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Gut microbiota in combination
with blood metabolites reveals
characteristics of the disease
cluster of coronary artery
disease and cognitive
impairment: a Mendelian
randomization study
Shihan Xu1,2,3†, Yanfei Liu1,2,3†, Qing Wang1,2,3, Fenglan Liu4,
Yanfang Xian5, Fengqin Xu1,2,3,4* and Yue Liu2,3*

1The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences,
Beijing, China, 2National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China
Academy of Chinese Medical Sciences, Beijing, China, 3Key Laboratory of Disease and Syndrome
Integration Prevention and Treatment of Vascular Aging, Xiyuan Hospital of China Academy of
Chinese Medical Sciences, Beijing, China, 4School of Clinical Medicine, Guangdong Pharmaceutical
University, Guangzhou, China, 5School of Chinese Medicine, Faculty of Medicine, The Chinese
University of Hong Kong, Hong Kong, Hong Kong SAR, China
Background: The coexistence of coronary artery disease (CAD) and cognitive

impairment has become a common clinical phenomenon. However, there is

currently limited research on the etiology of this disease cluster, discovery of

biomarkers, and identification of precise intervention targets.

Methods: We explored the causal connections between gut microbiota, blood

metabolites, and the disease cluster of CAD combined with cognitive impairment

through two-sample Mendelian randomization (TSMR). Additionally, we

determine the gut microbiota and blood metabolites with the strongest causal

associations using Bayesian model averaging multivariate Mendelian

randomization (MR-BMA) analysis. Furthermore, we will investigate the

mediating role of blood metabolites through a two-step Mendelian

randomization design.

Results:We identified gut microbiota that had significant causal associations with

cognitive impairment. Additionally, we also discovered blood metabolites that

exhibited significant causal associations with both CAD and cognitive

impairment. According to the MR-BMA results, the free cholesterol to total

lipids ratio in large very low density lipoprotein (VLDL) was identified as the key

blood metabolite significantly associated with CAD. Similarly, the cholesteryl

esters to total lipids ratio in small VLDL emerged as the primary blood metabolite

with a significant causal association with dementia with lewy bodies (DLB). For

the two-step Mendelian randomization analysis, we identified blood metabolites

that could potentially mediate the association between genus Butyricicoccus

and CAD in the potential causal links.
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Conclusion: Our study utilized Mendelian randomization (MR) to identify the

gut microbiota features and blood metabolites characteristics associated

with the disease cluster of CAD combined with cognitive impairment. These

findings will provide a meaningful reference for the identification of

biomarkers for the disease cluster of CAD combined with cognitive

impairment as well as the discovery of targets for intervention to address

the problems in the clinic.
KEYWORDS
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1 Introduction

Over the past few decades, remarkable advancements in medical

technology coupled with refined strategies in public health practices

have led to a remarkable upsurge in the global population’s life

expectancy. However, this progress has also brought forth a

consequential escalation in the prevalence of individuals with

multimorbidity (1). Multimorbidity has emerged as a pervasive

clinical phenomenon, imposing substantial challenges on both

patient well-being and healthcare delivery, particularly among the

elderly cohort. Notably, in the age group of 65 to 84 years,

approximately two-thirds of individuals contend with the burden

of multimorbidity, while this figure skyrockets to a staggering 80%

among those aged 85 years and above. Within the context of

multimorbidity in elderly patients, the co-occurrence of CAD and

cognitive impairment is a notable disease cluster that cannot be

overlooked (2). CAD, being one of the leading causes of mortality

among elderly patients worldwide, continues to exhibit an incessant

rise in its incidence risk (3). Cognitive impairment constitutes a

comprehensive syndrome characterized by acquired and persistent

cognitive function impairments, leading to a decline in daily life and

occupational capacities as well as behavioral changes (4). The

severity of such impairments can range from mild cognitive

impairment to severe dementia. Epidemiological studies indicate a

gradual increase in the population of elderly individuals affected by

cognitive impairment, thereby presenting a significant challenge to

global public health (5). Studies have shown that CAD leads to a

27% increased risk of future dementia, and that patients with CAD

combined with cognitive impairment are more likely to have a

major adverse cardiovascular event, which puts the patient’s health

at greater risk than if they had one disease, however, cognitive

decline was not detected in as many as 50% to 80% of cardiac

patients with comorbid cognitive impairment, which may be related

to the choice of different cognitive function assessment scales and

the timing of cognitive function tests (6–8). Therefore, it is essential

to explore the biomarkers of the disease cluster of CAD combined

with cognitive impairment in order to construct more efficient and

objective screening methods as well as to search for more possible
02
therapeutic targets. With the rapid development of genomics,

metabolomics and macro-genomics of gut flora, it gives us a great

deal of opportunity to achieve the above mentioned goals.

