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Combined use of NK cells and
radiotherapy in the treatment
of solid tumors
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Natural killer (NK) cells are innate lymphocytes possessing potent tumor

surveillance and elimination activity. Increasing attention is being focused on

the role of NK cells in integral antitumor strategies (especially immunotherapy).

Of note, therapeutic efficacy is considerable dependent on two parameters: the

infiltration and cytotoxicity of NK cells in tumor microenvironment (TME), both of

which are impaired by several obstacles (e.g., chemokines, hypoxia). Strategies to

overcome such barriers are needed. Radiotherapy is a conventional modality

employed to cure solid tumors. Recent studies suggest that radiotherapy not

only damages tumor cells directly, but also enhances tumor recognition by

immune cells through altering molecular expression of tumor or immune cells

via the in situ or abscopal effect. Thus, radiotherapy may rebuild a NK cells-

favored TME, and thus provide a cost-effective approach to improve the

infiltration of NK cells into solid tumors, as well as elevate immune-activity.

Moreover, the radioresistance of tumor always hampers the response to

radiotherapy. Noteworthy, the puissant cytotoxic activity of NK cells not only

kills tumor cells directly, but also increases the response of tumors to radiation via

activating several radiosensitization pathways. Herein, we review the

mechanisms by which NK cells and radiotherapy mutually promote their killing

function against solid malignancies. We also discuss potential strategies

harnessing such features in combined anticancer care.
KEYWORDS

radiotherapy, natural killer cell, tumor microenvironment, granzyme B, CGAS/
STING signaling
Abbreviations: ACT, adoptive cell therapy; CC, C-C chemokine; CD, cluster of differentiation; cGAS, cyclic

guanosine monophosphate-adenosine monophosphate synthase; CXC, C-X-C motif chemokine; CX3C, C-

X3-C chemokine; DC, dendritic cell; DR, death receptor; Gy, Gray; GzmB, granzyme B; HIF, hypoxia-

inducible factor; IFN-g, interferon-g; IL, interleukin; MDSC, myeloid-derived suppressor cell; miR,

microRNA; M2, alternatively activated macrophage; NK, natural killer; NY-ESO-1, New York esophageal

squamous cell carcinoma-1; SBRT, stereotactic body radiotherapy; STING, stimulator of interferon gene;

TAA, tumor-associated antigen; TIL, tumor-infiltrating lymphocyte; TME, tumor microenvironment; TNF,

tumor necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand.
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1 Introduction

Adoptive cell therapy (ACT) is an extremely personalized

immunotherapy which involves adoptive transfer of autologous

lymphocytes into patients with advanced malignancies, especially

hematologic neoplasms, who have exhibited remarkable tumor

eradication (1). Since 1988, when the first demonstration of

autologous tumor-infiltrating T lymphocytes-based ACT

mediated objective tumor regression in patients with metastatic

melanoma, T lymphocytes were the only authoritative ACT target

over almost twenty years (2). Nonetheless, numerous

“unsuccessful” cases did remind us T lymphocytes-based ACT

was not always as satisfactory as we thought, and rate of relapse

or no-remission was significantly higher than we could accept (3–

6). Mechanically, these confusions are derived from several barriers

in T lymphocytes therapy, including severe life-threatening

toxicities, restricted trafficking, limited tumor infiltration, and in

particular, modest anti-tumor activity and antigen escape (7–10).

Apart from seeking technological improvements for solving these

obstacles, researchers also explored other antitumor lymphocytes,

which could be chosen for high-avidity tumor recognition, as well as

for effective agents required to induce cancer elimination in the use

of ACT. The natural killer (NK) cell-based immunotherapy was

then developed.

