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Advancements in sequencing technologies and bioinformatics algorithms have

expanded our ability to identify tumor-specific somatic mutation-derived antigens

(neoantigens). While recent studies have shown neoantigens to be compelling

targets for cancer immunotherapy due to their foreign nature and high

immunogenicity, the need for increasingly accurate and cost-effective

approaches to rapidly identify neoantigens remains a challenging task, but

essential for successful cancer immunotherapy. Currently, gene expression

analysis and algorithms for variant calling can be used to generate lists of

mutational profiles across patients, but more care is needed to curate these lists

and prioritize the candidate neoantigens most capable of inducing an immune

response. A growing amount of evidence suggests that only a handful of somatic

mutations predicted by mutational profiling approaches act as immunogenic

neoantigens. Hence, unbiased screening of all candidate neoantigens predicted

by Whole Genome Sequencing/Whole Exome Sequencing may be necessary to

more comprehensively access the full spectrum of immunogenic neoepitopes.

Once putative cancer neoantigens are identified, one of the largest bottlenecks in

translating these neoantigens into actionable targets for cell-based therapies is

identifying the cognate T cell receptors (TCRs) capable of recognizing these

neoantigens. While many TCR-directed screening and validation assays have

utilized bulk samples in the past, there has been a recent surge in the number of

single-cell assays that provide a more granular understanding of the factors

governing TCR-pMHC interactions. The goal of this review is to provide an

overview of existing strategies to identify candidate neoantigens using

genomics-based approaches and methods for assessing neoantigen

immunogenicity. Additionally, applications, prospects, and limitations of some of

the current single-cell technologies will be discussed. Finally, we will briefly

summarize some of the recent models that have been used to predict TCR

antigen specificity and analyze the TCR receptor repertoire.
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1 Introduction

Cancer significantly impacts human health and quality of life,

and is one of the leading causes of death worldwide, with

approximately 10 million deaths in 2020, according to WHO (1).

Gene mutations caused by genomic instability during

carcinogenesis (2), viral infections (3), alternative splicing (4), and

gene rearrangements (5) can alter the protein coding regions of the

genome resulting in aberrant proteins that are not found in normal

cells. On occasion, these protein variants may be processed into

small peptides by a tumor cell’s proteasome and bind the major

histocompatibility complex (MHC) molecules with sufficient

affinity to serve as novel tumor antigens (i.e., tumor neoantigens)

that can then be recognized by CD4+ or CD8+ T cells and elicit an

antitumor response (6, 7). Collectively, the repertoire of peptides

that are displayed on the surface of tumor cells are referred to as the

immunopeptidome (8) and each neoepitope (neoantigen bound to a

specific MHC molecule) can be recognized by a collection of TCRs

resulting in neoantigen-specific TCR repertoires of varying

diversity. Neoantigens resulting from missense or fusion

mutations aren’t expressed by healthy cells making these

neoantigens safe targets for T-cell based immunotherapies due to

the ability to generate robust T cell responses and decreases the

likelihood of off target toxicity. If neoantigens play a significant role

in T cell-mediated tumor resolution, one would posit that tumors

with higher mutational burdens would have correspondingly

greater frequencies of neoantigen-specific T cells. Along these

lines, several clinical trials have explored whether tumor

mutational burden and T cell infiltration correlate with efficacy of

immune checkpoint blockade (ICB) and/or adoptive cell therapy

(ACT) (9–12). These clinical investigations have shed light on the

crucial link between tumor neoantigens and the efficacy of

immunotherapeutic strategies. Tumors with higher mutational

burdens have been associated with greater responsiveness to ICB,

such as anti-PD-1 or anti-CTLA-4 antibodies, as the abundance of

mutations has been associated with an increased likelihood of there

being immunogenic neoantigens that can be recognized by

infiltrating T cells, resulting in improved antitumor immune

responses. A positive correlation exists between the tumor

mutational burden (TMB) and the abundance of neoantigen-

specific T cells within the tumor microenvironment, resulting in

an elevated rate of response to immunotherapeutic interventions for

some cancers (13). Despite these cases, it is noteworthy that low

TMB can still give rise to neoantigen-reactive lymphocytes,

particularly in hematological malignancies and specific epithelial

cancers such as gastrointestinal cancers (14–16). More recently,

personalized vaccinations in the form of mRNA, peptides, or

peptide-loaded antigen presenting cells (APCs) have been shown

to be safe, immunogenic and capable of generating durable clinical

response (17–19). Although the tumor mutational burden is highly

variable across different types of cancer, immunogenic neoantigens

(i.e., neoantigens that induce T-cell activation and proliferation)

have been identified in several cancer types, implying that although

a patient might have a lower tumor mutational burden (and

consequently fewer presented neoantigens) they may still derive
Frontiers in Immunology 02
benefit from ICB and personalized immunotherapies (20, 21). Also,

the majority of tumor neoantigens are private (i.e., unique to an

individual rather than being present across the population),

suggesting that future decisions regarding the best cancer therapy

will need to be made on a case-by-case basis. To date, neoantigens

present the most promising target for cell-based immunotherapies;

however, the challenges associated with their identification requires

adoption of reliable high-throughput neoantigen discovery

pipelines to expedite the time it takes to manufacture a

personalized cancer immunotherapy. This review will provide a

comprehensive overview of currently used methods for

identification and validation of candidate immunogenic

neoantigens. Initially, we will cover the workflows for identifying

candidate neoantigens using genomics-based methods. Next, we

will review screening and validation approaches for the candidate

neoantigens using antigen-directed and TCR-directed approaches.