A large body of evidence suggests that the gut microbiota plays a

crucial role in the onset and progression of diseases such as

metabol ic disorders , neurodegenerat ive diseases and

cardiovascular diseases (9). Several clinical studies have found

significant alterations in gut microbiota in individuals with CAD

and cognitive impairment (10, 11). Changes in the gut microbiota

can mediate the development of CAD through mechanisms such as

chronic inflammation, promotion of atherosclerosis, and

promotion of thrombosis (12). Imbalances in the gut microbiota

can lead to neuroinflammation, immune system dysregulation,

accumulation of brain amyloid proteins and tau-like proteins, as

well as impaired blood-brain barrier permeability, ultimately

contributing to cognitive impairment (13). These findings all

suggest that gut microbiota possess great potential as biomarkers

and therapeutic targets for the disease cluster of CAD combined

with cognitive impairment. However, it is worth noting that the

changes in gut microbiota found in different current studies are not

consistent, or even appear to be opposite, which may be related to

participant selection bias and confounding by confounding factors,

and these uncertainties create an obstacle to the specific clinical

application of intestinal flora (14, 15). The human blood

metabolome provides additional opportunities to identify multiple

disease pathogenesis, improve multiple disease risk prediction, and

explore multiple disease intervention targets through untargeted

assessment of circulating small molecules (16). Study shows that

both CAD patients and cognitively impaired patients display a

broad set of blood metabolites disorders, these findings provide new

directions for identifying biomarkers for the disease cluster of CAD

combined with cognitive impairment and for exploring precise

intervention targets (17, 18). In addition, studies have shown that

blood metabolites mediate the effects of gut microbiota on CAD as

well as cognitive impairment (18, 19). Therefore, combining blood

metabolites with gut microbiota can be very helpful for the

discovery of biomarkers and precise intervention targets for the

disease cluster of CAD combined with cognitive impairment.
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However, specific clinical applications of blood metabolites also face

large obstacles, as do gut microbiota, which arise mainly from risk

factors associated with CAD and cognitive impairment such as

hypertension, diabetes, and smoking, as well as interference from

potential confounders. These confounding factors make it difficult

to identify gut microbiota and blood metabolites that are causally

associated with the disease clusters of CAD combined with

cognitive impairment.

MR is an analytical method that utilizes genetic variation to

simulate randomized controlled trials, enabling causal inference

between risk factors and diseases. It can reduce the impact of

confounding factors and reverse causation (20). The rapid growth

of publicly available genome-wide association study (GWAS) data,

the emergence of new methodologies, advancements in molecular

epigenetics, and omics technologies have provided excellent

opportunities for MR to explore causal relationships between

complex diseases and other factors. Nowadays, large-scale GWAS

data on gut microbiota, blood metabolites, CAD, and cognitive

impairment are publicly available, creating opportunities for us to

investigate the causal associations between gut microbiota, blood

metabolites, and the disease cluster of CAD combined with

cognitive impairment through MR. Previously, some researchers

have found causal links between specific gut microbiota and CAD

and Alzheimer’s disease (AD) by MR, and others have explored

causal links between blood metabolites and AD by MR (21–23), but
Frontiers in Immunology 03
they have not gone further to explore the causal links between the

gut microbiota and the blood metabolites in patients with CAD as

well as AD, and they have not focused their attention on the disease

cluster of CAD combined with cognitive impairment. Therefore, we

will conduct a more comprehensive and in-depth exploration by

MR to provide new insights into biomarkers and treatments for the

disease cluster of CAD combined with cognitive impairment.

In this study, we aim to explore the causal relationships between

gut microbiota, blood metabolites, and the disease cluster of CAD

combined with cognitive impairment using TSMR. Additionally, we

will employ MR-BMA analysis to identify the gut microbiota and

blood metabolites with the strongest causal associations.

Furthermore, we will investigate the mediating role of blood

metabolites through a Two-Step Mendelian Randomization design.
2 Methods

2.1 Study design

The study design is depicted in Figure 1. We first conducted

TSMR analyses for the following causal associations (1): gut

microbiota and CAD (2), gut microbiota and cognitive

impairment (3), blood metabolites and CAD, and (4) blood

metabolites and cognitive impairment. Multiple testing
FIGURE 1

Summary of analyses performed in this study. In this study, the cognitive impairment phenotype includes cognitive performance as well as specific
subtypes of cognitive impairment, namely AD, DLB, and VaD. Only the results of the two samples MR that have been selected through sensitivity
analysis will undergo subsequent MR-BMA and mediation analysis. AD, alzheimer’s disease; DLB, dementia with lewy body; VaD, vascular dementia.
MR-BMA, Bayesian Model Averaging Multivariable Mendelian Randomization.
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significance thresholds were applied to assess the associations

between gut microbiota and blood metabolites, resulting in

significant causal associations and potential causal associations.