As a subset of innate lymphoid cells, NK cells are currently

considered exerting natural cytotoxicity against primary

malignancy and metastasis by suppressing proliferation,

migration and colonization to distant tissues (11). In addition to

their cytotoxic role, NK cells have been reported to produce plenty

of cytokines, mainly interferon-g (IFN-g), to modulate adaptive

immune responses or other related pathways (12, 13). Of note, NK

cells are capable of distinguishing abnormal cells from healthy ones,

providing accurate anticancer cytotoxicity and alleviating off-target

complications (14, 15), which should be the more important reason

for NK cells naturally emerging as a promising target for ACT. In

the first pioneering clinical practice in 2005, Millier and colleagues

adoptively transferred allogeneic activated NK cells into patients

with acute myeloid leukemia, leading to major tumor regression

(16). Up to now, numerous clinical studies revealed that adoptively

transferred NK cells triggered robust eradication of primary

leukemic blasts, substantially reduced the burden of acute

myeloid leukemia, and lengthened the overall survival of patients

(17–19). However in solid tumors, the therapeutic efficiency of NK

cell-based ACT is much less than desired (20, 21), and results from

more than 40 clinical trials have been inconsistent (22). The de facto

clinical benefits of alloreactive NK cells in patients with neurologic

tumors have been documented in two instances (23, 24). In contrast

to hematologic malignancies, solid tumors are characterized by

dense physical structures and a supportive TME that is often

impervious to effector immune cells (25). Thus, two inevitable

parameters are reported to mainly determine the therapeutic

efficacy for alloreactive NK cells in patients with solid tumors: (i)

intra-tumoral infiltration (26); (ii) persistence in a robust anti-

tumor state (16). With respect to the determinants against

infiltration of NK cells into tumors, C-X-C motif chemokine
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ligand 9 (CXCL9), CXCL10, or CXCL11 (which are all ligands to

the C-X-C motif chemokine receptor 3 (CXCR3), a receptor that

plays a crucial part in the recruitment of NK cells in solid tumors)

have shown substantial secretion in an experimental model of

lymphoma, lung adenocarcinomas, and melanomas tissues (27–

29). Several studies have also uncovered the obstacles preventing

persistence of an activated state for transferred NK cells, including

the abundance of interleukin (IL) -2, IL-12, IL-15 (and many other

cytokines) and hypoxia or reactive oxygen species (ROS) in the

TME (30–33). Obviously, the two parameters mentioned above are

deeply affected by the functional factors in TME. Under normal

circumstances, the specificity of the TME tends to prevent the

infiltration of NK cells into solid tumors, as well as inhibit

anticancer activation. Efforts have been made to remove

functional damage to NK cells by pharmaceutical or non-

pharmaceutical means (34–36), but it takes years for these

external interventions to enter clinical practice.

Over decades, radiotherapy has been a conventional therapeutic

modality for patients with solid neoplasms. In recent years,

radiotherapy has been employed not only for its direct tumoral-

killing ability, but also TME modulation (37–40). An increasingly

emphasized byproduct of the radiation damage to tumor cells

is the secretion/release of various cytokines, chemokines or

tumor-associated antigens (TAAs) in TME (41, 42), contributing

to the underlying role of radiotherapy to serve as an “in situ

vaccine”, rendering immune-insensitive tumors responsive to

immunotherapy. Thus, it has been speculated that radiotherapy

mediates a favorable TME for the infiltration and activation of NK

cells in solid tumors. Additionally, despite survival rates of patients

with solid malignancies are elevated by assistance of radiotherapy,

radioresistant properties of tumors remain a significant barrier for

curative treatment (43). Clinical interferences on traditional

radioresistant pathways, including DNA damage repair or

protective autophagy, still did not improve therapeutic efficiency

to a gratifying level. In the era of cancer immunotherapy, a new

appreciation of the role played by immune system in governing the

therapeutic effect of radiotherapy has caused a major spike in

interest. As a novel and pivotal part of cancer immunotherapy,

NK cell-based ACT definitely has tight interaction with

radiotherapy, which has obtained considerable support from

preclinical and clinical data (Table 1). Underlying these trials are

the hope that radiotherapy would optimize immune activity of NK

cells in solid tumors, while alloreactive NK cells further amplify the

tumor response of radiotherapy.

Herein, we review the mechanisms by which NK cells and

radiotherapy mutually promote their killing function against solid

malignancies. We also discuss potential strategies harnessing such

features in supporting anticancer care.
2 Radiotherapy encourages the
optimal anti-tumor activity of NK cells

Several environmental features play essential roles in preventing

the promising function of NK cells in solid tumors. Radiotherapy (a
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robust modulator of the TME) can eliminate such barriers and

contributes (but is not limited) to ameliorating the trafficking of NK

cells as well as enhanced cytotoxic functions.
2.1 Facilitation of trafficking of NK cells

For almost all anticancer chemo- or immune-therapy, the

inevitable question in clinical practice is how to enhance the

abundance of functional agents intratumorally. NK cell-based

ACT has no exception. However, investigation of tumor biopsy

specimens for various solid neoplasms, no matter patients derived

or animal derived, have demonstrated little infiltration of NK cells

into these tumors (44–46). The interactions between chemokines

and their corresponding chemokine receptors have been widely

explored for their roles in driving NK cells trafficking (47, 48).

