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Introduction: Up to 30% of hospitalized COVID-19 patients experience

persistent sequelae, including pulmonary fibrosis (PF).

Methods: We examined COVID-19 survivors with impaired lung function and

imaging worrisome for developing PF and found within six months, symptoms,

restriction and PF improved in some (Early-Resolving COVID-PF), but persisted in

others (Late-Resolving COVID-PF). To evaluate immune mechanisms associated

with recovery versus persistent PF, we performed single-cell RNA-sequencing

and multiplex immunostaining on peripheral blood mononuclear cells from

patients with Early- and Late-Resolving COVID-PF and compared them to

age-matched controls without respiratory disease.

Results and discussion: Our analysis showed circulating monocytes were

significantly reduced in Late-Resolving COVID-PF patients compared to Early-

Resolving COVID-PF and non-diseased controls. Monocyte abundance

correlated with pulmonary function forced vital capacity and diffusion capacity.

Differential expression analysis revealed MHC-II class molecules were

upregulated on the CD8 T cells of Late-Resolving COVID-PF patients but

downregulated in monocytes. To determine whether these immune signatures

resembled other interstitial lung diseases, we analyzed samples from Idiopathic

Pulmonary Fibrosis (IPF) patients. IPF patients had a similar marked decrease in

monocyte HLA-DR protein expression compared to Late-Resolving COVID-PF

patients. Our findings indicate decreased circulating monocytes are associated

with decreased lung function and uniquely distinguish Late-Resolving COVID-PF

from Early-Resolving COVID-PF, IPF, and non-diseased controls.
KEYWORDS

COVID – 19, pulmonary fibrosis, monocytes, idiopathic pulmonary fibrosis, single cell
RNA sequencing (scRNA), peripheral blood mononuclear cells
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Introduction

Over 770 million cases of COVID-19 have been documented

worldwide, and up to 30% of patients experience persistent

symptoms months after illness (1–4). Pulmonary fibrosis is

common in COVID-19 patients following hospitalization in the

intensive care unit (ICU). Recent studies report 27% of computed

tomography (CT)-scanned patients develop fibrosis during

hospitalization, which increases to 33% six months after illness (5,

6). It is unknown what mechanisms govern resolution or

persistence of pulmonary fibrosis associated with severe COVID-

19 and whether COVID-associated pulmonary fibrosis (COVID-

PF) is similar to progressive pulmonary fibrosis (7).

Recent evidence indicates that abnormal immune function

plays a significant role in COVID-19 severity (8–11). For

example, SARS-CoV-2 causes a robust inflammatory response

within the lung that can lead to acute respiratory distress

syndrome (ARDS), tissue damage, and long-term respiratory

dysfunction (12–15). A growing number of studies have begun to

characterize COVID-PF (16–21), but a comprehensive analysis of

multiple cell types that distinguish poor outcomes within COVID-

PF is critically needed to inform treatment.

Peripheral immune cells are an ideal tool for examining

differences in the immune response as post-COVID-19 sequelae

often manifests as a systemic disorder. Furthermore, profiling

peripheral blood mononuclear cells (PBMCs) has yielded insights

into immune dysregulation and markers that predict disease

outcomes in patients with idiopathic pulmonary fibrosis (IPF),

the most common fibrotic lung disease (22–26), setting a

precedent that similar methodologies could be applied to

COVID-PF.

Here, we identify COVID-19 patients with restrictive lung

physiology and early CT scan changes consistent with fibrosis

more than one month after acute SARS-CoV-2 infection

symptoms had resolved. At the second outpatient follow-up, the

cohort diverges into two groups: Patients whose restriction and

early imaging changes resolved, which we termed “Early-Resolvers”

(ER COVID-PF), and those with persistent restriction and

pulmonary fibrosis, whom we termed “Late-Resolvers” (LR

COVID-PF) (Figure 1A). The objective of our study was to first

define immune features that discriminated LR COVID-PF from ER

COVID-PF by performing single-cell RNA sequencing and

multiplex immunostaining analysis of PBMCs, and to second

compare the resultant cellular and molecular signatures with IPF.
Materials and methods

Study participants

Patients with IPF donated peripheral blood mononuclear cells

(PBMCs) in the outpatient setting while in a stable clinical state

(IRB #20937). Three control PBMC samples from age-matched

patients with no known pulmonary disease were prepared and

sequenced at the Mayo Clinic (IRB #:19-012187). We recruited a

subset of patients from the University of Virginia COVID-19
Frontiers in Immunology 02
survivor clinic (IRB #:13166) with restrictive lung physiology on