Subsequently, we performed MR-BMA analyses on the TSMR

results that met the criteria: the result qunanitity of TSMR≧2 and

passed sensitivity analysis for potential causal associations and

significant causal associations. Furthermore, for both potential

causal associations and significant causal associations, we

employed a Two-Step MR design to explore the mediating effects

of blood metabolites in the influence of gut microbiota on CAD and

cognitive impairment.
2.2 Data source

The GWAS data on gut microbiota used in this study were

obtained from the international consortium MiBioGen. This

consortium analyzed the genetic typing data of 18,340 individuals

from 24 cohorts, as well as the 16S rRNA gene sequencing profiles

of fecal microbiota (24). This is a large-scale, multi-ethnic, whole-

genome meta-analysis study. For this study, we limited our analysis

to individuals of European ancestry, and a total of 211 taxonomic

units of gut microbiota were included in the analysis(131 genera, 35

families, 20orders, 16 classes, and 9 phyla). The GWAS data for

blood metabolites was obtained from a large metabolomics dataset

recently released by the UK Biobank (25). Researchers utilized high-

throughput nuclear magnetic resonance spectroscopy (Nightingale

Health Plc; Biomarker quantification version 2020) to measure non-

fasting EDTA plasma samples from a randomly selected subset of

118,466 individuals from the UK Biobank. A total of 249 metabolic

traits were quantified in this measurement, including 168 in

absolute levels and 81 in ratio measures. These traits

encompassed various subclasses of lipoprotein lipids, fatty acids,

and their compositions, as well as numerous low-molecular-weight

metabolites such as amino acids, ketone bodies, and glycolytic

metabolites quantified in molar concentrations. The GWAS data

for CAD is derived from a large-scale, multi-ancestry meta-analysis

based on the 1000 Genomes Project (26). The meta-analysis

aggregated data from 48 studies, encompassing 60,801 CAD cases

and 123,504 controls. Among the participants, 77% had European

ancestry. The included cases consisted of individuals with coronary

artery stenosis >50%, chronic stable angina, acute coronary

syndrome, or myocardial infarction. The degree of cognitive

impairment can range from mild cognitive impairment to severe

dementia. In elderly patients, this syndrome is often manifested in

conditions with higher prevalence, such as AD, DLB, and vascular

dementia (VaD). Therefore, in this study, the cognitive impairment

phenotype includes general cognitive function as well as specific

subtypes of cognitive impairment, namely AD, DLB, and VaD. The

GWAS data for cognitive performance is sourced from a weighted

meta-analysis conducted by the Social Science Genetic Association

Consortium (SSGAC) (27). This analysis includes studies on

cognitive function from the COGENT Consortium and the UK

Biobank (UKB), comprising a total of 257,841 individuals. The

COGENT Consortium’s sub-studies (n=35) involved participants

who underwent neurocognitive testing in an average of eight
Frontiers in Immunology 04
sessions, with at least three cognitive domains assessed. Principal

component analysis was performed on the test scores, and the first

unrotated principal component was extracted to assess participants’

cognitive performance. In the UK Biobank, participants were

required to complete a language-based numerical reasoning test

consisting of 13 logical and reasoning questions within two minutes

to evaluate cognitive performance. The GWAS data for AD is

sourced from the International Genomics of Alzheimer’s Project

(IGAP) (28). IGAP provides a meta-analysis of GWAS based on

discovery samples from four consortia and the IGAP meta-analysis

includes 21,982 cases diagnosed with late-onset AD and 41,944

cognitively normal controls. The GWAS data for DLB is derived

from a genome-wide association study (29). This study included a

total of 6,618 participants of European ancestry, consisting of 2,591

DLB cases and 4,027 neurologically healthy controls. The

individuals included in the case group were diagnosed as

pathologically confirmed or clinically probable DLB based on

consensus criteria (30). The selection of all control group

participants was based on the absence of evidence of cognitive

decline in their clinical history and the absence of abnormalities in

neurological examinations. The GWAS data for VaD is derived

from FinnGen, an ongoing research project. This project combines

genetic data from the Finnish Biobank with healthcare data

collected and processed by the National Institute for Health and

Welfare in Finland. As of now, the project involves a substantial

number of individuals, reaching up to 377,277 participants (31). We

have obtained the GWAS data for VaD from the R5 dataset released

by FinnGen. The dataset consists of 881 VaD cases and 211,508

controls. VaD primarily refers to the condition defined by the

diagnostic codes of the International Classification of Diseases, 10th

edition (ICD-10) and ICD-9 (ICD-10: F01, ICD-9: 4378).
2.3 Genetic instrumental variable selection

The core component of Mendelian randomization studies

involves utilizing single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs). SNPs, serving as IVs, can overcome

confounding factors inherent in observational research, provided

that we obtain effective IVs through stringent selection criteria.

Firstly, we employed a threshold of P <1×10-5 to select SNPs

associated with the gut microbiota. These SNPs were utilized as

genetic instrumental variables, following the approach used in

previous gut microbiota MR studies, P<1×10-5 represents the

optimal threshold for selecting genetic predictive factors

associated with gut microbial characteristics, as demonstrated in

previous studies (32). For blood metabolites, P <5×10-8 represents

the threshold for selecting genetic predictive factors. Secondly, we

computed the F-statistic for each genetic instrumental variable and

selected IVs with F>10. Thirdly, to minimize bias introduced by

linkage disequilibrium (LD), we clumped all SNPs based on a LD

threshold of r2<0.001 within a distance of ± 10,000 kb. This

clumping process was performed using the 1000 Genomes

European reference panel separately, limited to SNPs with minor

allele frequency>0.01. Finally, we ensured that the impact of a SNP

on a specific outcome and exposure is adjusted to the same allele,
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ensuring allele-specific harmonization. Additionally, we excluded

palindromic SNPs from the analysis.
2.4 Statistical analyses

We conducted TSMR analyses to assess the causal effects of the

following associations (1): gut microbiota and CAD (2), gut

microbiota and cognitive impairment (3), blood metabolites and

CAD, and (4) blood metabolites and cognitive impairment. For

exposures with multiple IVs, the inverse-variance weighted (IVW)

method with multiplicative random effects is regarded as the most

efficient approach for obtaining causal effect estimates, and this

method can also account for heterogeneity in causal estimates (33).