Chemokine receptors are grouped by structure into four types: C-X-

C chemokine receptor (CXCR), C-C chemokine receptor (CCR), C-

X3-C chemokine receptor (CX3CR), and XCR (49), among which

CXCR3 expression is to date one of the marker providing the most

reliable message about the accumulation of NK cells. In general,

CXCR3 is highly expressed on the surface of NK cells, and it drives

NK cell-specific chemotaxis toward the CXCR3 ligands CXCL9,

CXCL10 and CXCL11, which are secreted by tumor cells into TME

and usually expressed at relative low levels in homeostatic condition

(50–52). Hence, strategies to increase CXCR3 expression by NK

cells and/or raise the abundance of CXCR3 ligands secreted in the

TME may lead to enhanced recruitment of NK cells into solid

malignancies. Cytokine stimulation upon NK cells was proved to be

able to modulate the expression of CXCR3. It was shown that ex

vivo expansion of NK cells in the coculture of IL-2 and feeder cells

(EBV-LCLs) significantly upregulated the expression of CXCR3 on

NK cells, resulting in increased migratory capacity toward CXCL10-

producing tumor cells in vitro (27). Besides, pharmaceutical

interventions such as BXCL701 (inhibitor of dipeptidyl peptidase)

and tazemetostat (a polycomb histone-lysine N-methyltransferase

enzyme-EZH2 inhibitor) can stimulate CXCL9/10 production,

which has been shown to lead to enhanced NK-cell infiltration as

well as cytotoxicity and eradication of pancreatic ductal

adenocarcinoma in a mouse model (53, 54). Radiotherapy has

been reported to elicit similar results as those reported above in
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several experimental and clinical models. Specifically, radiotherapy

combined with inhibitors of ATR serine/threonine kinase triggered

CXCL10 expression and increased infiltration of innate immune

cells (including NK cells) in models of human papillomavirus-

driven malignancies (55). Also, in models of Kirsten rat sarcoma

virus-mutated carcinomas, radiotherapy enhanced CXCL10

secretion, promoted anticancer immunity, and prolonged survival

(56). Furthermore, the mechanisms by which radiotherapy

influences expression of CXCR3 ligands have been postulated.

Recent research has suggested that radiotherapy drives a type-I

IFN response that culminates with CXCL10 secretion via

accumulation of nuclear and mitochondrial DNA in the

cytoplasm and consequent activation of cyclic guanosine

monophosphate-adenosine monophosphate synthase (cGAS) (57).

Moreover, radiotherapy can also lead to phosphorylation of p38

mitogen-activated protein kinase and increased expression of signal

transducer and activator of transcription 1 (STAT1) which,

ultimately, augments CXCL10 production (58, 59).

Apart from driving infiltration of NK cells into solid tumors,

CXCR3 is also preferentially expressed on a number of cancer cells.

In addition, several evidences reveal that CXCR3 on tumor cells

surface facilitates the proliferation and metastasis of a variety of

malignancies, including colon cancer (60) and melanoma (61), and

CXCR3 blockade has shown a prospective anti-metastatic potential

in breast cancer (62). Mechanically, the pairing of tumoral CXCR3

and its ligands may activate downstream Ras/ERK and PI3K/AKT

pathways (63, 64). Thus, the relationship between CXCL9, CXCL10,

CXCL11/CXCR3 axis and tumor development or patient prognosis

is still controversial. In some cases, consensus is made upon the

association between CXCR3 or its ligands expression and negative

response to existing treatments (65, 66), while other reports reveal

an opposite result (67–69). The theoretical base is still under study.

At least, these results encourage us that patients with certain types

of malignancies may benefit from radiotherapy-induced NK cells

intratumoral infiltration, while not suffer from increased metastasis.

Whereas, it also reminds us when combined NK cell-based ACT

and radiotherapy in solid tumor treatment, we should detect

CXCR3 and its ligands expression in cancer cells, and pathways

(as Ras/ERK or PI3K/AKT) inhibitors should be introduced to

prevent tumor metastasis in time. According to the interesting work

by Liu WS and colleagues (70), strategy which systematically
TABLE 1 Clinical trials testing allogenic NK cells therapy combined with radiotherapy in patients with solid tumors.

Indication(s) Phase Status N0 Other regimens Ref.

