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Tryptophan, an important link in
regulating the complex network
of skin immunology response
in atopic dermatitis
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Yongliang Ouyang2,3* and Yongqiong Deng1,2*

1Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of
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Atopic dermatitis (AD) is a common chronic relapsing inflammatory skin disease,

of which the pathogenesis is a complex interplay between genetics and

environment. Although the exact mechanisms of the disease pathogenesis

remain unclear, the immune dysregulation primarily involving the Th2

inflammatory pathway and accompanied with an imbalance of multiple

immune cells is considered as one of the critical etiologies of AD. Tryptophan

metabolism has long been firmly established as a key regulator of immune cells

and then affect the occurrence and development of many immune and

inflammatory diseases. But the relationship between tryptophan metabolism

and the pathogenesis of AD has not been profoundly discussed throughout

the literatures. Therefore, this review is conducted to discuss the relationship

between tryptophan metabolism and the complex network of skin inflammatory

response in AD, which is important to elucidate its complex pathophysiological

mechanisms, and then lead to the development of new therapeutic strategies

and drugs for the treatment of this frequently relapsing disease.
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1 Atopic dermatitis

Atopic dermatitis (AD) is a chronic inflammatory skin disease that results from a

complex interplay of genetics, environment, and immunity, which is characterized by

intense itching, recurrent eczema lesions, and a personal or family history of atopy (1). The

incidence of AD is gradually increasing with the development of the current

industrialization and urbanization, affecting up to 15-30% of children and 10% of adults

worldwide (2, 3). Even worse, approximately 50-70% of children with AD are at risk of

developing other atopic diseases such as allergic asthma and/or allergic rhinitis in the future
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(4). At present, researchers believe that immune disorders play a

crucial role in the pathogenesis of AD. T helper type 2 (Th2) and

Th17-mediated immune disorders dominates the acute stage and

chronic stages of AD respectively (5), both of them “interweave”

each other to form a complex network of skin inflammation.

Among them, the Th2 type immune response has attracted

widespread attention and exploration. In relevant studies on the

pathogenesis of AD, the pathogenic role of keratinocyte derived

cytokines such as thymic stromal lymphopoietin (TSLP),

interleukin-33 (IL-33) and IL-25 in inducing skin inflammation

has been emphasized (6). These cytokines can promote the

production of Th2 type cytokines such as IL-4, IL-5, and IL-13.

Notably, IL-4 and IL-13 have previously been reported to damage

the integrity of the skin barrier by inhibiting the production of key

proteins such as filaggrin (Flg) and disrupting the stability of tight

junctions (7, 8), leading to increased penetration of allergens and

pathogens. The downstream signal transduction of both also blocks

the expression of innate immune response genes such as b-
defensins (7, 9), increasing the risk of skin infection with

Staphylococcus aureus in AD patients. Meanwhile, IL-4 and IL-13

can drive the regeneration of eosinophils and mast cells, as well as

stimulate the secretion of key cytokines IL-31 in pruritus

stimulation (10). The repeated scratching behavior leads to

further physical damage to the skin barrier, thereby forming a

“vicious cycle” that exacerbates AD skin lesions. In addition,

congenital skin barrier dysfunction and disruption of the

microbiota in the skin and intestines are also considered the main

contributors in driving the development of AD (11). However, the

exact mechanism of AD pathogenesis mediated by intestinal

microbiota is still not fully elucidated, which is presumed to be

associated with tryptophan (Trp) metabolism.

Long-term itching symptoms and recurrent episodes of disease

could severely affect the life quality of AD patients, and are closely

related to the occurrence of negative psychology such as anxiety and

depression (12). But, unfortunately, treating AD is challenging due

to the high heterogeneity of the disease (13) and the limited

therapeutic drugs (14). In traditional treatment regimens, topical

corticosteroids are a classic first-line medication, although they

could produce anti-inflammatory and immunosuppressive effects

by inhibiting various inflammatory cells and cytokines, long term

use may be limited by the side effects such as skin atrophy (15). The

highly individualized selection of immunosuppressive drugs

reduces the scope of application of the drugs and patient

compliance. As an emerging treatment for AD, biological agents

seem to be effective alternatives to traditional treatment. In 2017,

dupilumab, a fully monoclonal antibody targeting IL-4R, became

the first biological agent approved for use in adult patients in the

United States due to its significant improvement in AD clinical

manifestations. However, a higher incidence of herpes simplex virus

infection and conjunctivitis was found in patients receiving

dupilumab. Among other newly developed monoclonal

antibodies, including Lebrikizumab and Tralokinumab combined

with IL-13, Nemolizumab inhibiting IL-31, and Fezakinumab

blocking the action of IL-22, various degrees of herpes infection,

conjunctivitis, viral upper respiratory tract infection, peripheral

edema, and elevated creatinine kinase levels have been found after
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treatment (16). Recent studies have shown that the activation of the

JAK (Janus kinase)- STAT (signal transducer and activator of

transcription) signaling pathway is essential for mediating

downstream inflammatory cytokines in AD patients, including

IL-4, IL-5, IL-13, IL-31, IL-22, and TSLP (17). These cytokines

bind to immune cells, keratinocytes, and peripheral sensory

neurons, leading to the spread of inflammation and itching

symptoms in AD patients. Therefore, JAK inhibitors have become

a new treatment strategy for AD because of immunosuppressive

effects. Currently, commonly used JAK inhibitors include oral

Baricinib targeting JAK1 and 2, and Upadacitinib targeting JAK1,

as well as topical Tofacitinib targeting JAK1 and 3, Ruxolitinib

targeting JAK1 and 2, and Delgocitinib targeting the entire JAK

pathway. However, it is worth noting that, although JAK inhibitors

could improve the severity of the condition and itching symptoms

in AD patients, they also have the risk of increasing blood creatine

phosphokinase and inducing headaches and nasopharyngitis (18).