Therefore, we selected the IVWmethod with multiplicative random

effects as the primary analysis approach for MR. For exposures with

only a single IV, we utilized the wald ratio analysis method to

estimate the causal effects. Furthermore, following previous studies

(34), we established multiple testing significance thresholds for gut

microbiota and blood metabolites. For each level of gut microbiota

feature (phylum, class, order, family, genus), the threshold was

defined as P <0.05/n, where n represents the number of bacteria

included with valid instrumental variables at the corresponding

feature level. For different categories of blood metabolites, the

threshold was defined as P <0.05/n, where n represents the

number of metabolites included with valid instrumental variables

in the respective category. After applying the multiple testing

significance threshold, the results that met the threshold were

considered as significant causal associations. On the other hand,

results that did not pass the threshold but had a p-value less than

0.05 were considered as potential causal associations. These potential

associations indicate a trend towards a causal relationship, further

investigation is needed to confirm their significance. We further

assess the robustness of both significant causal associations and

potential causal associations using MR Egger regression (35),

Weighted Median (36), Weighted Mode (37), and the MR

Pleiotropy Residual Sum and Outlier (MR-PRESSO) (38). The

reason for choosing these methods is that causal inference under

different assumptions can better help us detect whether there is a

violation of the MR assumptions (39). In addition to the robust MR

methods mentioned above, we conducted a series of other sensitivity

analyses. Firstly, we assessed heterogeneity in causal inference by

calculating Cochran’s Q statistic (40). Additionally, we evaluated

whether the estimation of causal effects was influenced by specific

variants through leave-one-out analyses (41). Furthermore, we

utilized the MR Steiger directionality test to determine the

direction of causality between the exposure and outcome. In cases

where the Steiger test identified stronger associations between

certain genetic instrumental variables and the outcome, we

removed these variants and performed the analysis again (42).

The gut microbiota and blood metabolites exhibit strong

correlations, both in terms of their phenotypic characteristics and

genetic variations. This phenomenon has been demonstrated in

previous MR analyses (23), which also explains the significant

overlap of IVs in TSMR analysis. While TSMR can infer the

causal effects of individual exposures, it cannot exclude the
Frontiers in Immunology 05
possibility of non-independent factors that may result in

correlated exposure groups acting on the outcome together.

Therefore, we employed MR-BMA to investigate the causal effects

of the exposure on the outcome by reducing potential biases that

could arise from the aforementioned factors. This method enables

the modeling of multiple correlated risk factors together and

identifies the true causal risk factors, unlike traditional

multivariable MR, this approach is particularly suitable for high-

throughput and highly correlated data (43).

We performed further analysis on the following TSMR results

using MR-BMA: the result qunanitity of TSMR≧2 and passed

sensitivity analysis for potential causal associations and significant

causal associations. We conducted MR analysis on multiple

exposure combinations using a weighted linear regression model

similar to the IVW method. In the Bayesian framework, we

evaluated the posterior probability (PP) of specific models and

calculated the marginal inclusion probabilities (MIP) for each

exposure by summing the PP of each exposure included in all

models. The exposures were ranked in descending order based on

their MIP, with the exposure having the highest MIP considered to

have the strongest causal association with the outcome.

Additionally, we calculated the model-average causal effect

(MACE), which reflects the average direct effect of each exposure

on the outcome, independent of any other exposures included in the

model. Q statistics and Cook’s distance were also calculated to

identify outlying variables and influential points in the model. After

excluding these outliers, we repeated the above operations. Finally,

we employed a two-step MR analysis design to determine the

mediating role of blood metabolites in the causal relationship

between gut microbiota and diseases, separately for significant

causal associations and potential causal associations. We

calculated the proportion of mediation by blood metabolites using

the indirect effect divided by the total effect (b1 × b2/b3), where b1
represents the effect of gut microbiota on blood metabolites, b2
represents the effect of blood metabolites on the outcome, and b3
represents the effect of gut microbiota on the outcome. All b values

were obtained through TSMR analysis.

All the analyses were conducted on the R platform (version 4.2.1).