Gastric cancer
Head and neck cancer

2 Recruiting 55 PD-1 blocker NCT04847466

Ovarian cancer 2 Terminated 14 Cyclophosphamide Fludarabine NCT00652899

Breast cancer 2 Terminated 6 Cyclophosphamide Fludarabine NCT00376805

Sarcomas Not applicable Recruiting 10 Cyclophosphamide Fludarabine IL-12 NCT05952310

Solid tumors 2 Active, not recruiting 15 Cyclophosphamide Fludarabine NCT02100891

Glioblastoma 1 Recruiting 5 None IRCT20170122032121N5

High grade glioma 2 Recruiting 40 Chemotherapy IRCT20170122032121N7
Source: http://www.clinicaltrials.gov; https://trialsearch.who.int.
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establishes a score utilizing CXCR3 and its ligands abundances in

TME to predict tumor metastasis during NK cell-based ACT and

radiotherapy combined therapy may be beneficial and promising.

Apart from the essential CXCR3, additional chemokine

receptors, including CXCR4, CCR7 and CX3CR, have been

reported to promote the recruitment of NK cells to the TME of

solid neoplasms (71–74). Importantly, with no pharmaceutical

strategies clinically available, radiotherapy seems to be the most

cost-effective strategy to drive the expression of these chemokine

receptors or their ligands. Specifically, expression of CXCR4 and its

ligand CXCL12 were found to be increased after radiotherapy in

patients with metastatic prostate cancer (75), rectal cancer (76), or

nasopharyngeal carcinoma (77). When exploring tumor-infiltrating

lymphocytes (TILs) after radiotherapy in patients with prostate

cancer, researchers observed a higher number of CCR7+ TILs in

tumor biopsies post-radiotherapy (78). In an ex vivo experiment,

single-dose radiation promoted the migration of CX3CR1+ immune

cells markedly and upregulated expression of its cognate ligand

CX3CL1 (79, 80). In vivo and in vitro data have shown the positive

regulation of radiotherapy on expression of CXCR4, CCR7, or

CX3CR1, but the fundamental basis has yet to be identified.

However, similar with CXCR3, CXCR4 is not a NK cell-specific

chemokine receptor either. CXCR4 expression is also abundant in

immunosuppressive cells such as myeloid-derived suppressor cells

(MDSCs). A recent study demonstrated that radiotherapy induced

infiltration of CXCR4+ MDSCs into the microenvironment of

glioblastoma, and led to diminished anti-tumor immunity (81). A

similar contradiction can also be found via a mechanism involving

CXCL8 secretion. The mammalian target of rapamycin (mTOR)-

p65 axis showed sustained activation and was responsible for

radiotherapy-induced CXCL8 release, which caused directional

migration of NK cells to the TME in patients with pancreatic

cancer (82). However, it has also been reported that expression of

squamous cell carcinoma antigen 1 (clinical biomarker of a poor

response to anticancer therapy) resulted in increased CXCL8

expression along with promotion of intra-tumoral trafficking of

MDSCs in response to radiotherapy (83). Thus, combination

therapy, such as radiotherapy plus SX-682 (CXCR1/2 inhibitor)

(84), could abrogate the recruitment of tumor MDSCs and enhance

the tumor infiltration and therapeutic efficacy of NK cells.

The data stated above reveal that trafficking of NK cells into

solid tumors can be ameliorated by radiotherapy through driving

abundant chemokines receptors expression on NK cells or

corresponding ligands secretion by tumor cells into TME that

favor NK-cell infiltration.
2.2 Promoting the cytotoxicity of NK cells

The cytotoxicity of NK cells involves secretion of cytotoxic

granules containing the pore-forming protein perforin and

procaspase-cleaving granzyme B (GzmB), which induces

apoptosis in targeted tumor cells (85). Also, NK cells can trigger

target-cell apoptosis via the death receptors tumor necrosis factor

(TNF)-related apoptosis-inducing ligand (TRAIL) and FAS ligand

(86). Unfortunately, no report has shown a positive correlation
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cells. However, numerous works have suggested a link between

radiotherapy and expression/secretion of GzmB by cluster of

differentiation (CD)8+ T cells (whose major cytotoxic executors

are also GzmB and perforin) in models of prostate cancer (87),

melanoma (88), or hepatocellular carcinoma (89). An ex vivo study

in a model of colorectal cancer revealed that a radiotherapy-induced

cGAS signaling pathway may favor GzmB expression by CD8+ T

cells (90). A case report elucidated that upregulated expression of

perforin in T cells was due to radiotherapy in a patient with

metastatic gastric cancer (especially in the disease-resolution

period) (91). Even though the synthesis, mobilization, and

secretion of GzmB and perforin involve complex signal-

transduction pathways, similar mechanisms are observed in T

cells and NK cells (92–94). Therefore, it is reasonable to speculate

that radiotherapy should be a promising strategy to stimulate

secretion of GzmB and perforin in the TME by NK cells for solid

tumors. However, direct evidence is needed to define this link.