The long-term effectiveness and safety of these developing

biological therapies are not yet fully understood, and with the

continuous emergence of new therapies for AD, the comparison

of drugs is crucial for patients to choose safe and effective treatment

plans. Hence, in-depth study of the mechanism and looking for new

potential treatment of AD is still valuable. Trp metabolism has

recently been found to have a potential connection with the

regulation of AD immune system, and greatly affect the

development of other immune diseases such as metabolic

syndrome, neuropsychiatric disorders and inflammatory bowel

disease (19). However, throughout the literatures, the role of

tryptophan metabolism in the pathogenesis of AD has not been

well discussed. This article reviews the potential role of tryptophan

metabolism in regulating the complex network of skin

inflammatory response in AD, in order to enhance understanding

of the occurrence and development of AD and seek treatment

opportunities targeting tryptophan metabolism.
2 Tryptophan metabolism and its’ role
on regulating skin diseases by aryl
hydrocarbon receptor

Tryptophan is an essential amino acid for the human body that

is mainly produced by high-protein foods such as milk, seafood,

grains and peanuts, which is a biosynthetic precursor of a large

number of metabolites (19). As an important intestinal metabolite,

Trp metabolism in the intestine follows three main pathways (20)

under homeostatic conditions: (i) the Kynurenine (Kyn) pathway

(KP) via indoleamine 2,3-dioxygenase 1 (IDO1) in immune cells

(mainly macrophages) and intestinal epithelial cells (IEC); (ii) the

serotonin pathway via Trp hydroxylase 1 (TpH1) in

enterochromaffin cells. Above two pathways mainly occur in host

cells, that are predominantly but not exclusively used by the host.

(iii) The direct conversion of Trp into indole, indole derivatives, and

tryptamine by the intestinal microbiota via the enzyme

tryptophanase (21), which produces metabolites such as indole

acetic acid (IAA), indole‐3‐acetaldehyde (IAAld), indole‐3‐
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aldehyde (IAld), indole propionic acid (IPA) and indoleacrylic acid

(IA) (Figure 1). Trp metabolites mainly exists in human feces and

have been shown to maintain the integrity of the skin and intestinal

barrier and immune cell homeostasis by activating aryl

hydrocarbon receptor (AhR) (22, 23), thus are considered as the

active biomarkers (24).

AhR is a ligand dependent transcription factor that could be

observed in all skin cells. Although the expression levels vary in

specific cell types (25), AhR signaling plays a major role in skin

diseases due to its involvement in many important physiology

processes such as regulating immune cells, maintaining redox

balance in cells and epidermal barrier function (25–27). As a

hybrid receptor, AhR could be activated by a variety of exogenous

and endogenous ligands (28–31), among them, the mild and

transient AhR activation caused by antioxidant phytochemicals or

some tryptophan derivatives could effectively maintain healthy and

complete skin barrier (32, 33). When tryptophan derivative binds to

the AhR ligand to form a complex, AhR dissociates from the

cytoplasm and translocates to the nucleus. The AhR nuclear

translocation protein (ARNT) dimerizes with the exposed nuclear

translocation site of AhR, binding to be the upregulated target gene
Frontiers in Immunology 03
transcription response element (34). This signaling pathway

initiates the activation of the OVO-like 1 (OVOL 1) transcription

factor, and subsequently enhances the expression of Flg and olein

(LOR), these kind of terminal differentiation proteins have

specificity for fully differentiated keratinocytes (35), helping to

accelerate the final differentiation of the epidermis and the

formation of the epidermal barrier (36, 37). Notably, increasing

evidences suggest that the binding of tryptophan derivatives with

AhR play a role in the pathogenesis or treatment of many skin

diseases (38, 39), including inflammatory diseases, skin

pigmentation diseases, and cancer (40, 41). As expected,

tryptophan metabolism has been reported to be closely related to

the occurrence and development of AD (42), the tryptophan

metabolite in the AD skin lesions is significantly reduced (43)

that may be associated with the weakened tryptophan metabolism

in the skin microbiota by Th2 type immune response (43). Due to

AhR lacking physiological ligands in the Th2-deviated environment

of AD, the skin barrier damage and colonization of pathogenic

microorganisms such as Staphylococcus aureus would increase,

thereby exacerbating Th2 type inflammation in the lesion of AD

(44, 45). Therefore, we speculate that tryptophan and its derivatives
FIGURE 1

Three main pathways of tryptophan metabolism in the intestine under steady-state conditions. (i) Purple arrows: the Kynurenine pathway via
indoleamine 2,3-dioxygenase 1 in macrophages and intestinal epithelial cells; (ii) Blue arrows: the direct conversion of Trp into indole, indole
derivatives, and tryptamine by the intestinal microbiota via the enzyme tryptophanase; (iii) Red arrows: the serotonin pathway via Trp hydroxylase 1 in
enterochromaffin cells. Green lines, inhibitory action; Green arrows, promotional effect; AHR, aryl hydrocarbon receptor; IA, indoleacrylic acid; IAA,
indole acetic acid; IAAId, indole‐3‐acetaldehyde; IAId, indole‐3‐aldehyde; IAM, indole-3-acetamide; IDO1, indoleamine 2,3-dioxygenase 1; ILA,
indole-3-lactic acid; IPA, indole propionic acid; IPYA, Indole pyruvic acid; KYN, Kynurenine; KYNA, kynurenic acid; TpH1, Trp hydroxylase 1; 3-HAA,
3-Hydroxy-Anthranilic acid; 3-H-KYN, 3-Hydroxy-Kynurenine; 5-HT, 5-hydroxytryptamine.
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could be beneficial for the treatment of AD by appropriately

activating the AhR/ARNT axis.