The “TwoSampleMR” and “ggplot2” packages were used for

statistical analysis and data visualization. The MR-BMA analysis

was performed based on the R-code available on GitHub (https://

github.com/verena-zuber/demo_AMD). All GWAS summary data

was obtained from the IEU-OpenGWAS platform, and the MRC IEU

UK Biobank GWAS pipeline was used to generate the data (44).
3 Result

3.1 Instrument variables included
in analysis

We extracted valid IVs from gut microbiome and blood

metabolites GWAS based on the aforementioned selection

criteria. The detailed characteristics of these IVs can be found in

Supplementary Tables 1, 2. All SNPs used for analysis have an F-

statistic greater than 10.
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3.2 Two-sample MR analysis

As mentioned earlier, we established multiple testing

significance thresholds for each level of gut microbiota features

and blood metabolites categories. The multiple testing significance

thresholds for gut microbiota features are as follows: phylum

P=0.0056 (0.05/9), class P=0.0031 (0.05/16), order P=0.0025

(0.05/20), family P=0.0015 (0.05/34), genus P=0.0004 (0.05/131).

The multiple testing significance thresholds for blood metabolites

categories are as follows: blood lipids P=0.0002 (0.05/228), amino

acids P=0.005 (0.05/10), glycolysis-related metabolites P=0.0125

(0.05/4), ketone bodies P=0.0125 (0.05/4), fluid balance P=0.025

(0.05/2), inflammation P=0.05 (0.05/1). All results of TSMR for gut

microbiota are shown in the Figure 2 and all results of TSMR for

blood metabolites are shown in the Figure 3.

3.2.1 Significant causal association
In theMR analysis of gutmicrobiota and CAD, we did not find any

gut microbiota that showed significant causal associations after

applying the multiple testing significance threshold. However, in the

MR analysis of cognitive impairment, we identified gut microbiota with

significant causal associations, as shown in Table 1. In the MR analysis
Frontiers in Immunology 06
of blood metabolites and CAD, after applying the multiple testing

significance threshold, we discovered 54 blood metabolites that showed

significant causal associations with CAD. Among them, the most

significant one was the ratio of apolipoprotein B to apolipoprotein

A1 (OR=1.7369, 95% CI=1.5908 to 1.8964, P=7.34×10-35, IVW). In the

MR analysis of bloodmetabolites and AD, glutamine (OR=0.8383, 95%

CI=0.7605 to 0.9242, P=3.91×10-4, IVW) was identified as a blood

metabolite significantly associated with AD. In the MR analysis of

blood metabolites and DLB, we found 14 blood metabolites that were

significantly associated with DLB. Among them, the most significant

one was concentration of intermediate-density lipoprotein (IDL)

particles (OR=1.5301, 95% CI=1.2631 to 1.8536, P=1.38×10-5, IVW).

In the MR analysis of blood metabolites and other cognitive

impairment phenotype, after applying the multiple testing

significance threshold, we did not find any blood metabolites that

showed significant causal associations. For more detailed information

regarding the significant causal associations of gut microbiota and

blood metabolites, you can refer to Supplementary Table 3.
3.2.2 Potential causal association
In TSMR, we have identified multiple gut microbiota that have a

potential causal association with CAD and cognitive impairment.
FIGURE 2

All results of gut microbiome. Our study is primarily based on IVW as the main analysis method. Therefore, this figure displays the p-values of IVW.
The five concentric heatmaps from outer to inner represent the IVW analysis results of the gut microbiota with respect to CAD, cognitive
performance, AD, LBD, and VaD, respectively. The lighter the color, the more significant the results. The innermost circle heatmap represents 211
taxonomic units of gut microbiota and the taxa to which they belong.
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Similar findings have also been observed in the analysis of blood

metabolites. Further details regarding the potential causal

associations can be found in Supplementary Table 4.
3.3 Sensitivity analyses

When reanalyzing the causal associations using MR Egger,

weighted median, and weighted mode, most of the results showed

consistent directions with the IVW method. However, there were also

cases of inconsistent directions (Supplementary Tables 3, 4). In

subsequent studies, we removed the potentially causal associations

with inconsistent directions but retained those with significant causal

associations despite the inconsistency, and we approached these results

cautiously in further analyses. We did not find evidence of horizontal

pleiotropy in the causal associations based on the intercept from MR-

Egger analysis. The Cochran’s Q statistic showed heterogeneity, but as

mentioned earlier, the inverse variance-weighted method with

multiplicative random effects can account for the heterogeneity in

the causal estimates (Supplementary Table 5). The leave-one-out

analysis identified causal associations that are susceptible to specific

SNP influences (Supplementary Table 6). After removing these causal

associations, we performed MR-PRESSO analysis on the remaining

causal associations, where we identified the presence of horizontal

pleiotropic outlier variants. With the exception of the ratio of omega-6
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fatty acids to omega-3 fatty acids on CAD, the remaining causal

inferences remained consistent before and after removing the outliers

(Supplementary Table 7). Following the aforementioned sensitivity

analysis, we finalized a set of causal associations that exhibited more

robust results (Supplementary Table 8), and these causal associations

were subjected to further analysis.
3.4 Bayesian model averaging MR

After conducting the aforementioned sensitivity analysis, we

performed MR-BMA analysis on the significant causal associations

and potential causal associations that exhibited robust results.