Besides cytotoxic granules, NK cells also exert antitumor effects

through secretion of cytokines such as TRAIL. The latter induces

the apoptosis of cancer cells directly by bonding to its death

receptors (DR4/DR5) (95). However, almost all tumors are not

sensitive to TRAIL, including astrocytoma, chronic lymphocytic

leukemia, medulloblastoma, and meningioma (96). The cause of

this lack of sensitivity in erythroleukemia was investigated by Di

Pietro and colleagues: the low surface expression of the TRAIL

receptor DR4 was suggested to be the reason. Furthermore, they

concluded that a low (1.5 Gy) or high (15 Gy) single dose of

radiation could sensitize erythroleukemic cells to TRAIL mediated-

cytotoxicity by selective upregulation of TRAIL-R1 (DR4)

expression (97). A similar result was also observed in a mouse

model of TRAIL-R2 (DR5) deficiency designed by Niklas and

colleagues, whose study put radiotherapy “center stage” in

TRAIL-induced organ-specific damage (98). Hence, we wonder

whether radiotherapy could increase the response to TRAIL-

induced apoptosis in other tumors and, ultimately, boost the

cytotoxicity of NK cells. Apart from increasing expression of the

death receptors of TRAIL, radiotherapy (a genotoxic agent) may

sensitize cancer cells to TRAIL by activating diverse TNF-associated

apoptotic pathways in tumor cells, such as caspase-8, p38, or

nuclear factor-kappa B (99–101).

The degree to which NK cells are active against tumor cells is

based on the activation state of NK cells, which is regulated in large

part by cytokines (e.g., IL-12, IL-18, type-I IFN) derived from other

immune cells, including dendritic cells (DCs) and monocytes (102–

104). Interestingly, preclinical studies have been conducted over

decades combining DCs-based immunotherapy with radiotherapy,

and clinical benefit (at least a partial response) was exhibited when

compared with administration of DCs alone. In a mouse-bearing

sarcoma model, radiotherapy plus DCs treatment resulted in

favorable infiltration of DCs into the TME to aid tumor

eradication (105). However, in an ex vivo co-culture experiment,

a significant difference in apoptosis or necrosis between DCs-

administration alone and DCs plus radiotherapy was not detected

in cancer cells. Explanation was not given in that study, but we

hypothesize that radiotherapy promoted the antitumor effect of
frontiersin.org
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DCs via crosstalk between DCs and other immune-active cells (e.g.,

NK cells, CD8+ T cells) rather that DCs. Another study using

models of pancreatic carcinoma and colorectal carcinoma showed

that radiotherapy facilitated DCs maturation, followed by enhanced

production of type-I IFN, and contributed to the activation of CD8+

T cells (106). Undoubtedly, NK cells could be activated

simultaneously by type-I IFN also. To ascertain how radiotherapy

activates DCs, researchers suggested that the cGAS-stimulator of

interferon genes (STING; an endoplasmic reticulum-associated

protein) axis was indispensable in radiation-induced production

of type-I IFN by DCs. DNA fragments from irradiated cancer cells

gained access to a cytosolic DNA-sensing pathway in DCs via direct

cell–cell contact to trigger induction of STING-dependent type-I

IFN, which further drove the adaptive immune response to

radiation (107). The cGAS-STING pathway plays an essential part

in expression of the NK-cell trafficking-associated ligand CXCL10

by irradiated tumor cells but also in the production of type-I IFN in

DCs. Further studies may reveal more information about the cGAS-

STING axis in radiotherapy-mediated activation of NK cells.