Tryptophan has recently been also implicated in the crosstalk

between gut microbiota (GM) and host in healthy and diseased

states (19, 46), and its metabolic impairment may affect the

occurrence and development of many diseases, such as metabolic

syndrome, neuropsychiatric disorders and inflammatory bowel

disease (19). Research findings showed that, compared with the

healthy control, inflammatory bowel disease (IBD) patients

experienced intestinal microbiota homeostasis imbalance, while

their serum tryptophan levels also significantly decreased.

Interestingly, the composition of GM is significantly correlated

with serum level of tryptophan, dietary supplementation with Trp

can normalize the disordered GM in the IBD mouse model (47),

and the AhR ligands produced subsequently by GM could alleviate

the inflammatory response (48). Wilck et al. found that,

Lactobacillus murinus and Lactobacillus reuteri could convert

tryptophan into IAld and indole-3-lactic acid (ILA) by aromatic

amino acid aminotransferase and indole lactic acid dehydrogenase

(49, 50), these generator of AhR would improve the severity of

colitis in mice (23). This type of approach can even be expanded to

other inflammatory diseases (51), suggesting that the biological

effects of Trp metabolites may be related to the interactions between

gut microbiota and may become potential therapeutic targets for

certain diseases. Additionally, Metghalchi et al. found that plasma

level of Trp predicts the likelihood of adverse cardiovascular events

in patients with acute myocardial infarction (52). Based on the

characteristics of Trp metabolism influenced by pathological

conditions, the use of Trp and its metabolites as biomarkers to

support diagnosis and prognosis and to guide treatment options is

attractive. Therefore, this article will focus on exploring the

potential diagnostic and therapeutic role of tryptophan

metabolism in the complex pathogenesis of AD.
3 The potential role of tryptophan
metabolism in atopic diseases

AD typically begins in early childhood and is usually the first

manifestation of atopic progression. While clinical symptoms of

some AD children would disappear with age, some children may

experience food allergy during the course of the disease, even half of

AD children may develop allergic asthma and two-thirds of AD

children are at risk of developing allergic rhinitis in the future. This

kind of disease progression is known as the “Atopic March” (53,

54). Exploring the relationship between these atopic diseases and

tryptophan can help us further understand its role in AD.
3.1 Food allergy

Although people often refer to any adverse reaction to food as

an allergy, strictly speaking, food allergy (FA) is an adverse reaction

to the food itself that is mediated by specific IgE antibody. Increased

levels of tryptophan and indole metabolic pathway products were

found in serum samples from FA children, while levels of
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metabolites from Kynurenine and 5-hydroxytryptamine pathways

decreased with disease burden (55, 56). However, these tryptophan

metabolites can downregulate the T cells activity or induce various

regulatory T cell (Treg) cells to regulate immune responses at the

mucosal barrier (55, 57). The reduction of tryptophan metabolites

with potential anti-inflammatory effects would create a suitable

environment for Th2 tilted immune responses, thereby increasing

the occurrence risk of Th2 related diseases such as AD. Another

study on peanut allergic mice suggests that the above mechanism is

related to the activation of AhR (58, 59), but to our knowledge, there

are currently no clinical studies evaluating the functional role of

AhR ligands in FA.
3.2 Allergic rhinitis and asthma

Atopic diseases are highly prevalent in children worldwide, with

the prevalence rates of allergic rhinitis (60, 61) and asthma (62)

being approximately 14% and 15%, respectively. Consistent with

food allergy, levels of tryptophan are significantly elevated in

patients with allergic rhinitis and asthma (55, 63–66). Serum

tryptophan levels could not only be used to distinguish between

stable asthma children and healthy children, but also to distinguish

between controlled and uncontrolled asthma patients (64). This

kind of influence could even be traced back to the early stages of life,

the tryptophan metabolite 5-hydroxyindolepyruvate in maternal

amniotic fluid can determine whether the baby has wheezing

attacks in the first year of life (65). The above evidences suggest

the important value of tryptophan in atopic related diseases. Some

researchers believe that, the high level of tryptophan in the serum of

patients with atopic diseases may be related to the low activity of

IDO-1 enzyme or the inhibition of IDO-2 enzyme activity (66, 67).

Among them, IDO-1 is widely expressed in tumor cells and

inflammatory/antigen presenting cells (APCs), induces the

production of Kyn by catabolizing tryptophan, the ratio of serum

Kyn to tryptophan reflects IDO-1 activity to some extent (68, 69).

Kyn could up-regulate the expression of foxp3 transcription factor,

increase the differentiation of Treg cells and decrease the expansion

of Th17 type cells (67, 70–72). For instance, Th17 and Th1 type

airway inflammation were observed in IDO deficient mice infected

with the virus, characterized by significant infiltration of neutrophil,

high production of IL-17 and interferon-g (IFN-g) and obvious

airway responsiveness (73). In the asthma mouse model, activation

of toll-like receptors (TLR)-9 through bacterial DNA motifs could

induce the expression of IDO (74) and aromatic receptor (75, 76) to

reduce the inflammatory airway hyperresponsiveness. Therefore,

although the specific role of tryptophan metabolism in the

pathogenesis of atopic diseases such as asthma and allergic

rhinitis is still not fully understood, it cannot be denied that

tryptophan metabolism and its intermediate products are the

important links in regulating immune responses (19). According

to research reports, administration of D-tryptophan before

experimental asthma induction in mice observed an increased

number of regulatory T cells in the lungs, a decreased Th2 type

immune response, and an improvement in allergic airway

inflammation and airway hyperresponsiveness (77). Another
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tryptophan metabolite, 3-Hydroxy-Anthranilic acid (3-HAA),

could directly target the phosphorylation of 3-phosphoinositol

dependent kinase 1 (PDK 1) to inhibit NF-kB triggered by T cell

antigen receptors, leads to dysfunction and cell death of activated

TH2 cells in the body, which is sufficient to suppress experimental

asthma induced by TH2 immune response in mice (78). In addition,

PapaMichael et al. (79) also reported a positive correlation between

the tryptophan metabolite 5-hydroxyindoleacetic acid (5-HIAA)

and the asthma FEV 1/FVC (forced expiratory volume in the first

second/forced vital capacity) ratio, as well as a negative correlation

with fractional exhaled nitric oxide (FeNO). However, further

research is needed to demonstrate the therapeutic potential of

tryptophan and its metabolites in patients.