Additionally, we calculated Q statistics and Cook’s distance to

identify outliers and influential points in the models. After

excluding these outliers, we conducted MR-BMA analysis again,

and the final results are presented in Table 2. For more detailed

results, please refer to Supplementary Tables 9, 10.
3.5 Two-step MR

We conducted two-step MR analysis separately on the robust

significant causal associations and the robust potential causal

associations. However, in the significant causal associations, we
FIGURE 3

|All results of blood metabolites. This figure displays the p-values of IVW. The five concentric heatmaps from outer to inner represent the IVW
analysis results of the blood metabolites with respect to CAD, cognitive performance, AD, DLB, and VaD, respectively. The lighter the color, the
more significant the results. The innermost circle heatmap represents 249 taxonomic units of blood metabolite and the taxa to which they belong.
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did not find any intermediate blood metabolites that mediate the

causal links between gut microbiota and CAD or cognitive

impairment. In the potential causal associations, we discovered

that omega-6 fatty acids (mediated proportion 38.2%),
Frontiers in Immunology 08
polyunsaturated fatty acids (mediated proportion 32.6%),

sphingomyelins (mediated proportion 51.4%), and total

phospholipids in lipoprotein particles (mediated proportion

43.3%) mediate the potential causal relationship between the
TABLE 1 The significant causal associations in gut microbiota MR analysis.

Exposure Outcome Method P OR or beta 95%CI

Genus Roseburia Cognitive performance

IVW 3.55×10-5 -0.07 -0.1 to -0.04

MR Egger 0.86 0.008 -0.076 to 0.091

Weighted median 0.003 -0.05 -0.09 to -0.006

Weighted mode 0.17 -0.05 -0.11 to 0.01

Family Desulfovibrionaceae AD

IVW 8.52×10-4 1.31 1.17 to 1.53

MR Egger 0.21 1.36 0.88 to 2.1

Weighted median 0.04 1.27 1.02 to 1.58

Weighted mode 0.19 1.25 0.92 to 1.72

Order Desulfovibrionales AD

IVW 1.62×10-3 1.27 1.09 to 1.47

MR Egger 0.14 1.41 0.92 to 2.15

Weighted median 8.8×10-3 1.32 1.07 to 1.62

Weighted mode 0.14 1.27 0.94 to 1.72

Class Alphaproteobacteria LBD

IVW 8.99×10-4 1.97 1.32 to 2.94

MR Egger 0.43 1.93 0.43 to 8.78

Weighted median 3.51×10-3 2.14 1.28 to 3.57

Weighted mode 0.07 2.24 1.09 to 4.61

Class Deltaproteobacteria VaD

IVW 2.39×10-3 12.28 2.43 to 61.93

MR Egger 0.31 99.39 0.02 to 431040

Weighted median 0.02 13.37 1.54 to 115.88

Weighted mode 0.13 16.98 0.57 to 503.34
It should be noted that the direction of causal association between Genus Roseburia and cognitive performance has changed in the MR-Egger analysis. Therefore, we need to approach this result
with greater caution.
TABLE 2 The result of MR-BMA analysis of significant and potential causal associations.

Outcome The strongest causal candidates MIP MACE

Significant causal association

AD Order Desulfovibrionales 0.527 0.134

CAD Free cholesterol to total lipids ratio in large VLDL 0.318 0.107

LBD Cholesteryl esters to total lipids ratio in small VLDL 0.291 0.077

Potential causal association

CAD Genus Oxalobacter 0.605 0.043

CP Genus Ruminococcaceae UCG003 0.838 0.037

AD Class Deltaproteobacteria 0.91 0.212

LBD Genus Ruminococcus gnavus group 0.906 -0.379

VD Family Bifidobacteriaceae 0.54 0.34

CAD Cholesterol to total lipids ratio in small VLDL 0.731 0.502

LBD Cholesteryl esters in VLDL 0.355 0.078
fron
We performed MR-BMA analysis separately on the significant causal associations and potential causal associations obtained from TSMR analysis. In each MR-BMA analysis, we ranked the gut
microbiota or blood metabolites based on the marginal inclusion probabilities derived from model diagnostics. The prior probability used in the MR-BMA analysis was set to 0.1, and the prior
variance was set to 0.5.
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genus Butyricicoccus and CAD. The results are illustrated in

Supplementary Table 11.
4 Discussion

In this study, we conducted comprehensive MR analysis using

large-scale GWAS summary data to investigate the causal

relationships between gut microbiota, blood metabolites, and the

disease cluster of CAD combined with cognitive impairment. The

gut microbiota we found significant causal associations with

cognitive impairment included Genus Roseburia, Family

Desulfovibrionaceae , Order Desulfovibrionales , Class

Alphaproteobacteria and Class Deltaproteobacteria. But

unfortunately, in our study, we did not find gut microbiota that

had significant causal associations with CAD. For blood

metabolites, we found significant or potentially causal associations

between a higher number of lipid metabolites and CAD as well as

cognitive impairment, according to the MR-BMA results, the free

cholesterol to total lipids ratio in large VLDL was identified as the

key blood metabolite significantly associated with CAD. Similarly,

the cholesteryl esters to total lipids ratio in small VLDL emerged as

the primary blood metabolite with a significant causal association

with DLB according to the MR-BMA results. We also found a

significant causal association between glutamine and AD. And we

were unable to find blood metabolites that acted as mediators in the

significant causal associations through the two-step MR analysis.