Activation of NK cells is also reliant on tumor-associated

antigens (TAAs) expressed by cancer cells. TAAs are antigenic

proteins produced in tumor cells, which can trigger an autoantibody

response in patients (108). Numerous studies have reported that

TAAs markedly influence the immunosurveillance of NK cells for

aberrant cells or tumor cells, and partly determine the clinical

benefits of adaptively transferred NK cells (109–112). The TAAs,

New York esophageal squamous cell carcinoma-1 (NY-ESO-1),

CD20, and CD48 are the most reported in terms of NK-cell

stimulation. In recent years, radiotherapy-mediated genomic

alteration of TAAs has attracted attention. In a single-arm

feasibility study, patients with metastatic renal cell carcinoma

were treated with stereotactic body radiotherapy (SBRT; 15 Gy) at

the primary lesion in a single fraction, and specimens were analyzed

for TAA expression at 4 weeks (113). Radiotherapy-treated tumors

had enhanced expression of several TAAs, including carbonic

anhydrase IX (CA9), trophoblast glycoprotein (TPBG), NY-ESO-

1, and mucin-1. Interestingly, NY-ESO-1 seems to be the only

intersection between radiotherapy-induced change in TAAs and

NK cell stimulation-associated TAAs. Inspiringly, in a patient

diagnosed with locally advanced unresectable gastric cancer,

radiotherapy led to upregulation of NY-ESO-1 expression in the

tumor, and enhanced the anticancer efficacy of anti-programmed

cell death protein 1-based immunotherapy that correlated with a

beneficial clinical outcome (91). Direct evidence identifying a

pronounced relationship between radiotherapy, TAAs (e.g., NY-

ESO-1), and NK-cell stimulation is lacking, but the above case

report by Merhi M and colleagues suggests that radiotherapy may

activate the NK-cell response to malignancies through upregulating

expression of NY-ESO-1 or other TAAs.

Several metabolic features in the TME have been found to exert

a considerable negative impact upon NK-cell activation. The rapid

and uncontrolled proliferation of tumors leads to an insufficient

blood supply and limits oxygen availability, so hypoxia is the most

prominent metabolism-associated TME feature in nearly all solid

tumors (114). Studies have reported that under hypoxia, there is a
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modulation of the genes associated with immunomodulatory effects

and reduction in the number of activating receptors (e.g., NKG2D,

NKp46), which result in impaired effector functions in NK cells

(115–117). Hypoxia-inducible factor (HIF)-1a is considered to be

responsible for this genetic regulation (though the specific pathway

has yet to be uncovered). Reversing hypoxia is a promising method

to reactivate NK cells, so radiotherapy has attracted attention. As

one of the “4R” principles post-irradiation, reoxygenation occurs

intratumorally in the early phase of radiotherapy. In 20 patients

with head and neck cancer who received intensity-modulated

radiotherapy (70 Gy/35 fractions), the intensity and volume of

tumor hypoxia declined rapidly, and 18F-fluorodeoxyglucose-

positron emission tomography suggested gradually decreased

fluorodeoxyglucose uptake during intensity-modulated

radiotherapy, which indicated a substantial tumoricidal effect over

the entire treatment (118). Notably, a recent study demonstrated

radiotherapy-induced tumoral reoxygenation to be dose-

dependent. In six patients with lung cancer undergoing SBRT (18

Gy/fraction), increased (or at least persistent) tumor hypoxia was

observed (119). In a prospective study of lung cancer, SBRT (12-13

Gy/fraction) caused a considerable reduction in tumor hypoxia and

a favorable prognosis (120). Thus, at least in lung cancer, a high

dose of radiation (18 Gy/fraction) should be the upper limit for

radiotherapy-induced reoxygenation. Besides, tumor specificity

may also be taken into consideration because a high dose (20 Gy)

in patients with prostate cancer led to a reduced hypoxic volume in

nearly all patients (121). In summary, using radiotherapy to

eliminate hypoxia in solid tumors and thereby improve NK-cell

cytotoxicity is a feasible and promising strategy. However, the

radiation dose and tumor specificity must be evaluated

individually. In addition, whether HIF-1a has a vital role in this

regulation is not known.

The evidence stated above suggests that fractionated

radiotherapy is a promising strategy for the recruitment and

cytotoxic function of NK cells in solid tumors because it can

eliminate inhibitory signals and augment enhancement signals

simultaneously (Figure 1).
3 NK cells amplify radiotherapy-
induced anticancer damage

Radiotherapy has been applied against almost all types of solid

tumors for decades. The efficacy of radiotherapy in curing some

malignancies can be suboptimal. The radioresistance of these

tumors can be the reason for this poor response to radiotherapy.