Furthermore, we will provide overview of reporter methods used to

identify neoantigen-TCR pairs and introduce some of the novel

single cell platforms that provide a more granular picture of how

immune cells respond to tumors. Additionally, to bridge the

experimental and computational realms, this review will also

showcase the advancements in computational tools for predicting

TCR antigen specificity. We will describe some of the innovative

bioinformatics approaches and machine learning algorithms that

leverage genomics data and experimental insights to predict TCR-

pMHC interactions and identify potential target antigens.
2 Genomics-based
neoantigen identification

Advances in high-throughput sequencing technologies,

including greater sequencing speeds and higher accuracy,

combined with significant reductions in sequencing cost have

enabled researchers to identify an increasing number of somatic

mutations and convert the mutated variants to putative

neoantigens. The price for genetic sequencing has declined at an

astonishing rate, with per genome costs dropping from $50,000 in

late 2000 to roughly $600 in 2022 – the price of genome sequencing

has recently been predicted to drop as low as $100 per genome with

the development of new high-throughput, low-cost sequencing

platforms (22). The most common method for identifying

putative neoantigens comes from sequencing DNA mutations

and/or corresponding RNA. Additional approaches, such as

eluting peptides bound to MHC (class I or II) molecules, do not

require sequencing data, but these approaches have been covered at

length in recent reviews (23–26). Whole genome sequencing (WGS)

and whole exome sequencing (WES) combined with RNA-seq are

the most widely used approaches for neoantigen discovery, each

having their own advantages and limitations. WGS and WES have

traditionally been the methods of choice for variant identification.

WGS has the advantage of allowing for identification of variants in

non-coding regions such as untranslated regions (UTRs) which are

missed by WES approaches, but WGS is considerably more

expensive than WES due to the extra sequencing coverage
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required. WES, on the other hand, provides a fine balance between

cost and benefits (27) – although this sequencing approach only

targets approximately 2-3% of the whole genome, it provides data

on the protein-coding regions believed to be the major source of

somatic mutations. Combining RNA-seq with WGS or WES

provides an additional layer of resolution by incorporating gene

expression levels into the process of selecting genes that are more

likely to produce translated proteins and filter out candidates that

do not meet a predefined threshold. Moreover, other types of

neoantigens such as gene fusions, alternative splicing isoforms,

and RNA editing events can be revealed from RNA-seq data (28,

29). Although PCR methods have been considered the gold

standard for human leukocyte antigen (HLA) typing, RNA-seq

data can be used as an alternative given the recent improvements in

prediction power now reaching levels comparable to PCR-based

approaches (30, 31). Recently, an alternative approach to traditional

mRNA sequencing, Ribo-Seq (32), has allowed for rapid

identification of neoantigens by providing a snapshot of only the

mRNA bound by ribosomes, which depicts all proteins being

translated at the time of cell lysis and allows for identification of

an expanded set of open reading frames (33, 34). Ribo-seq provides

an RNA-sequencing based readout of mRNA translation by

isolating ribosome bound RNA fragments, thereby offering a

genome-wide footprint of ribosome-RNA interactions. As such,

this approach circumvents the experimental difficulties of working

with protein molecules and readily identifies translations which

might have been missed by other methods. The advantage of Ribo-

seq technology in predicting targetable neoantigens is that it

identifies only those variants likely to generate proteins and it

also provides a more reliable estimation of protein expression.

However, it should also be noted that not all the translations

reported by Ribo-seq will actually result in expressed proteins and

a wide range of functional scenarios may be possible for Ribo-Seq

ORF’s (35) including making stable proteins, mediators of gene

regulation and having medical implications.

The growing number of peptide:MHC (pMHC) neoepitopes

that have been validated using traditional wet lab assays, as outlined

below, has resulted in tremendous advancements in the field of

neoantigen discovery, and have allowed new computational

algorithms to be developed that more accurately predict which

peptides bind to specific HLA molecules. While many of these

bioinformatic pipelines rely on the same series of steps to prioritize

targetable neoepitopes, namely filtering sequence quality, reference

mapping, somatic mutation calling, mutated peptide sequence

identification, and peptide ranking based on cellular processing

and presentation pathways, the accuracy in neoepitope prediction is

significantly impacted by the quality and quantity of information

contained in the training sets used to develop these algorithms.
2.1 Identification of somatic
mutations (variants)

Most sequencing efforts have focused on the identification of in-

frame insertions and deletions (indels), out of frame insertions and

deletions (frameshift mutations), and single nucleotide variants
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(SNVs), with much less attention given to gene fusions, gene

inversions, and gene duplications despite these mutations

accounting for a significant number of the mutational landscape

and potent ia l ly serving as neoant igens with greater

immunogenicity. Non-SNV mutations have recently been shown

to account for 15% of all neoantigens (36). Somatic variant

identification is one of the most critical steps in any pipeline

focused on neoantigen discovery as samples from tumor and

matched non-tumor DNA sequencing data provides a list of all

targetable neoantigens uniquely present in tumor samples. Table 1

lists some of the widely used mutation callers. It should be noted

that NGS sequencing depth directly influences the reproducibility of

variant detection; specifically, the higher the number of aligned

sequenced reads, the higher the confidence to base call at a specific

position, regardless of whether the base call is the same as the

reference or mutated nucleotide. Also, higher sequencing depth

achieves more sensitive detection of variants at low allele frequency.

Numerous studies have directly compared the performance of

somatic variant callers (SVCs) (51–53). Somatic variant callers are

challenged by the need to balance between accurately identifying

true low-allelic somatic mutations and the stringency of the calling

procedure to reduce the number of false positive calls. Because of

disparities in the number of mutations predicted by different calling

algorithms, selection of an SVC is an important component of

neoantigen prediction. Running multiple SVC algorithms

simultaneously and using the consensus results can result in

improved specificity for the variant detection (54). Consensus

approaches present a trade-off as they often improve the

specificity at the cost of sensitivity, as the increased specificity will

decrease the number of false positives to be tested, but decreased

sensitivity could result in missing clinically relevant variants.

Regardless of which variant caller or approach is used to predict

mutations, it is always recommended to validate the putative

mutations by manually reviewing the matched tumor-normal

samples in Integrated Genomics Viewer (IGV) (55).