Overall, our findings provide new insights into potential biomarkers

and precise therapeutic targets for studying the disease cluster of

CAD combined with cognitive impairment.

Previous clinical studies have identified a correlation between gut

microbiota and cognitive impairment, and our study further identifies

a causal link between specific gut microbiota and cognitive

impairment, this discovery will allow the gut microbiota to be

better utilized in the identification of biomarkers for disease clusters

as well as the discovery of therapeutic targets. In our study, family

Desulfovibrionaceae as well as order Desulfovibrionales were

significantly and causally associated with increased risk of AD, and

previous clinical studies have corroborated our findings. The study by

Hou et al (45) found higher abundance of family Desulfovibrionaceae

and order Desulfovibrionales in AD patients, the same results were

found in patients with cognitive impairment in the study by Park et al

(46). Haran et al (47) combined with machine learning found that a

representative species of the sulfate-reducing Desulfovibrio genus (D.

fairfieldensis) could serve as a highly significant predictor of AD. The

type genus of family Desulfovibr ionaceae and order

Desulfovibrionales is the Desulfovibrio genus, which is a Gram-

negative sulphate-reducing bacterium that is widely distributed in

the human intestinal tract and whose main metabolite is hydrogen

sulphide (H2S), H2S as a gaseous transmitter plays a wide range of

roles in the pathophysiology of the nervous system (48). Elevated

blood levels of H2S and its metabolites have been found in AD

patients, this alteration can make the blood-brain barrier(BBB)

dysfunctional and lead to excitotoxic stress and cognitive

impairment (49). Significant causal associations between genus

Roseburia and cognitive performance were also found in our study,
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the relationship between intestinal flora and amyloid in cerebrospinal

fluid was revealed by Verhaar et al. (50), who found that a decrease in

the abundance of Roseburia hominis was associated with an increased

chance of a positive cerebrospinal fluid amyloid test. Haran et al (47)

also found a reduction in Roseburia hominis abundance in elderly

patients with AD. Genus Roseburia is an anaerobic, Gram-positive

bacterium whose main metabolite is short-chain fatty acids (SCFA)

(51), SCFA can enter the CNS through active or passive pathways and

have a wide range of effects on neurotransmitters, mitochondrial

function, neuroimmunomodulation, and related gene expression, as

SCFA accumulates in cells, it gradually leads to intracellular

acidification and affects neuronal function subconsciously by

altering calcium signaling and neurotransmitter release (52).

Significant causal association between class Alphaproteobacteria

and DLB and significant causality between class Deltaproteobacteria

and VaD were also found in our study. Previous studies have found

that the abundance of phylum Proteobacteria as well as order

Deltaproteobacteria is elevated in AD patients and that

Alphaproteobacteria correlates with mood disorders in AD patients

(45, 53). Although current clinical studies have identified this

relationship, the underlying pathophysiological processes are still

unclear and more research is still needed to further explore the

underlying mechanisms. Among CAD patients, genus Roseburia,

family Desulfovibrionaceae, and order Desulfovibrionales have been

directly or indirectly associated with CAD (54, 55). At the same time,

the main metabolites of these intestinal flora, H2S and SCFA, also

influence the pathophysiological processes of CAD (56, 57). Although

no causal associations between these gut microbiota and CAD were

found in the present study, this may be due to the high degree of

heterogeneity of gut microbiota among populations, which makes

MR analyses insufficient to detect potential causal associations

between all gut microbiota and all phenotypes, in the case of CAD,

these alterations in gut microbiota cannot be ignored, and when these

gut microbiota are dysregulated, it may indicate that patients with

CAD have a concomitant and unrecognized decline in cognitive

function or an elevated risk of future co-morbid cognitive

impairment. Interventions with these gut microbiota may also

contribute to the improvement of the disease cluster of CAD

combined with cognitive impairment.

By analyzing the causal links between blood metabolites and

CAD and cognitive impairment, we found that lipids play an

important role in the development of CAD and cognitive

impairment. Of the lipid metabolites causally associated with

CAD, the strongest causal association was Free cholesterol to total

lipids ratio in large VLDL. Elevated VLDL cholesterol levels increase

the risk of CAD by 2.19-3.36-fold in people with low-density

lipoprotein (LDL) cholesterol in the normal range and in the

absence of other major risk factors (58). VLDL cholesterol can

explain the increased risk of myocardial infarction associated with

elevated levels of apolipoprotein B (apoB), while VLDL triglycerides

do not contribute to this risk (59). VLDL uptake by macrophages

promotes a shift in their inflammatory phenotype, increases

phagocytosis, and promotes foam cell formation, in addition,

VLDL increases cholesterol deposition in atherosclerotic plaques,

and cholesterol crystals are a typical feature of atherosclerotic plaque

necrosis, its increase leads to plaque instability as well as a tendency
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to rupture (60). In our study, lipid metabolites were also significantly