Various signaling pathways, such as DNA damage response (122,

123) and autophagic apoptosis (124, 125) are involved in the

radioresistance of tumors. Most radiosensitizers targeting these

mechanisms have been under preclinical study for years, but few

have been approved for clinical use. During mechanistic studies,

researchers observed a link between microenvironmental NK cells

and tumor radioresistance. In general, NK cells can improve the

tumor response to radiotherapy via two pathways: (i) cytokines (or

cytotoxic granules) secretion (2); molecular signal transduction.
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3.1 Secretion of cytokines or cytotoxic
granules enhance tumor radiosensitivity

Stimulated NK cells can produce cytotoxic granules (e.g.,

perforin, granzymes) as well as multiple cytokines (e.g., IFN-g,
TNF-a, IL-13) (14, 126). NK cells kill tumor cells directly or

increase the immunosurveillance of other immune cells (e.g.,

CD8+ T cells) indirectly via secretion of these effectors, but

biological processes in cancer cells (e.g., ferroptosis, autophagy,

repair of DNA damage) may also be influenced by them, which will

influence the radioresistance of tumors.

Among NK cell-derived cytokines, IFN-g is the most

fundamental factor involved in the crosstalk of NK cells with

almost all immune-active cells, such as CD8+ T cells, helper CD4+

T cells, antigen-presenting cells, and macrophages (127). The effects

of IFN-g on var ious bio logica l processes re la ted to

radiosensitization in tumor cells are beginning to be identified. In

a model of prostate cancer in mice, NK cells secreting IFN-g
increased ferroptosis in cancer cells which, in turn, enhanced NK-

cell function (including IFN-g production) (128). Peng and

colleagues suggested IFN-g signaling to be a natural ferroptosis-

promoting mechanism in tumors involving the metabolism of C16

and C18 acyl chain-containing phospholipids (129). Both of those

works did not study the continuous impact on the radioresistance of

tumors, but the role of enhanced ferroptosis in sensitizing various

types of neoplasm to radiation is accepted. Numerous preclinical

studies have disclosed a relatively low level of ferroptosis in

malignancies with a weak response to radiotherapy, and that

pharmaceutical induction of ferroptosis resensitized these tumors

to radiation significantly (130–132). Hence, by triggering

ferroptosis, IFN-g should overcome the radioresistance of tumors

and enhance radiation-induced damage. Rao and colleagues

suggested that all-trans retinoic acid can overwhelm the

radioresistance of solid tumors by inducing inflammatory
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macrophage-derived IFN-g (133). Hence, apart from ferroptosis

or fatty-acid metabolism, more pathways may participate in the

IFN-g-mediated radiosensitization of solid tumors.

TNF-a is synthesized and secreted mainly by NK cells. In

common with other TNF family members, TNF-a is involved in

the maintenance and homeostasis of the immune system,

inflammation, and defense against malignancy (134). Apart from

these immunosurveillance functions, a unique influence of TNF-a
upon radiosensitization in solid tumors was reported decades

earlier. In a model of prostate cancer, when cells were irradiated

24 h after exposure to TNF-a, increased cell death was observed. In

contrast, radiation delivered 24 h before TNF-a exposure did not

lead to more cell death than after TNF-a alone (135). This finding

suggested that TNF-a sensitized tumors to radiotherapy. A similar

result was observed in a model of B-cell lymphoma treated with

radiation plus ceramide inhibition (136). Kimura and colleagues

believed that TNF-a sensitized tumors to radiation by increasing

intracellular ceramide production.

IL-13 is a pleiotropic immunoregulatory cytokine produced by

Th2 cells, NK cells, or other cells of the innate immune system

(137). In an ex vivo experiment, isorhamnetin treatment increased

the radiosensitivity of non-small-cell lung cancer cells, and genetic

knockdown of IL-13 expression eliminated isorhamnetin-mediated

radiosensitivity in cells (138). This result reflected a role of IL-13 in

overcoming resistance to radiotherapy in solid tumors. In another

study, “protumor” M2-polarized macrophages in the

microenvironment of breast cancer were augmented after IL-13

administration, which further mediated tumor radioresistance;

however, inhibition of IL-13-mediated M2 polarization of

macrophages by PM37 could prevent radioresistance (139). This

contradictory IL-13-mediated removal or maintenance of

radioresistance may be derived from the difference between in

vitro and in vivo experimental models. In a simple model of

cancer cells, IL-13-related pathways can sensitize cells to radiation
BA

FIGURE 1

Radiotherapy promotes the infiltration and activation of NK cells in solid tumors (schematic). (A) In solid tumors, radiotherapy contributes to a boost
trafficking of NK cells into TME, and accelerates the functional maturation of infused NK cells. (B) Radiotherapy could remodel the TME to make a
NK-favored microenvironment via upregulating NK-promoted parameters including CXCR3, CXCR4, CXCL8-11, CCR7, CX3CR1, type I IFN, TAA,
TRAIL, granzyme and perforin, as well as abating NK-suppressed obstacle, especially hypoxia.
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without consideration of the effects on other types of immune cell

but, in tumor-bearing mouse model or humans, this effect is

inevitable. Accordingly, if taking advantage of IL-13 derived from

mature NK cells for reducing tumor radioresistance, the ability of

IL-13 to promote groups of protumor immune cells must

be considered.