In addition to SNVs, there has been increasing demand for the

development of tools that can provide proper identification of other

neoantigen sources including large INDELs (46, 47) and gene

fusions (48–50). Structural variants, typically large indels (with or

without frameshift) and gene fusions can be identified using a single

tool and do not benefit from the consensus approach (56).
2.2 Variant annotation

Variant annotation is the process of labeling the variants with

genomic or genetic characteristics which can be categorized or

prioritized for further investigation. Variant annotation is critical

for neoantigen prediction as the mutations can impact the

corresponding amino acid sequence and may result in silent

variants, missense mutations, frameshifts, mutations in non-

coding regions and gain or loss of stop codons, each of which can

result in neoantigens with varying immunogenicities. Variant

Effects Predictor (VEP) (57) and ANNOVAR (58) are two

common variant annotation software programs and have been

compared directly using the same set of transcripts (59).
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Although it is difficult to accurately benchmark the success of

different programs, in the comparison study VEP aligned more

consistently with manually curated variants. However, ANNOVAR

and VEP are command line driven and Perl based tools which can

be inherently complicated for researchers without programming

backgrounds to use. To interactively annotate the data without

programming knowledge, a new R shiny based interactive

application cal led ShAn (60) was developed and has

demonstrated greater speed and online accessibility compared to

VEP and ANNOVAR with comparable predictive capabilities.
2.3 Antigen processing algorithms

While neoepitope prediction algorithms have resulted in

tremendous advancements in our ability to predict which

neoantigens will likely bind to specific HLA molecules, greater

accuracy can be achieved when upstream events involved in antigen

presentation are incorporated. It is widely known that peptide-

pulsing studies that rely solely on MHC-binding algorithms tend to

overestimate the number of immunogenic neoantigens that would

be naturally processed and presented due to the fact that not all full-

length proteins will be cleaved by the proteasome or

immunoproteasome and result in peptides with mutated amino

acids being loaded onto specific MHCs (61, 62). Before MHC class I
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presentation, peptides are transported by the transporter associated

with antigen processing (TAP) protein to the endoplasmic

reticulum (ER) and then trimmed by ER-related aminopeptidases

(ERAP) present there (63). There are several tools that predict both

proteosomal cleavage and account for TAP’s peptide transportation

efficiency. For MHC class I processing and presentation,

NetChop20S (64) and ProteaSMM (65) have been shown to

reliably predict in vitro cleavage patterns owing to the large

proteasome digestion training sets used to train these models

(66). For MHC class II (MHCII) processing and presentation

PepCleaveCD4 (67) and MHCII-NP (68) are two tools that

predict antigen excision positions resulting in epitopes that can be

recognized by CD4+ T cells. While these tools have generally

improved the accuracy of neoepitope prediction pipelines, a

major limitation is that genes coding for proteins of various

components of the antigen presentation machinery, such as

TAP1, TAP2, B2M, are known sites of mutation in cancer.

Therefore, the utility of these algorithms in identifying cancer

neoepitopes needs to be evaluated on a case-by-case basis.

The affinity of peptide to a givenMHCmolecule is an important

contributor to neoantigen immunogenicity and is a major factor

that should be weighed by major epitope prediction algorithms. It is

also crucial to know the HLA type of the patient before ranking the

peptides as it is widely established that different MHC allotypes

differ in specificity with respect to peptide binding. State-of-the-art
TABLE 1 List of Bioinformatics tools used for variant calling and gene fusion detection.

Tools Approach/Method URL Type of call Reference

Small Variants

EBCall Allele Frequency Analysis https://github.com/friend1ws/EBCall SNV, Indel (37)

Mutect Allele Frequency Analysis https://github.com/broadinstitute/mutect SNV (38)

Strelka Allele Frequency Analysis https://github.com/Illumina/strelka SNV, Indel (39)

Varscan2 Heuristic Threshold http://varscan.sourceforge.net/ SNV, Indel (40)

SomaticSniper Joint Genotype analysis https://github.com/genome/
somatic-sniper

SNV (41)

Virmid Joint Genotype analysis https://sourceforge.net/projects/virmid/ SNV (42)

VarDict Heuristic Threshold https://github.com/AstraZeneca-
NGS/VarDict

SNV, Indel, Structural Variants (43)

SnooPer Machine Learning https://sourceforge.net/projects/snooper/ SNV, Indel (44)

SomaticSeq Machine Learning https://github.com/bioinform/somaticseq SNV (45)

Structural Variants

DELLY Paired end, read depth and Split-
read analysis

https://github.com/dellytools/delly Indels, duplications, inversions
and translocation

(46)

Pindel Paired end and split-read analysis https://github.com/genome/pindel Indels, Large deletions (47)

Gene Fusions

STAR-Fusion STAR Alignment, artifact filtering https://github.com/STAR-Fusion/
STAR-Fusion

Gene fusion (48)

Arriba STAR alignment, read and event
level filtering

https://github.com/suhrig/arriba Gene fusion, Structural variant (49)

defuse Paired end, split read alignment, filtering https://github.com/amcpherson/defuse Gene fusion (50)
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methods currently available to predict peptide presentation are

based on artificial neural networks trained on large datasets and

are known to perform best on frequent and well-characterized

alleles (e.g. HLA-A*02:01) and their accuracy is decreased for rare

or not well-studied HLA alleles. Also, HLA gene expression (69)

and somatic mutation patterns (70) in this locus need to be

evaluated as HLA downregulation or loss of heterozygosity are

known mechanisms to disrupt neoantigen presentation and can

result in immune escape. Currently, HLA class I typing algorithms

relying on NGS data can accurately predict HLA class I alleles with

up to 99% (71) accuracy when using WES/RNA-seq data, however

HLA class II algorithms are less reliable and require further

development to improve their prediction accuracy. Although

many class I typing algorithms exist, Optitype (72), Polysolver

(73) and PHLAT (74) are the most frequently used and have the

highest reported accuracy. More recent algorithms, such as xHLA

(75) and HLA-HD (76), have expedited the HLA typing process and

show comparable accuracies to those methods mentioned above.

By combining peptide:MHC binding affinity and HLA typing

algorithms or peptide elution and mass spectrometry-based assays,

researchers can quickly generate a list of putative neoepitopes

(Figure 1). Several recent reviews (77–82) and articles (83, 84)

have provided comprehensive coverage and new considerations

when developing computational algorithms for identifying cancer

neoantigens. In Table 2, we provide an overview of the different

genomic-based methods used for neoantigen prediction and

describe their advantages and limitations. Incorporation of the

antigen processing steps may provide a more accurate depiction

of putative MHC-binding peptides; however, most of these

algorithms cannot predict whether the bound peptides will be

immunogenic (i.e., induce an active response by T cells) (85–87).