pulmonary function tests (PFTs) and features consistent with

pulmonary fibrosis on chest CT performed at the associated visit

(27). Radiographic features indicative of possible development of

pulmonary fibrosis included bilateral reticulation, traction

bronchiectasis, and/or honeycomb change in peripheral and

basilar distribution, similar to the presently recognized

progressive pulmonary fibrosis clinical radiologic phenotype, and

similar to previously defined COVID-19 pulmonary fibrosis

characteristics (7). PFT and chest imaging was performed in

association with the patient’s first visit to the outpatient COVID-

19 survivor clinic. Early- and Late-Resolvers were identified by

comparing chest imaging and PFT values from the patient’s first

and subsequent visit. Patients with COVID-19 associated

pulmonary fibrosis (COVID-PF) were followed for 6 months or

until the patient clinically improved. COVID-PF patients were age-

matched to IPF patients to control for age-related differences in

peripheral immune signatures.
Sample collection

Patients who had IPF or had recovered from COVID-19 were

recruited through the University of Virginia (UVA) Pulmonary and

Post-COVID clinic respectively. PBMCs were isolated from venous

blood (Post-COVID and IPF: K2EDTA BD Vacutainer®) by

density gradient centrifugation and cryopreserved for later

analysis (FBS + 10% DMSO). PBMC collection and single cell

RNA sequencing for control samples were prepared at the Mayo

Clinic similarly to samples detailed by Cheon et al. (16).
Single cell RNA sequencing
sample preparation

Single-cell RNA sequencing (scRNAseq) was performed on

cryopreserved PBMCs from four IPF and fourteen COVID-19

associated pulmonary fibrosis (COVID-PF) patients at the

University of Virginia. All analyses were conducted on COVID-PF

PBMC samples collected at the COVID patient’s initial out-patient

visit. Peripheral blood samples were prepared using the 10x Genomics

Fresh Frozen Human PBMC protocol. Viability of thawed cells prior

to sequencing was assessed using either a hemocytometer or Countess

3 (Supplementary Table E3). The generation of single cell indexed

libraries, from the thawed PBMCs, was performed by the School of

Medicine Genome Analysis and Technology Core, RRID :

SCR_018883, using the 10X Genomics chromium controller

platform and the Chromium Single Cell 5′ Library & Gel Bead Kit

v1.1 reagent. Briefly, around 10,000 cells were targeted per sample and

loaded onto each well of a Chromium Single Cell G Chip to generate

single cell emulsions primed for reverse transcription. After breaking

the emulsion, the single cell specific barcoded DNAs were subjected to

cDNA amplification and quality control on the Agilent 4200

TapeStation Instrument, using the Agilent D5000 kit. Each sample

cDNA was used to prepare indexed libraries that were pooled prior to

sequencing. A quality control run was performed on the Illumina
frontiersin.org
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Miseq using the nano 300 cycle kit (1.4 Million reads/run), to estimate

the number of targeted cells per sample. The cell estimate enabled the

core to re-balance the pooled sample prior to deep sequencing onto

either the NextSeq 500 using the 150 cycle kit or NextSeq 2000 using

the P3-100 cycle kit. After run completion, the Binary base call (bcl)

files were converted to fastq format using the Illumina bcl2fastq2
Frontiers in Immunology 03
software, and data transferred to the Bioinformatics core. Data was

aligned and quantified using the Cellranger 6.0.1 function except for

the initial sample processed with Cellranger 4.0.0.

To accommodate batch effects, all submissions were prepared

with samples from each of the different treatments (ER COVID-PF,

LR COVID-PF, and IPF). This technique was successful for the vast
B

A

FIGURE 1

Computerized tomography images of Early- and Late- Resolving COVID associated pulmonary fibrosis and study design. (A) CT images of two
COVID survivors displaying resolving pulmonary fibrosis (top row) or persistent pulmonary fibrosis (bottom row). Left images represent abnormal CT
findings observed when first evaluated in the post-COVID clinic more than one month post-infection. Right images denote either the resolution or
persistence of abnormal findings 6 or more months after infection. Abnormal findings such as ground glass opacities and reticulation are indicated
by orange arrows. (B) Schematic of multi-omic study design where (1) depicts scRNA-seq processing and preliminary UMAP, and (2) depicts
multiplex imaging workflow and representative image of stained PBMCs using PhenoCycler to identify T cells.
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majority of our data with the exception of the 3 non-diseased

controls prepared at the Mayo Clinic (sequenced on MGISEQ-

2000) and 3 of the 18 single-cell RNA seq samples prepared at UVA

where the complementary samples failed quality control for

that batch.
Single cell RNA sequencing data cleaning
and integration

Raw fastq files from all 21 samples were aligned to the GRCh38

human reference genome and quantified. Following the suggested

pipeline for quality control in the Seurat v.4.0.3 package, sc-RNAseq

data were filtered for dead cells, doublets, and red blood cells by

excluding cells with greater than 5% mitochondrial genes and less

than 500, but no more than 2500 genes. Samples underwent

normalization, scaling, integration using anchors, dimensional

reduction, and further downstream analysis using the standard

Seurat workflow with the Seurat v.4.0.3 package. Principle

components were visualized using an elbow plot to select

dimensionality of the 21-sample integrated dataset. From this

quantitative approach, we determined to implement 17

dimensions as our input for the RunUMAP and FindNeighbors

clustering parameters and set the resolution to 0.5 for our initial

clustering. Nineteen cell clusters were identified initially.

