory infiltration in multiple

organs (33), precluding NOD.Foxp3-deficient mice as an experimental

model to study the role of Treg cells in the autoimmune b cell

protection. Our data show that the acquisition of a small set of Idd

risk loci, many of which encode genes with well-known functions in

Treg cell biology, is sufficient to precipitate a particularly severe form of

autoimmune diabetes in DtTreg mice on a mixed (B6>NOD)

background. In this context, it is of interest to note that our

complementary studies in DpTreg mice on a (B6>NOD)F5

background haven’t provided evidence for a protective role of pTreg

cells in the control of b cell autoimmunity (D.M.Z. and K.K.,

unpublished observation). Our observations in (B6>NOD) hybrid

mice with selective tTreg cell paucity, in conjunction with previous

experiments in Foxp3.CNS1–/– with impaired pTreg cell development

(34) indicate that tTreg cells are key regulators of b cell autoimmunity

in the NOD model. Clearly, future experiments are warranted using

Treg cell-subset-deficient mice on a pure NOD background to provide

a more definite answer on the role of tTreg and pTreg cells in the

control of b cell autoimmunity.

In conclusion, DtTreg and DpTreg mice offer to directly analyze

the individual roles of tTreg and pTreg cells, respectively, in the

control of immune homeostasis and organ-specific autoimmunity

under near-physiologic conditions, which will facilitate future studies

on the functional heterogeneity of the mature Treg cell pool. Besides

autoimmune diseases, of particular interest will be to dissect their

subset-specific contributions to non-immune functions that have

recently been attributed to tissue-type Treg cells, which include

facilitating homeostasis and regeneration of nonlymphoid tissues.
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