Ultimately, for a neoepitope to serve as a therapeutic target, it must

first be recognized by a cognate TCR and result in a productive TCR

signaling cascade. While some MHC class I neoepitope prediction

algorithms are beginning to factor in immunogenicity as a

parameter for neoantigen prioritization, in most cases robust data

sets are still lacking and traditional assays to perturb T cell
Frontiers in Immunology 05
functionality (e.g. cytokine secretion and/or cytotoxicity assays

using peptide-pulsed APCs) are necessary. These approaches are

even more essential for MHC class II neoepitopes which are more

difficult to predict using in silico algorithms. In Table 3, we provide

an overview of frequently used neoantigen prediction tools and

highlight key features for each.
3 Screening and validation steps to
identify neoantigen-specific T cells

3.1 Antigen-directed approaches

Antigen-directed approaches have rapidly gained prominence

as a method for identifying antigen-specific T cells. Early

approaches to determine T cell reactivity against neoantigens

included culturing T cell clones with target cells containing the

appropriate HLA molecules and transfected with tumor

complementary DNA (cDNA) library pools (97, 98). This

approach has resulted in the identification of several well-known

antigens including MAGE (99) and MART-1 (100). Serological

analysis of recombinant cDNA expression helped identify NYESO-

1 (101), another widely known tumor antigen. However, the major

limitation of these approaches is that they require large numbers of

neoantigen-specific T cells to perform the screens and to validate

immunogenic neoantigens, which may be a limiting factor if cells

obtained from biopsies or clinical specimens are scarce.

Another common neoantigen-specific T cell screening

approach is to use pMHC tetramers (102) or multimers, which

are oligomers formed from four (tetramer) or more (multimer)

MHC subunits containing the neoantigen of interest. While

tetramers are often sufficient to stain T cells with high-affinity

TCR:pMHC interactions, multimers are often necessary for

detecting TCRs that bind pMHC with lower affinities (KD < 10

mM) and avidities (103, 104). Although laborious to produce, as

unique multimers must be generated for every MHC:peptide

combination, they have been used to identify thousands of
FIGURE 1

Overview of steps involved in neoepitope identification. Genomics-based neoantien identification begins by performing WGS/WES or RNA
sequencing to identify tumor mutations and HLA haplotype, respetively. Following mutational profiling and HLA typing, peptide, MHC prediction
algorithms can be used to identify puta- tive neoepitopes (steps in red to black). Alternatively, cancer cells can be isolated and the surface peptide,
MHC complexes can be isolated, the peptides can be eluted, and subsequently interrogated using mass spectrometry to identify putative
neoepitopes (steps in blue to black). The '#" symbol is used to refer to "number." In this case Sub #1 means "Subject number 1." The "*" symbol is
used in standard HLA nomenclature to separate the gene from the allele group.
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antigen-specific T cells across several studies (104, 105). For cases

where greater avidity between the pMHC and TCR are necessary,

pentamers (106, 107) or dodecamers (108) can be used in common

immunological workflows such as flow cytometry. To improve on

the throughput of tetramer-binding assays, T cell responses against

large peptide libraries can be screened using UV-sensitive peptides
Frontiers in Immunology 06
(109) or thrombin cleavage (110) of peptide linkers which allows for

the production of thousands of different monomeric molecules

from the same pMHC molecule. Nevertheless, to overcome the

limitations imposed by cellular input from clinical biopsies,

additional multiplexed and combinatorial tetramer staining

approaches are needed. With combinatorial staining, a specific T

cell population is identified using tetramers containing the same

peptide but conjugated to multiple fluorochromes rather than just a

single fluorochrome. Using this approach with just two different

fluorochromes per peptide drastically increases the number of

specificities that can be examined simultaneously from a single

sample using flow cytometry (e.g., if each peptide:MHC specificity is

identified using a dual fluorochrome approach and a total of 8

fluorochromes are used across antigen specificities, this will result in

a two-dimensional matrix capable of identifying up to 28 unique

specificities) (111). While this approach significantly increases the

number of antigen specificities that can be screened from a single

sample, other conditions may be limiting, such as the configuration

of flow analyzers and the number of fluorochromes incorporated in

phenotypic panels to robustly characterize antigen-specific T cells

with sufficient resolution (i.e., with low enough spillover). To

overcome this limitation, mass spectrometry can be used as an

alternative, in which tetramers are labelled with isotopically purified

metal conjugates providing little spillover between labels, less

variation in signal intensity between parameters, and many more

surface markers to include phenotypic characterization of
TABLE 3 List of commonly used bioinformatics tools for
neoepitope prediction.

Tool Key features References

NetMHC/
NetMHCpan

-Predicts peptide-MHC binding affinity
- Widely used tool for MHC binding
prediction
-NetMHCpan covers a broad range of
MHC alleles

(88–90)

MuPeXi -Extracts mutated peptides and predicts
MHC binding affinity
-Integrates multiple tools for a
comprehensive analysis

(91)

pVAC-Seq -Identifies and prioritizes neoantigens
based on mutation data
- Considers MHC binding, transcript
expression and clonality

(92)

INTEGRATE-
Neo

-Integrates RNA-seq and DNA sequencing
data for immunogenic
neoantigen prediction

(93)

NeoPredPipe -Predicts neoantigens considering MHC
binding, T-cell receptor recognition and
gene expression
-Multiparameter prediction approach

(94)

NetCTLpan Predicts CTL epitopes based on MHC-I
binding, proteasomal cleavage and Tap
transport efficiency
-comprehensive approach for CTL
epitope prediction

(95)

MHCflurry Deep learning-based tool for predicting
peptide-MHC binding affinity

(96)
TABLE 2 Genomic and transcriptomic-based methods for identifying
candidate neoantigens.

Methods Advantages Limitations

Whole
Genome
Sequencing
(WGS)

Identifies variants in
non-coding regions,
providing
comprehensive
genomic information

Costlier due to the requirement for
extra sequencing coverage,
potentially leading to
higher expenses.

Whole
Exome
Sequencing
(WES)

Balances cost and
benefits by targeting
protein-coding regions,
capturing essential
genomic information at
a more
manageable expense

Targets only 2-3% of the genome,
potentially missing variations in
non-coding regions that could be
biologically significant.