One mechanism of NK cell-mediated tumor killing involves

granzymes that fragment nuclear DNA and leads to cell death (85).

The biologic/pathologic functions of most granzymes are not

known, but GzmB contributes to DNA fragmentation and results

in cell death directly. However, studies on GzmB-induced

radiosensitization in lung cancer and prostate cancer, respectively,

are interesting. Researchers found that administration of resveratrol

or AuNPs-si-SP1 could increase radiosensitivity markedly by

upregulating the expression and synthesis of GzmB in cancer cells

(140, 141). GzmB secreted by NK cells or other immune cells and

GzmB synthesized by tumor cells are not identical. Those two

studies were the first to focus on the regulatory role of GzmB on

tumor radioresistance rather than its direct apoptosis-inducing

ability, which expand our knowledge on the biological functions

of GzmB.
3.2 Molecules from NK cell-derived
exosomes activate
radiosensitization pathways

Exosomes are nanovesicles secreted actively by almost all cell

types. Exosomes deliver certain intracellular molecules (e.g., nucleic

acids, proteins, lipids) to target cells (142). Studies have focused

mainly on exosomes released from cancer cells, but the functions

and characteristics of exosomes derived from NK cells have been
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explored in recent years. Reports have suggested that NK cell-

derived exosomes could be assimilated by tumors in a time-

dependent manner, and such uptake improved the response to

anti-cancer treatments such as cisplatin in melanoma and ovarian

carcinoma (143, 144). The mechanisms by which NK cell-released

exosomes exert this sensitization function have not been elucidated.

However, small RNA-sequencing of exosomes secreted by NK cells

identified a specific repertoire of NK exosome-associated

microRNAs (mIRs) (145). Interestingly, miR-10b-5p (146), miR-

92a-3p (147), miR-146a-5p (148), and miR-99a-5p (149)

specifically abated tumor radioresistance involving multiple

molecular pathways such as ATM/ATR serine/threonine kinase,

Janus Kinase, and protein kinase B/mTOR. Apparently, miRNA

transduction into tumor cells by NK-derived exosomes may

increase the radiosensitivity of multiple malignancy types.

In summary, the data stated above suggest an indirect

sensitization role rather than a direct death-inducing function of

NK cell-derived cytotoxic granules, cytokines or exosomes in anti-

tumoral radiotherapy (Figure 2).
4 Concluding remarks and
future perspectives

NK cells have been suggested to be candidates for anti-tumor

therapy in recent years, and inspiring data have been documented

in individuals with hematologic neoplasms. Nevertheless,

application of NK cells in the treatment of solid malignancies is

hampered by many obstacles (150, 151). Despite strategies aimed at

promoting the infiltration and activation of NK cells in the TME,

translation into clinical practice is difficult. In contrast, priming the

TME with radiotherapy could “jumpstart” the immune activity of
FIGURE 2

NK cells enhance the response of tumors to radiotherapy (schematic). Mature NK cells secrete various cytokines or cytotoxic granules, as well as
plenty of exosomes, whose interactions with radiosensitivity-related pathways or biological process, as ferroptosis, fatty acid metabolism or miRNAs
networks, access valid ability in pruning radioresistance of cancer cells.
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NK cells by providing a permissive microenvironment for them.

Moreover, mature NK cells have been reported to improve the

response of solid tumors to radiotherapy. This complementary

function between radiotherapy and NK cells likely results in a

synergistic effect on tumor eradication, which is why a combination

of radiotherapy and NK-based ACT is crucial against cancer. This

strategy should be valid but direct evidence to prove its efficacy and

safety is lacking. We expect more clinical trials focusing on

radiotherapy and NK-based ACT but the histology subtype,

radiotherapy dose/sequence, and interference by other immune

cells in the TME must be taken into consideration.

In a whole, radiotherapy could be one of the keys to unlock the

potential of therapy based on the transfer of NK cells against cancer,

and conversely, infusion and maturation of NK cells may resolve

the long-standing radioresistance in solid tumors.
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