In summary, the atopic diseases such as food allergy, asthma,

and allergic rhinitis all have varying degrees of tryptophan

metabolism abnormalities, which may even affect early immune

homeostasis. The use of tryptophan metabolites as biomarkers to

support the diagnosis and prognosis of atopic diseases and guide

treatment choices is an attractive choice. However, despite the

extensive research supporting the important role of tryptophan

metabolism in the occurrence and development of atopic related

diseases, the mechanism connections between these diseases are still

unclear (80), the specific mechanisms of action and therapeutic

potential still need to be further explored.
4 Trp metabolism as a bridge between
atopic dermatitis and gut microbiota

4.1 Gut microbiota and its metabolites
contribute to the development and
prognosis of AD

GM is an enormous and complex ecosystem. The number of

bacterial cells within the human gut outnumber the host’s cells by

10 times and the genes encoded by these bacteria even exceeds their

host’s genes by more than 100 times (81). Consequently, extensive

research has been conducted on the gut microbiota and its role in

the various diseases and health states. It is reported that the

imbalance in the diversity and composition of GM could lead

to negative changes in intestinal microbial metabolism and

immune response, such as affecting the host’s intestinal immune

environment and barrier function, disrupting mucosal immune

tolerance, and increasing the vulnerability of the host (82, 83).

Actually, the connection between GM and skin inflammation was

discovered as early as the 1930s (84). Up to now, numerous studies

have revealed that the development of allergic diseases such as

asthma, allergic rhinitis and AD is closely associated with GM

disturbance (85–91). Although there are some conflicting results

(92–95), lots of clinical trials have claimed that AD patients exhibit

poor gut microbial diversity compared to healthy individuals (96–

99), as well as a structural disorder in the gut microbiota, which

includes the increased abundance of microorganisms related to

inflammation and epithelial damage in the intestinal flora, such as

Clostridium difficile, Coliform, pathogenic Escherichia coli, and

Staphylococcus aureus (93, 97, 100–104), and the significantly
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decreased abundance of SCFA (short chain fatty acid) producers,

such as Bifidobacteria, Fecal cocci and Fecal bacilli (92, 95, 96, 103,

105–108). Notably, SCFAs, including acetic acid, propionic acid,

and butyric acid, have been proven to help maintain the balance of

GM, affect immune cells, and are closely related to the remission of

clinical manifestations of AD (96, 109, 110). SCFAs can bind G-

Protein-Coupled Receptors (GPCRs, including GPR43, GPR41, and

GPR109a) expressed on intestinal epithelial and immune cells to

inhibit histone deacetylase (HDAC) (111, 112), leading to

acetylation of the Foxp3 coding region in T cells, driving Treg

differentiation (113, 114), downregulating expression of

inflammatory cytokines (IL-6, IL-8, and tumor necrosis factor -a
(TNF-a)) (115, 116), and stimulating the production of anti-

inflammatory cytokines such as IL-10 by peripheral blood

mononuclear cells (PBMCs) (117) which could suppresses pro-

inflammatory types of Th17 and Th2 cells in turn. Therefore,

intervention targeted GM and its metabolites may be an

alternative method for controlling the inflammationary responses

and improving the clinical symptoms of AD.
4.2 Probiotics alleviate the inflammatory
response in AD by up-regulating
tryptophan metabolism

In addition to SCFA, another prominent example of how

microbiota affects host tissue level immune maturation is the

probiotic metabolic pathway of tryptophan. As the important

regulator of GM, probiotics could improve the clinical severity of

patients by the reduction of pro-inflammatory cytokines such as IL-

13 and IL-5 in AD skin lesions (118). It has been revealed that IL-13

is a key driver of activating Th2 type immune responses, and IL-15

is a key cytokine inducing development and survival of eosinophil

(119). Thus, probiotics is expected to become an effective alternative

strategy for the treatment of skin diseases based on the enormous

potential in regulating immune function (120, 121). It is worth

mentioning that, current research has also confirmed a close link

between probiotics and tryptophan metabolism. For instance, the

application of Lactobacillus reuteri (122), Lactobacillus salivary

(123), and Bifidobacterium (124) significantly increased the level

of tryptophan metabolites in the serum, and even accompanied by

the decreased pro-inflammatory response. In fact, tryptophan, as an

important regulator of mammalian inflammatory response (125),

has been proven to have an immunomodulatory effect in

experimental colitis or IBD patients (126). The GM obtained

from IBD patients showed poor ability to produce AhR ligands

(23), and in addition, sterile mice susceptible to colitis observed

significant improvement in intestinal inflammation after

supplementation with AhR agonists and Lactobacillus strains

capable of metabolizing tryptophan (22). Similarly, administration

of Bifidobacterium in AD model mice showed reduced scratching

behavior and an increase in the level of Kyn (127). Therefore,

considering the role of the beneficial microbiomes in tryptophan

metabolism, we speculate that increasing intestinal probiotics may

medicate the immune inflammatory responses and alleviate clinical

symptoms of AD by producing tryptophan derivatives.
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4.3 Tryptophan metabolites promote the
regression of skin inflammation in AD by
repairing the intestinal barrier