RNA-seq
and
Alternative
Approaches

- RNA-seq reveals gene
fusions, alternative
splicing, and RNA
editing events, offering
insights into post-
transcriptional
regulation.
- Ribo-seq provides a
snapshot of mRNA
bound by ribosomes,
offering a genome-wide
footprint of ribosome-
RNA interactions.

- Not all translations reported by
Ribo-seq may result in expressed
proteins, necessitating careful
interpretation.
- Different functional scenarios are
possible for Ribo-Seq open reading
frames (ORFs), requiring
detailed analysis.

Somatic
Variant
Identification

- Critical for
neoantigen discovery
by providing a list of
targetable neoantigens.
- Running multiple
somatic variant callers
improves specificity.

- Balancing between accurate
identification and reducing false
positives is challenging.
- Consensus approaches trade off
sensitivity for specificity, impacting
the comprehensiveness of
variant calling.

Variant
Annotation

- Critical for
categorizing variants
for further
investigation, aiding
in prioritization.

- Difficult to benchmark the success
of different programs, making it
challenging to determine the
optimal annotation strategy for
specific analyses.

Antigen
Processing
Algorithms

- Incorporates
upstream events in
antigen presentation
for greater accuracy.
- Predicts proteasomal
cleavage and TAP’s
peptide
transportation
efficiency.

- Limitations in predicting
mutations in genes involved in the
antigen presentation machinery,
potentially leading to
incomplete assessments.

Peptide :
MHC
Binding
Affinity

- Affinity to MHC
molecules is crucial for
neoantigen
immunogenicity.
- Artificial neural
networks offer accurate
predictions for
frequent alleles.

- Accuracy decreased for rare or not
well-studied HLA alleles,
emphasizing the need for further
advancements in prediction models
to encompass a broader range of
human leukocyte antigen
(HLA) diversity.
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neoantigen-specific T cells (112, 113). Although mass-spec based

approaches such as CyTOF address the issue of multiplexing,

cellular material cannot be recovered from these workflows as

cells are incinerated and impossible to retrieve for downstream

applications. More recently, the use of DNA barcoded pMHC

multimers has extended this toolkit (114). While the increased

capability of labelling multimers with DNA barcodes offers

flexibility to screen entire cancer mutanomes in one single

reaction, it only provides information about the frequency of

corresponding T cells but lacks the inclusion of functional

readouts as the cells are lysed for sequencing. An upgraded

version of DNA barcoded multimers called tetramer-associated

TCR sequencing (tetTCRSeq) (115) can further link the antigen

specificity to the TCR sequences in single cells at high throughput.

This technology allows for the simultaneous generation of peptide

libraries and DNA barcodes using in vitro transcription and

translation (IVTT), thereby reducing labor and cost but still

allowing the recall of antigen specificity and TCR sequences.

Although pMHC multimers have revolutionized the field of

neoantigen discovery, screening approaches using multimers

require prior knowledge of the antigens being targeted (i.e., these

approaches aren’t completely unbiased and not truly de novo

screening approaches). Additionally, pMHC multimers aren’t

commercially available for every HLA molecule, which has been a

major impedance in the field. Moreover, the low accuracy of in

silico prediction of HLA class II-restricted epitopes and technical

issues with the production of pMHCII multimers possess challenges

for screening and identifying neoantigens presented by MHCII

molecules. Furthermore, TCRs that bind pMHC tetramers with low

affinity can be difficult to detect by flow cytometry and may not

accurately reflect the affinity needed for T cell activation, which can

underestimate the frequency of neoantigen specific T cells. Other

potential bottlenecks attributed to the use of pMHC multimers

include limited throughput of peptide synthesis, maximum library

size, instability of pMHC multimers, and PCR amplification bias.

With recent advances in microfluidics, additional tools to study

TCR:pMHC interactions with higher throughput have started to

emerge. Microfluidic approaches can be divided broadly into three

categories (1): trap-based devices (2), valve-based devices, and (3)

droplet microfluidics. In this review we will mainly focus on droplet

microfluidics for single cell analysis, but we would highly encourage

readers to read a recent review that provides additional coverage of

additional approaches (116). Droplet microfluidics separates

individual cells into low volume oil droplets, making precise

characterization of complex immune responses possible at single

cell resolution. Since this technique has minimal sample loss and

requires very low cell input, having a limited number of cells from

tumor biopsies or clinical specimens doesn’t exclude this approach

from being used for screening applications. Building on droplet

microfluidics, the nuclear factor of T cells (NFAT)-eGFP reporter

system was used for functional screening and real-time monitoring

of T cell activation kinetics upon recognition of tumor cells,

enabling quick identification of the responding T cells and

verification of corresponding TCR sequences that could then be

used as therapies for cancer (117). In a similar study, nanoparticle

barcoded nucleic acid cell sorting (NACS) (118) was used to count
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and isolate neoantigen specific T cells. MATE-Seq (119), another

technique that builds on the approaches used in NACS (118),

allowed for high-throughput isolation and single cell TCR

sequencing of neoantigen specific T cells using magnetic

nanoparticle-barcoded pMHC tetramers linked to photocleavable

TCR-specific primers. These antigen-directed approaches can

simultaneously increase the number of putative neoantigens that

can be screened and identify TCRs capable of binding, but they

often underestimate immunogenicity due to the lack of a

functional readout.
3.2 TCR-directed approaches

To overcome challenges associated with peptide-pulsing using

individual peptides per condition, which requires high cellular

input, and the limitations of peptide-MHC binding predictions

for specific HLAs, a new screening assay was designed which

allowed T cell responses to any non-synonymous mutation across

HLAs to be evaluated (120). For this approach, each mutation is

expressed by a single minigene designed to encode the mutated

amino acid flanked by 12 amino acids of the wildtype sequence on

both sides. Tandem minigenes (TMG) were generated by stringing

together 6 to 24 minigenes in a single open reading frame, in-vitro

transcribing to generate mRNA, and then transfecting the mRNA

into autologous APCs. As an alternative to the TMG screening

approach, peptides (25 amino acid residues in length) can be

synthesized and pooled together to generate peptide pools (PP).