and causally associated with LBD, and the cholesteryl ester to total

lipid ratio in small VLDL showed a stronger causality than other

metabolites. The main pathological feature of DLB is lewy bodies

(LB), which are enriched not only in a-synuclein (a-syn) but also in
lipids (61). a-Syn stimulates microglia activation, which induces

reactive oxygen species production and leads to apoptosis of

pericytes, and the reduction of pericytes leads to a dysfunction of

the blood-brain barrier (BBB), which allows for the entry of VLDL

into the brain (62, 63). The N-terminal region of a-syn interacts with
apolipoproteins to increase their tendency to aggregate, and

cholesterol also regulates the expression and aggregation of a-syn,
leading to neuronal cell dysfunction and death (64). Potential causal

associations between many lipid metabolites and AD as well as VaD

were similarly identified in our study, which is consistent with the

large number of clinical studies that have found a correlation

between lipid alterations and AD and VaD (65–67). Lipid

abnormalities may contribute to the development of cognitive

impairment through impaired BBB function, neuroinflammation,

and cerebrovascular dysfunction (68). Therefore, it is not difficult to

find that lipid metabolites are non-negligible factors in the

development of cognitive impairment, and the causal association

between them and the mechanisms behind them still need to be

investigated more thoroughly. In conclusion, the impact of lipids,

especially VLDL, on the disease cluster of CAD and cognitive

impairment is very important, and more precise studies on

biomarkers and therapeutic targets in the disease cluster of CAD

and cognitive impairment is very important may be possible in the

future through lipidomics. In addition to lipids, we also found a

significant causal association between Gln and AD. Gln, the most

abundant and versatile amino acid in human blood, exerts

neuroprotective effects by buffering the increase of reactive oxygen

species and reducing the damage caused by oxidative stress (69, 70).

Furthermore, dysregulation of the glutamate-glutamine cycle may

lead to neuronal death mediated by glutamate (71). Gln is likewise

closely related to CAD, Gln is independently associated with the

onset and severity of CAD (72), and Gln has the potential to alleviate

various cardiovascular risk factors such as hypertension,

hyperlipidemia, and diabetes (73). Therefore, blood Gln could also

be one of the biomarker candidates for the disease cluster of CAD

combined with cognitive impairment. Screening for biomarkers in

the disease cluster of CAD combined with cognitive impairment is

hampered by observational studies, mainly due to biases in

participant selection, as well as inconsistencies in sample sizes,

sequencing protocols, bioinformatics processes and statistical

analysis methods, all of which may lead to inconsistencies in the

results (74). And our study may be able to alleviate this hindrance by

incorporating MR analysis.

To the best of our knowledge, this is the first MR analysis

conducted on the gut microbiota and blood metabolites of the

disease cluster. Our study will provide a meaningful reference for

the discovery of biomarkers and targets for intervention in the

disease cluster of CAD combined with cognitive impairment to

address the problems in the clinic. Meanwhile, our study can also

provide more ideas and directions for understanding the

mechanisms behind the disease cluster of CAD combined with
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cognitive impairment. However, our study has some limitations.

Firstly, although we utilized results from a large-scale blood

metabolomics analysis in the UK Biobank, the included

metabolites are not comprehensive. Subsequent GWAS analysis

should be conducted on more comprehensive metabolites to

discover additional metabolites with causal associations. Secondly,

the GWAS summary data of the gut microbiota we used was

obtained through 16S rRNA gene sequencing, which is not

precise at the species-level. Follow-up investigations can employ

shotgun metagenomic sequencing analyses to obtain more specific

and accurate data for inferring causal associations. Additionally, the

GWAS summary data represent lifelong genetic exposure.

Therefore, further clinical studies and animal experiments are

needed to investigate whether the causal inferences derived from

MR analysis can represent the short-term effects of gut microbiota

changes on the host. Thirdly, although the heritability of CAD is

independent of cognitive impairment and presents randomness

(75), there may exist shared genetic foundations between CAD and

cognitive impairment. This may result in missing SNPs that can be

used as instrumental variables. Therefore, the results obtained by

analyzing CAD and cognitive impairment separately may introduce

some biases for the disease cluster. Subsequent studies should focus

on researching the shared genetic basis of CAD and cognitive

impairment to identify more precise gut microbiota and blood

metabolites with causal associations. Fourthly, our study included

only individuals of European descent, and caution should be

exercised when extrapolating our results to other populations.

Additionally, further research should be conducted on other

ethnic groups.

In conclusion, this study investigated the causal associations

between gut microbiota, blood metabolites, and the disease cluster

of CAD combined with cognitive impairment. Using MR-BMA, we

identified the bloodmetabolites and gut microbiota with the strongest

causal associations. In addition, we further explored the mediating

role of blood metabolites in the relationship between gut microbiota

and disease clusters. Our study will provide valuable insights for the

discovery of biomarkers as well as therapeutic targets for the disease

cluster of CAD combined with cognitive impairment.
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