It has been reported that, Trp metabolism and its derivatives

have many beneficial effects on intestinal epithelial barrier function

mediated by GM. The intestinal barrier is made up of epithelial

cells, mucous layers, T cells, IgA, and dendritic cells, collectively

forming the “mucosal firewall” (128). The imbalance of GM,

decreased production of SCFA, and loss of immune tolerance in

the intestines of AD results in the occurrence of inflammatory

reactions, increased pathogenic microorganisms and damaged

intestinal barrier (92). This kind of “leaky gut” paves the way for

the occurrence of AD skin inflammation by releasing toxins, food

residues and pathogenic microorganisms from the damaged

intestinal epithelium into the systemic circulation, inducing the

release of pro-inflammatory cytokines to propel Th2 type immune

responses ultimately (129–131). Nevertheless, Trp metabolites such

as indole can reinforce intestinal epithelial barrier function by

enhancing the expression of genes involved in preserving

epithelial cell structure and function in vivo and in vitro (132,

133), IA (134) and IPA (134, 135) can enhance intestinal epithelial

barrier function by reducing the expression of inflammatory factors

in intestinal epithelial cells via activating the AhR and PXR

(pregnenolone X receptor) receptors, respectively, to promote

intestinal goblet cells differentiation and mucus production. Thus,

it is supposed that the supplementation of tryptophan metabolites

will play a beneficial role in AD through repairing the intestinal

epithelial barrier function and consequently controlling “leaky gut”

induced skin inflammation.
5 Tryptophan metabolites regulate the
complex immune response in AD

Although the exact mechanisms of the disease pathogenesis

remain unclear, accumulating evidence from experimental, genetic,

and clinical studies indicates that impaired skin barrier and the

immune dysregulation are the critical etiologies of AD (11).

Although AD has long been considered to be Th2-dominated

inflammation, it is also evident that its pathology is accompanied

by an imbalance in immunity involving both innate immune cells

such as keratinocytes, macrophages, dendritic cells, and adaptive

immune cells such as Th1, Th2, Th17, Th22 and Treg cells, which

interact and eventually intertwine into a complex inflammatory

network. On the other hand, tryptophan metabolism has been

firmly established as a key regulator of both innate and adaptive

immune cells (68, 136), and its derivative receptor, AhR, is a key

component of the immune response at the barrier site. Alterations

in AhR activity or AhR deficiency may disrupt the immune

response or impair the development and function of the

epidermal barrier (137). Next, we will delve into the innate and

adaptive immune mechanisms mediated by the tryptophan

metabolites in the pathological process of AD.
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5.1 Keratinocytes

Keratinocytes represent the first line of the host defense system

by sensing pathogens via innate immune receptors, initiating

antimicrobial responses and producing various cytokines and

antimicrobial peptides. Among the dysregulation of immune

responses in AD, keratinocytes initiate cross-talk between innate

and adaptive immune responses by regulating the release of several

key molecules including eotaxin/CC chemokine ligand (CCL) 11,

eotaxin‐3/CCL26, monocyte chemotactic protein (MCP)‐4/CCL13,

regulated on activation, normal T cell‐expressed and secreted

(RANTES)/CCL5, and thymus and activation‐regulated

chemokine (TARC)/CCL17, that trigger inflammatory reactions

and immune responses (138). It was found that Th2 type

cytokine IL-4/IL-13 could stimulate the production of IL-24 in

Keratinocyte by inducing the activity of STAT 6 (139), and then

reduce the expression of Flg, ultimately leading to epidermal

terminal differentiation damage and barrier dysfunction in AD

patients. Interestingly, AhR ligands, such as Coal tar, Glyteer and

6-formylindolo[3,2-b]carbazole (FICZ), could block the activation

of STAT 6 mediated by IL-4/IL-13 and promote the expression of

Flg via mild and transient activation of AhR/ARNT pathway, thus

restoring barrier dysfunction (140, 141). Further experiments have

proved that the defect of AhR in Keratinocyte may be the cause of

worsening inflammation (142), while intense and sustained AhR

activation would lead to excessive keratinization of Keratinocyte

and sebocytes (43). In conclusion, the lack of AhR or the change of

its activity is related to the imbalance of Keratinocyte ‘response to

inflammatory stimuli, which may damage the immune response or

the normal function of the epidermal barrier.
5.2 Macrophages

Macrophages (Mj), as a natural immune cell, differentiate into

two phenotypes, including the M1 phenotype activated by TLR

ligands to secrete proinflammatory cytokines such as TNF-a and

IL-1b, or the M2 phenotype activated by interferon or

lipopolysaccharide (LPS) to secrete the anti-inflammatory

cytokine such as IL-10 (143), and respond to immune responses

in the AD microenvironment under different activation states.