Pools for all putative neoantigens can be screened using either the

TMG approach, which utilizes the natural antigen processing and

presentation machinery (APPM) of a cell, or by peptide pulsing,

which bypasses the APPM and instead directly binds surface MHC

molecules. Once T cell reactivity is detected, either through cytokine

secretion or upregulation of a specific activation marker (e.g., 4-

1BB), against a specific pool of TMGs or PP, further deconvolution

of each immunogenic neoantigen found within the pool of reactive

peptides can be screened individually. This unbiased approach has

been used to identify multiple mutated antigens and neoantigen

specific TILs that have been shown to induce antitumor responses

in patients (85, 120–122). The biggest advantage of using TMGs and

peptide pools is that it mimics processing and presentation of

neoepitopes on both class I and II HLA molecules without bias,

overcoming the need for in silico prediction and enabling the

identification of neoantigen-reactive CD4 T cells since the

prediction algorithms for HLA class II molecules aren’t fully

optimized. Although in theory one could screen every mutation

identified by NGS using TMGs and/or using peptide pools, in

practice, this isn’t feasible due to the cost associated with peptide

synthesis and the time required to carry out in-vitro transcription,

especially in cases for tumors with high mutational burdens. As

with the tetramer-binding assays, the deconvolution steps needed to

identify the specific immunogenic neoantigens requires large

numbers of target and effector cells which can be limiting for

clinical specimens. To compensate for the lack of autologous

APCs, HLA matched cells or monoallelic antigen presenting cell

lines can be generated. Alternatively, cell-free antigen presenting
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beads, generated by coupling the peptide-HLA complex of interest

with costimulatory antibodies on the surface of microbeads can be

used to determine T cell reactivity (123, 124). Even with the

limitations surrounding the number of cells needed to adequately

perform these screens, these approaches allow for unbiased

identification of candidate neoantigens without prior knowledge

of whether the corresponding peptides are capable of binding

patient specific HLAs.
3.3 Reporter systems to identify
neoantigen-TCR pairs

Novel reporter systems have recently been described using

mammalian cell surface display, which results in a detectable

signal as soon as a cognate TCR binds to a cancer neoepitope

presented by an APC. Signaling and antigen-presenting

bifunctional receptor (SABR) (125) is a cell-based platform for T-

cell antigen discovery that relies on screening of large numbers of

antigens through expression of chimeric receptors consisting of an

extracellular pMHC complex fused to an intracellular CD28

costimulatory and CD3z signaling domain in NFAT-GFP Jurkat

cells. Upon recognition by a TCR, the CD28-CD3z signaling

triggers the expression of GFP in APCs for the identification of

the presented peptide by downstream sequencing. This technology

has been demonstrated to successfully identify the cognate antigen

for TCRs from a large library of epitopes and for the discovery of

personalized neoantigens.

Another system, T-Scan (126), is a high-throughput platform

for systematic identification of antigens recognized by T cells that

incorporates an engineered reporter for granzyme B activity by

tagging APCs expressing epitope coding minigenes. Upon

recognition of antigen by cognate TCR, granzyme B secreted

from the T cells leads to the reconstitution of a fluorescent

reporter in the APCs. Utility of T-scan was validated by showing

that it can identify known peptide epitopes of both viral and

human-genome libraries (126). Another similar system leveraging

the specificity of the granzyme-perforin pathway (127), used a

reporter-fusion protein consisting of cyan fluorescent protein

(CFP) and Yellow Fluorescent protein (YFP) separated by a

peptide linker harboring a granzyme B recognition site. Upon

recognition of target cells by T cells, cleavage of the fusion

protein by granzyme B causes a loss in the fluorescence resonance

energy transfer (FRET) signal generated from YFP and results in a

concomitant gain of CFP signal that is easily identifiable and allows

for the isolation of recognized target cells by fluorescence-activated

cell sorting (FACS).

Another similar system based on the NFAT reporter was

developed to identify tumor specific CD4 T cells by fusing

murine MHCII with the signaling domains of TCR resulting in

generation of pMHC-TCR (MCR) hybrid molecules (128). MCR

libraries were generated by cloning tumor cDNA into MCR

sequences and transducing reporter cells which can then be used

as APCs in multiple rounds of coculture with T cells. Upon

interaction of specific TCR with the MCR, NFAT activation

results in the expression of a reporter gene, which ultimately
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allows the activated reporter cells to be identified, single cell

sorted by FACS, and the recognized peptides can be identified by

sequencing the corresponding DNA.

Lastly, trogocytosis, which is the transfer of membrane protein

from one cell to another was used to identify the sequence of

peptides (129). Upon successful interaction of TCR expressing

Jurkat cells and pMHC presenting K562 cells, transfer of TCR

from the Jurkat cells to K562 cells can be detected by identification

of K562 cells with TCR using FACS. Following cell sorting of K562

cells containing transferred TCRs, PCR amplification and deep

sequencing is used to identify the corresponding epitope of interest.

Table 4 succinctly summarizes some of the most common

methods, assays, and techniques that can be used to screen and

validate neoantigen specific T cells.
4 Single-cell platforms

Single-cell sequencing is a powerful tool that enables high-

throughput analysis of genetic or transcript material for single cells.

One of the most widely used platforms for this purpose is the

Chromium system by 10X Genomics, which can sequence both the

transcriptome and TCRs of single cells by incorporating cell

barcodes. While scDNA-seq can reveal mutations and structural

changes in cell genomes, it is not as frequently utilized due to

limited DNA copies available in single cells, making scRNA-seq a

more popular option for measuring gene expression across multiple
TABLE 4 Common methods, assays, and techniques that can be used to
screen and validate neoantigen specific T cells.