Remarkably, M2 macrophages exert immunosuppressive effects

by expressing IDO to depresses T cell proliferation and stimulate

regulatory T cells, which are cells with immune suppressive

function (144, 145). Tryptophan metabolism has been found to

affect the polarization and immune function regulation of

macrophages. 5-methoxyltryptophan (5-MTP), a new endothelial

factor produced by L-tryptophan metabolism that has recently been

identified as a functional feature with protective and repair barriers

(146), could inhibit the LPS-induced p38-MAPK pathway by

interfering the binding of phosphor-p38 to peroxiredoxins (Prdx),

thereby blocking the activation of macrophages and preventing the

occurrence of systemic inflammation. Similarly, for other

tryptophan metabolites, I3A could reduce the expression of

inflammatory cytokine IL-1qwb, TNF-a and CXCL-1 in
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macrophages (146); IA could stimulate IL-10 production in

macrophages, thereby reducing the secretion of TNF and IL-6

(115); Kyna was later confirmed to reduce the inflammatory

response induced by LPS stimulation in monocytes and Mj
through its interaction with GPR35 (147). Therefore, these

findings support the idea that tryptophan metabolism could

effectively control macrophage activation and “cytokine storm” in

vivo, but the specific mechanism of action in AD needs

further research.
5.3 Dendritic cells

As early as the 1970s, dendriticcells (DCs) has been known to

coordinate immune responses by building a “bridge” between

innate and adaptive immunity, while the normal physiological

function of DCs could be severely affected under pathological

condition, and results in the occurrence of abnormal immune

responses subsequently. For instance, there are various

inflammatory signals in the AD microenvironment, exposure of

DCs to this immune stimulation environment would upregulate the

expression of inflammatory mediators during antigen acquisition,

and activate effector T cells via treated antigen peptides

simultaneously (148). Despite not being the case for all DCs

(149), exposure to stimuli such as IFN, TLR-4, TLR-9, TNF, and

IL-1 could induce functional IDO expression in DCs, promoting

tolerance in vivo and contributing to their ability to present antigens

and stimulate T cells (150) either through effects of IDO on DCs or

through direct action on T cells mediated by tryptophan depletion

or tryptophan metabolites (151, 152). A previous study proposed

initially that CD4+naïve treated T cells could transformed into

FoxP 3+functional regulatory T cells upon exposure to LT/

Kynurenine or IDO+ DCs (153). Additionally, the tryptophan

metabolite IPA promotes the accumulation of anti-inflammatory

DCs in the mesenteric lymph nodes, which was abolished by AhR

antagonist (154). IPYA inhibits colon inflammation by increasing

IL-10 production, reducing Th1 cell differentiation in the lamina

propria of the colon, and altering the composition of DCs in the

mesenteric lymph nodes (154). Therefore, we believe that the

tryptophan metabolism mediated by DCs has a positive

inflammatory regulatory potential in AD.
5.4 Th2 cells

The strong activation of adaptive immunity driven by Th2 cells

seems to be the dominant mechanism in the acute phase of AD

(155), mainly characterized by the secretion of cytokines such as IL-

4, IL-5, IL-13 and IL-31, which are involved in the occurrence of

keratinocyte apoptosis, inflammation and itching symptoms, to

confirm the influence of T cells in the pathogenesis of AD.

Previous studies have shown that tryptophan and its derivative

ligand, AhR, are involved in regulating T cell populations,

mediating immunosuppression, and maintaining the balance

between Treg and T cells. A recent study has demonstrated that

Th2-deviated environment is related to the reduction of the
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endogenous AhR ligand such as indole-3-aldehyde (IAId)

produced by the skin symbiotic microbiota (43). IAId could

promote the interaction of activated AhR receptors with TSLP,

thereby inhibit the production of TSLP, and ultimately reduce the

occurrence of AD-like dermatitis (43). Notably, TSLP, mainly

produced by epidermal keratinocytes and fibroblasts, could

stimulate Th2 differentiation by promoting the migration of DCs

to the epidermis (156), playing a central role in initiating Th2 type

adaptive immune responses in AD skin inflammation. In addition

to IAId, significant alleviation in clinical manifestations and reversal

of Th2 biased immune response were also observed after

supplementation with D-tryptophan in a mice with allergic

airway inflammation (77). D-tryptophan is a metabolite of

Bifidobacteria, Lactobacillus and Lactococcus, strongly induces the

production of anti-inflammatory factor IL-10 and reduces the

secretion of IFN‐g,IL‐12, and IL‐5 in LPS‐induced KM‐H2 (a

human Hodgkin’s disease cell line) cultures, and suppress the

expression of the crucial chemokine CCL17 responsible for

recruitment of Th2 cells in AD skin lesions (77, 141). A newly‐

identified role of D‐tryptophan consists of slowing down the

production of biofilm formation in Staphylococcus aureus and

Pseudomonas aeruginosa (157, 158). As is known, the skin of AD

patients is more susceptible to the colonization and overgrowth of

Staphylococcus aureus (159), which has been linked to the increased

IgE responses and severity of AD disease (160). In addition, Yu et al.

found that appropriate activation of the AhR/ARNT/Flg axis may

be beneficial in treating AD (43, 161). Th2-deviated environment

could significantly reduce the expression of filaments and other

barrier related molecules, while the activation of the AhR/ARNT/

Flg signaling pathway by rapidly metabolized AhR ligands (such as

IAId or FICZ) and dioxins (2, 162) would initiate the activation of

OVOL 1 transcription factors, enhance the expression of Flg and

LOR, thereby contributing to accelerating the final differentiation of

the epidermis and the formation of the epidermal barrier (25, 35). It

should be mentioned that, FICZ, as an endogenous UVB

photoproduct (28), has been found to be closely related to human

skin physiology (163) that could limit the production of IL-17 and

IL-22 in mouse dermatitis models by activating the AhR receptor

(142, 161), this barrier-protecting effect may partially explain why

UVB phototherapy is effective in treating AD and psoriasis (164,

165). Therefore, the reduction of filaments and other barrier related

molecules in the Th2-deviated environment, as well as the

deficiency of AhR ligands, may underlie the skin lesions in AD

(117), which may compensate for the up-regulation of AhR/ARNT

signal transduction pathways to weaken the occurrence of Th2 type

response mediated skin inflammation. However, the excessive

activation of AhR may also induce the occurrence of pruritus

dermatitis (2, 166, 167).
5.5 Th22 type immune response

IL-22, the effector cytokine of Th22 type immune, has been

reported to play a leading role in the pathogenesis of AD. IL-22

could inhibit epidermal differentiation and promote inflammation

in AD skin lesions by inducing the secretion of IL-6, and
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downregulate the expression of keratinocyte fibril aggregation