Approach
Type

Methods/Techniques

Antigen-
Directed
Approaches

- Utilization of pMHC tetramers or multimers for precise
detection of T cells with high-affinity TCR:pMHC
interactions.
- Screening large peptide libraries using UV-sensitive peptides
and thrombin cleavage.
- Combinatorial staining employing multiple fluorochromes
to enhance specificity.
- Adoption of mass spectrometry for high-throughput analysis
with minimal spillover.
- Integration of DNA barcoded pMHC multimers for
flexibility and high throughput.
- Leveraging droplet microfluidics for single-cell analysis with
minimal sample loss

TCR-
Directed
Approaches

- Implementation of Tandem minigenes (TMG) and peptide
pools for unbiased screening of T cell reactivity.
- Functional assays measuring T cell reactivity against TMGs
or peptide pools and application of deconvolution techniques
to identify specific immunogenic neoantigens.
- Use of autologous APCs, HLA-matched cells, or cell-free
antigen-presenting beads for enhanced flexibility in screening.

Reporter
Systems

- Utilization of SABR and T-Scan systems, incorporating
chimeric receptors and measuring granzyme B activity for
high-throughput T-cell antigen discovery.
- Integration of NFAT reporter systems for the identification
of CD4 T cells.
- Application of Trogocytosis for TCR transfer, facilitating the
identification of specific peptides involved in
immune responses.
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transcripts. It is important to note that many single-cell sequencing

technologies currently only allow assessment of up to 10,000 cells,

which is several orders of magnitude lower than conventional bulk

sequencing methods. Nevertheless, scRNA-seq can be leveraged to

identify multiple layers of information such as cell phenotype using

oligo-tagged antibodies in combination with transcriptome. In

comparison to bulk RNA-Seq approaches, scRNA-seq provides

more detailed and comprehensive characterization of individual

cells. Recent advances in single-cell platforms have enabled

additional multiplexing capabilities to interrogate neoantigen-

specific T cells. The PhenomeX Lightning and Beacon platforms

combine optics and fluidics to link phenotypic, functional, and

transcriptomic profiles to single neoantigen-reactive T cells

(Figure 2) (130). These technologies can characterize and isolate

single cells from a larger population of cells that display desired

phenotypes and/or functional characteristics. There are three main

features that make the PhenomeX’s optofluidic platforms uniquely

suited for antigen discovery. First, at the core of the technology is

the OptoSelect Chip which enables isolation of single cells using

Opto-electropositioning (OEP) and nanopen chambers. OEP

functions to guide cells in and out of selected nanopens using a

non-destructive localized light-induced electric field that can move

cells using a weak repulsive force against charged membranes or

particles. This feature can be used to sort or “pen” single antigen-
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presenting cells encoding a library of neoepitopes and a single T cell

in each nanopen, avoiding the need to set up bulk coculture

experiments as required for earlier assays. Second the platform

contains fluidics capable of bi-directional flow through the chip

which can function to help transfer single cells into nanopens,

diffuse media throughout the chip during culturing assays, and also

recover specific cells of interest from the chip. Third is the optics

system which acts as a microscope and fluorescent analyzer and

allows for brightfield and fluorescent images to be acquired, cell

counts to be made and phenotypic and functional assays to be

performed using fluorescent readouts. By modifying these assays,

multiple parameters can be assessed in single nanopens to assess T

cell activation upon recognition of cognate pMHC complexes (e.g.,

similar to T-scan, capture beads for Granzyme B can be added in

each nanopen). Upon successful interaction of T cell and pMHC

expressing APCs, Granzyme B secreted by neoantigen-specific T

cells can be captured by capture beads, and subsequently stained by

a fluorescently labeled anti-granzyme B antibody binding a different

epitope. Alternatively, additional functional readouts such as IFN-

gamma or IL-2 secretion can also be assessed. Future studies using

PhenomeX’s platforms could also provide screening workflows to

test libraries of T-cell clones and pMHC simultaneously as the user

has greater control over the loading of specific cells into distinct

nanopens on the chip, expanding the number of effectors and target
B

A

FIGURE 2

Overview of PhenomeX's optofluidic platform and multi-parameter workflow. (A) Overview of PhenomeX's Lightning platform, OptoSelect Chip, and
Optoelectroposition. (B) As a first step (step 1) for the multi-parameter workflow, OptoSelect chips are loaded with cytokine capture beads of
interest. Then (step 2), T cells are single cell sorted into nanopen chambers. Next (step 3), labeled target cells are single cell sorted into nanopen
chambers containing T cells. Media is then perfused and time-lapse images (step 4) are recorded throughout the duration of the co-culture
experiment. Following the co-culture, antibodies can be added (step 5) to target surface markers or captured cytokines. Lastely (step 6), cells of
interest can be exported for downstream assays (e.g., transcriptional profiling or continued off-chip expansion).
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cell pools that can be screened at once. Depending on the required

throughput, either the Lightning (for more validation-based

workflows requiring 1,500 nanopens or less) or the Beacon (for

either validation- or discovery-based workflows requiring greater

than 1,500 nanopens) platform could be used. However, further

advancements in the development of fluidics-based methods would

be required to dissect the T-cell specificity at larger scales and to

scale up to those routinely performed in bulk coculture assays.

Finally, desired cells recovered from these platforms can be

sequenced using s ingle-ce l l sequencing , providing a

comprehensive understanding of the genetic and transcriptomic

features of individual cells of interest and their roles in complex

biological processes.

In the field of cancer immunotherapy, single-cell technologies

have begun to take center stage and have helped lead to a greater

appreciation of the dynamic interactions between cancer and

immune cells. A notable advancement involves the concurrent

evaluation of T cell receptor (TCR) sequences and gene

expression profiles from individual T cells, highlighting the

intricate connections between T cell functionality and gene

expression within the tumor microenvironment. Recent studies

have shed light on how the TCR repertoire significantly

influences the functional attributes of individual T cells (131–

135), which can help guide newer approaches for developing cell-

based therapies for cancer. Previous challenges in properly

identifying rare and elusive cell types within the TME, such as

cancer stem cells or immunosuppressive cell subsets, have also been

addressed with single-cell technologies by empowering researchers

to isolate and analyze these rare cell types with unprecedented

precision and resolution. Techniques like single-cell genomics and

proteomics provide key insights into how these cells drive tumor

progression, metastasis, and therapy resistance. By performing

scRNA-seq on tumor biopsies, the corresponding transcriptional

profiles of individual cells can be used to identify global and local

signatures (136–140), and determine whether specific subsets of

cells, such as effector T cells, regulatory T cells, dendritic cells, and

macrophages, have infiltrated specific regions of a tumor. This high-

resolution analysis provides crucial insights into the functional

states, activation statuses, and potential immunosuppressive

features of distinct immune cell populations, which if used on

longitudinally collected samples, can also help determine whether a

patient is responding to a specific therapeutic intervention. The

seamless integration of single-cell technologies propels cancer

immunotherapy into a realm of precision and depth previously

unattainable, promising a future where therapeutic strategies are

finely tuned to each patient’s immune landscape.
5 Advances in computational tools for
prediction of TCR antigen specificity