proteins in keratinocytes, especially, to increase the degree of

epidermal damage (168), which is closely related to the severity of

AD. However, the role of IL-22 in AD pathogenesis may be

bidirectional, as it has been reported to have protective effects in

acute viral infection of the intestinal tract but is pathogenic in the

chronic inflammatory environment of AD and rheumatoid arthritis

(169–172), this contradictory characteristic can even be derived into

tryptophan metabolism. For instance, topical application of the

tryptophan metabolic derivative FICZ could reduce the gene

expression of IL-22 in a murine mite-induced dermatitis model

by activating AhR receptors (161). On the other hand, IAld and I3A

could actively stimulate IL-22 secretion via AhR, and the STAT3

phosphorylation is subsequently induced to accelerate proliferation

of enterocytes for restoring damaged intestinal mucosa (173).

Although there is evidence linking tryptophan metabolism to IL-

22 secretion, the specific role of Th22 type immune response in the

pathological development of AD or its connection with tryptophan

require further relevant experimental confirmation.
5.6 Th17 type immune response

IL-17 is an important pro-inflammatory cytokine secreted mainly

by Th17 type cells (174), could results in inflammatory reactions by

inducing the production of pro-inflammatory cytokines and

chemokines in keratinocytes, neutrophils and endothelial cells (175,

176). Besides that, IL-17 would reduce the expression of Flg in

keratinocytes (177), thereby promoting the colonization of

Staphylococcus aureus in damaged epidermal barrier of AD. The

superantigen Staphylococcin B secreted by Staphylococcus aureus

reversely promotes the secretion of IL-17, leading to a “vicious cycle”

further destroys the skin barrier function of AD (178). As was

expected, tryptophan metabolites and their AhR receptors have

recently been shown to control inflammation by reducing the

proliferation of Th17 lymphocytes (49, 179, 180). In mice exposed

to ColitogenicDSS, the tryptophan derivative dioxin TCDD triggered

AhR to inhibit proliferation of Th17 and induce differentiation of

Treg (181). Similarly, the AhR ligand 3,3’-diindolyl methane (DIM)

alleviated oxazolone induced experimental colitis by reducing Th2/

Th17 cells and increasing Tregs (182). Increased expression of IL-17A

in CD4+T cells was also observed in AhR -/- mice (183). The above

evidences suggest that, the tryptophan metabolite, as an AhR ligand,

is crucial for stimulating or inhibiting host immune responses and

may be involved in the innate and adaptive immune response

regulation of AD, although the further research about direct

relationship between probiotics/tryptophan metabolites and AD is

urgently needed.
6 Kyn-IDO pathway plays a crucial
role in the development of AD

The Kyn - IDO pathway involved in the degradation of

tryptophan was initially considered to have tolerance and
Frontiers in Immunology 08
immunomodulatory effects, moreover, there is mounting evidence

that the Kyn-IDO pathway plays a crucial role in the development

of atopy and allergy Kyn and its metabolites cover more than 90% of

tryptophan metabolism, have been reported to activate AhR

receptors with anti-inflammatory activity (184–187), thereupon

then suppressing the activity of natural killer cells (NKT) (188)

and APC such as dendritic cells (DC), monocytes, and macrophages

(189, 190) in mice. Therefore, the Kyn-AhR axis has been

postulated to constitute one of the factors affecting the

progression of chronic inflammation (184). Further research has

shown that the treatment of ovalbumin (OVA) induced asthma

mice with Kyn metabolite HAA could inhibit Th 2 lung

inflammation through moderately inducing apoptosis of Th 2

cells (78). In addition, IDO 1-Kyn-AhR signaling may reveal

feedback loops related to inflammation and reactive oxygen

species (ROS) production (191, 192). In the Kyn pathway, pro-

inflammatory cytokines induce the IDO1 to create more Kyn, which

in turn stimulates the expression of IDO1 by activating AhR. For

example, when IFN- g acts on intestinal epithelial cells, IDO could

be induced to interfere with the expression of IL-10 receptor.

Subsequently, Kyn restores the upregulation of IL-10 receptor

expression by activating AhR, which significantly reduces the

occurrence of intestinal inflammation (193). The above evidences

indicates that the anti-inflammatory properties of the Kyn pathway

is achieved through a negative feedback regulatory mechanism.

IDO is widely expressed in various types of cells, including most

tumor cells, dendritic cells, macrophages, microglia, eosinophils,

fibroblasts, and endothelial cells (142, 191–197), the most

significant and effective inducers of IDO expression mainly are

cytokines (such as IFN-g, IFN-a, IFN-b and IL-10), as well as

signaling through TLRs (198–200). IDO has long been considered

to contribute significantly to the control of systemic inflammation

(201), including its key role in reducing Th1 cell proliferation and

inducing Treg cell differentiation (151, 189, 202), which could

maintain normal immunological tolerance and limit the

occurrence of tissue damage in the body. In support, enhanced

CD4+ Th17 and Th1 responses were observed in airway of IDO-

ablated mice following attacking by OVA and infection of human

rhinovirus (hRV), characterized by significant infiltration of Th 17

and Th1 type neutrophils, high production of IL-17A, and IFN- g,
and increased collagen deposition and epithelial proliferation (73).