As the number of high throughput workflows for sequencing

and TCR functional characterization have increased, several

databases such as McPAS-TCR (141), VDJdb (142), and the
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TBAdb subset of PIRD (143) have emerged as repositories for

TCR and epitope information. Building upon the unprecedented

amount of experimental data generated by single-cell platforms,

recent advances in digital biology and machine learning have

expanded our ability to predict T-cell receptor (TCR) antigen

specificity and analyzing TCR repertoires. While traditional

approaches like X-ray crystallography, Nuclear Magnetic

Resonance (NMR), Surface Plasmon Resonance (SPR) and Mass

Spectrometry (MS) are still used for confirming conformational and

structural interactions (144–148), they are limited by the time-

consuming process of characterizing pMHC-TCR interactions one

by one. However, cutting-edge approaches that leverage

computational tools and machine learning algorithms are

bridging the gap between experimental data and predictive

modeling, offering new possibilities for understanding immune

responses and developing personalized immunotherapies.

These innovative tools analyze the sequence and structural

features of TCRs and their corresponding antigen epitopes,

establishing patterns and predicting potential interactions. They

can be broadly classified into two categories: supervised predictive

models (SPMs) and unsupervised clustering models (UCMs) (149)

based on their use of supervised and unsupervised learning,

respectively. Arsenal of tools have emerged recently that uses the

training data set generated by the experimental approaches to

general a model. Some of the widely used tools have been

summarized in Table 5.

One widely used tool is GLIPH (150), which applies clustering

techniques to identify functionally related TCRs by identifying

shared binding motifs in their CDR3 sequences. By uncovering

these motifs, GLIPH and its successor GLIPH2 (151) enable the

inference of potential epitopes and TCR-pMHC interactions.

Another commonly employed tool, TCRdist (152, 153), calculates

distances between TCR CDR3 sequences, providing a measure of

similarity and aiding in the inference of antigen specificity. IGoR

(154) is an additional tool frequently utilized in the field, estimating

the probability of generating a specific CDR3 sequence through V

(D)J recombination. By accounting for the recombination process,

IgoR offers a more accurate estimation of TCR repertoire diversity

and antigen specificity, enhancing the understanding of the T cell

repertoire and the likelihood of eliciting a specific TCR response.

TCRex (155), another prominent tool, is a computational

framework trained on large-scale TCR-pMHC binding datasets

that employs deep learning algorithms to predict TCR-pMHC

interaction specificity, facilitating the identification of potential

target antigens. Furthermore, DeepTCR (156), a deep learning-

based tool, analyzes TCR repertoires to predict antigen specificity of

TCRs and identify potential epitope targets. By integrating

experimental data, computational techniques, and machine

learning algorithms, these tools have revolutionized TCR

sequencing, enabling researchers to rapidly predict potential targets.

These innovative tools and approaches have not only provided a

solid foundation for understanding basic biological principles

surrounding TCR repertoire diversity and the influence of pMHC

on this diversity but also hold great potential for transforming
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personalized therapies and clinical care. Their utilities extend to

fields such as transplantation (GVHD), autoimmunity (cross-

reactivity), and immunotherapy (cell-based therapies and cancer

vaccines), offering valuable insights and paving the way for

personalized immunotherapies.
6 Concluding remarks

Neoantigens have emerged as promising targets in cancer

immunotherapy. In silico identification of candidate neoantigens

is a critical step in personalized immunotherapy that relies on the

development and application of bioinformatics and computational

approaches. Neoantigen prediction algorithms have continued to

evolve and improve in recent years, which has been aided by the

ever-growing training data sets. However, more robust measures are

needed to improve the identification of immunogenic neoantigens,

as not all predicted neoantigens elicit an immune response.

Screening and validation of neoantigen specific T cells using

antigen- or TCR-directed approaches provides greater efficiency

and accuracy in identifying targetable neoantigens, but they are

expensive and time consuming. The recent advances in single cell

technologies have offered new ways to integrate multiple

information layers at the level of individual cell. While these

technologies offer exciting prospects, they also present challenges

in data analysis and interpretation. Additionally, the prediction of

TCR-pMHC interactions plays a vital role in translating neoantigen

into actionable targets for cell-based therapies. Cutting edge

approaches, that leverage the computational tools and machine

learning algorithms, have been developed recently offering new

possibilities for understanding immune responses and developing

personalized immunotherapies. Overall, these innovative tools, in

combination with experimental data, pave the way for more

effective and tailored immunotherapeutic approaches, offering

valuable insights for personalized immunotherapies.
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TABLE 5 List of bioinformatics tools for TCR repertoire analysis and TCR-pMHC specificity prediction.

Tool Description Key Features Availability URL References

GLIPH Cluster TCR sequences based on
shared motifs

Motif based clustering,
identification of hotspots

Open-source software,
Web based service

https://github.com/
immunoengineer/gliph

(150, 151)

TCRdist Measures similarity between TCR
sequences based on CDR motifs

Repertoire wide TCR
distance calculation

Python Package https://github.com/
phbradley/tcr-dist
https://
tcrdist3.readthedocs.io/
en/latest/

(152, 153)

IGoR Estimation of TCR repertoire diversity Probability of CDR3 generation,
V(D)J recombination

C++ package https://github.com/
qmarcou/IGoR

(154)

TCRex Deep learning based framework for TCR
specificity prediction

Integration of diverse TCR
features, deep learning

Web based tool https://
tcrex.biodatamining.be/

(155)

DeepTCR Deep learning based tool for antigen-
specific TCR prediction

Integration of TCR sequence and
binding data

Python Package https://github.com/
sidhomj/DeepTCR

(156)
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