Additionally, the direct role of IDO in inhibiting target cells by

activation of Treg cells has been confirmed from Munn’s recent

study (203, 204), specifically, the enhanced infiltration of effector T

cells in the lung cells of IDO−/− mice coincided with a sharp

decrease in CD4+CD25+FoxP3+Treg cells, which could be

attributed to decreased AhR activity and impaired Kyn

production (185, 205). Similarly, when co cultured with IDO

+AML (Acute Myeloid Leukemia) cells, naïve T cells would

convert to FoxP 3+Treg cells, and yet this conversion was

completely eliminated by IDO inhibitor (206). The transformed

Treg cells would subsequently suppress antigen-induced T cell

responses in a “time delayed manner”, so then offsetting the

overactive immune response and bringing the immune system

closer to physiological equilibrium. Compared to the inhibitory
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effect of IDO on Th 1 cells differentiation, the effect on Th 2 cells is

more complex with both inhibitory and stimulatory actions

reported (207). According to the report, a asthma mouse model

sensitized with ovalbumin (OVA) observed that expression of IDO

inhibited Th2 type airway inflammation in the lungs (74), while the

IDO-expressing and Kynurenine-producing eosinophils co cultured

with Th1 or Th2 cells, a preferential decrease in Th1 response and

subsequent increase in Th2 cytokine production were observed

(208), indicating that IDO-expressing eosinophils may create

cytotoxic metabolites that maintain an imbalance between Th1

and Th2 cell populations, and the consistent results were obtained

in the study of Molano et al. (209). Notably, Kositz et al. reported

that the higher tryptophan levels in atopic patients may be result

from lower IDO-1 activity (66). In contrast, Th2 cytokines such as

IL-4 and IL-13 inhibit the expression of IDO (210, 211), which

creates favorable conditions for a Th2 tilted immune environment,

thereby increasing the risk of Th2 related diseases. Although the
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above evidences suggest that IDO and/or its metabolites have a

protective effect in atopic inflammation, there are also studies

demonstrating the contradictory results that expression of IDO

on eosinophils may contribute to the development of allergic

inflammation (195) and was up-regulated in the AD skin (212).

Under these circumstances, we suspect that the upregulation of IDO

expression is a result of efforts to prevent ongoing allergic

inflammation. In a few words, whether the induction of IDO can

inhibit the development of allergic reactions or induce immune

tolerance of allergic inflammation has begun requires

further research.
7 Discussion

Previous studies have confirmed the beneficial role of tryptophan

derivatives and AhR ligand in the pathogenesis or treatment of many
FIGURE 2

Decreased tryptophan metabolites mediated by gut microbiota disorder induce atopic dermatitis inflammation. AD patients are accompanied by
intestinal microbiota disorders, including a downregulation of tryptophan producing probiotics and an increase in lipopolysaccharide producing
pathogenic bacteria. The LPS could enter the bloodstream through increased gut permeability and cause systemic inflammation subsequently. On
the contrary, downregulated tryptophan and its derivatives in the circulatory system have a decreased positive regulatory ability on the immune
system, which could further exacerbate skin inflammation in AD patients. AhR, aryl hydrocarbon receptor; D-Trp, D-Tryptophan; FICZ, 6-
formylindolo[3,2-b]carbazole; Flg, filaggrin; FoxP3+Treg, FoxP3+ regulatory T cell; HAA, Hydroxy-Anthranilic acid; I3A, Indole-3-aldehyde; IA,
indoleacrylic acid; IAId, indole‐3‐aldehyde; IDO, indoleamine 2,3-dioxygenase; IPYA, Indole pyruvic acid; LPS, Lipopolysaccharide; OVOL1, OVO like
transcriptional repressor 1; Prdx, peroxiredoxins; STAT6, signal transducer and activator of transcription 6; Treg, regulatory T cell; TSLP, thymic
stromal lymphopoietin; 5-MTP,5-methoxyltryptophan.
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skin diseases, including inflammatory diseases, skin pigmentation

disorders and cancer (38–41, 213). Therefore, we speculate that

exogenous supplementation of tryptophan derivatives (such as

FICZ, IAId), or targeted intervention of GM (such as Lactobacillus

reuteri, Lactobacillus salivary, Bifidobacterium and Lactobacillus), or

targeted induction of the Kyn-IDO pathway to accelerate endogenous

tryptophan metabolism and produce AhR ligands, may ultimately

alleviate clinical symptoms of AD by suppressing abnormal immune

responses. In addition to being a potential therapeutic option,

tryptophan metabolites such as 5-hydroxyindolepyruvate and 5-

hydroxyindoleacetic acid may become the new biomarkers

supporting the diagnosis and prognosis of atopic diseases.

Furthermore, supplementing tryptophan derivatives may alleviate

some side effects such as herpes infections and headaches (214, 215)

during the treatment of AD with biological agents. However, the

biological functions involved in tryptophan metabolism are complex.

The outcome of AhR activation depends on the type of cell and ligand

(216, 217), stimulation or inhibition of AhR in the skin results in

different immune responses (218), such as inducing overexpression of

proinflammatory cytokines and ROS production to arise the

development of inflammatory diseases or carcinogenesis (219), or

affecting the differentiation of Treg cells, thereby promoting the

immune tolerance (220, 221). Moreover, there is still insufficient

evidence to support the clinical application of tryptophan and its

derivatives, and the long-term efficacy and safety of their therapeutic

potential are not fully understood. In summary, while the causal

relationship among tryptophan metabolism, AD and GM, as well as

the specific molecular mechanisms remain to be determined, we have

preliminarily provided evidences that tryptophan plays an anti-

inflammatory role in AD, laying the foundation for the exciting

connection between tryptophan metabolism and AD immune

regulation (Figure 2). We hope that this review will lead the way to

further understand AD, and provide new insights into the

pathogenesis and treatment direction of this disease.
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