Erythrocyte clusters were removed, and two CD4+ T effector cell

clusters were merged, yielding 16 distinct immune cell

subpopulations (69,868 cells). Dot plots depicting the defining

markers for each cluster were constructed using default settings in

the DotPlot function.
Single cell RNA sequencing cell
abundance quantification

Labels denoting each condition were appended to each cluster

ID and counted using the Idents function in Seurat. These values

were then exported to Excel where relative cell abundance to the

total cell population were calculated ((number of cells in cluster x/

sum of cells from all clusters)*100). Total cell population was

replaced with all CD4 T cells or all CD8 T cells when applicable

for T cell subset relative abundances. All bar charts representing

relative cell abundance were constructed and statistically analyzed

in GraphPad Prism 9.4.1. To determine whether the time between

initial COVID infection and sample collection (in months) was a

potential cofounding variable for cell abundance Pearson or

Spearman Correlations (depending on normality determined by

Shapiro-Wilk Test) were performed.
Differentially expressed gene and gene set
enrichment analyses

Differentially expressed genes (DEGs) between conditions

(non-diseased control, ER COVID-PF, LR COVID-PF, and IPF)

were determined using the FindMarkers function in Seurat.
Frontiers in Immunology 04
Significance for the difference in gene expression between the two

groups were tested using the default Wilcox rank sum test and

adjusted with bonferroni correction using all genes to account for

false discovery. Violin plots depicting DEGs were constructed using

default settings in the VlnPlot function. To account for time

between initial COVID infection and sample collection (in

months) as a potential cofounding variable we performed a

multiple linear regression analysis using the latent.vars argument

in the FindMarkers function.

Differentially expressed genes for gene set enrichment analysis

(GSEA) were determined by applying model-based analysis of

single-cell transcriptomics (MAST) test with Bonferroni

adjustment and the clusterProfiler package to the whole gene

expression profile of ER versus LR COVID-PF as well as each LR

COVID-PF versus the non-diseased control group. The canonical

pathways from the curated gene set (C2) provided by Molecular

Signatures Database (MSigDB) were input as the gene list for GSEA.

GSEA results were output as a table found in supplemental or

visualized using the dotplot function from ggplot package.

Similarly, MAST DEG outputs were used to generate Volcano

Plots using the EnhancedVolcano and tidyverse packages.
Single cell RNA sequencing re-clustering

All CD4+ T cell populations were merged into one cluster and

subset out for CD4+ T cell re-clustering. The subset object

containing all CD4+ T cells was then re-processed for variable

features using the vst selection method and setting nfeatures to

2000, followed by re-scaling in Seurat. For dimensional reduction,

the dimension argument was set to 8 for the FindNeighbors

function and the resolution to 0.75 for the FindClusters function.

Nine populations were output from this analysis. Clusters 0 and 7

expressed similarly high levels of the naïve markers CCR7+ and

SELL+ without expressing effector markers and therefore were

combined into one Naïve CD4+ T cell population. Similarly,

clusters 5 and 1 were combined as these clusters expressed lower

levels of CCR7 and SELL while expressing similar amounts of the

memory markers CD27, S100A4, and PASK. We identified a naïve

subpopulation, an Early Activation subpopulation (denoted by high

expression of naïve markers with moderate expression of activation

markers, such as CD69+, suggesting these naïve cells were recently

stimulated and in the early response of transitioning to an effector

or memory function), Th1-like (TBX21+, CXCR3+), Th2-like

(GATA3hi, CCR4+), Th17-like (RORC+, CCR6+), and Treg

(FOXP3+, IL2RA+).
Sample multiplex immunostaining

Protein expression was measured using the multiplex imaging

platform PhenoCycler (Akoya Biosciences) according to the

manufacturer’s protocol as it can utilize samples with low cell

count. Six ER COVID-PF, seven LR COVID-PF, and four IPF

samples were immunostained and quantified. Of those, six ER

COVID-PF and five LR COVID-PF were also processed for sc-
frontiersin.org
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RNA-seq. Briefly, PBMCs from the same suspension processed for

scRNA-seq were spun down at 300 rcf for 5 minutes and washed in

Hydration Buffer (Akoya). Cells were then resuspended in 1.6%

PFA diluted in Hydration Buffer and fixed for 20 minutes at room

temperature on a rotator. The sample was then spun down and

washed in Hydration Buffer again as stated above. Once the

supernatant was removed, fixed PBMCs were then seeded onto a

poly-L-lysine coated coverslip and allowed to air dry for 10 minutes.

Dried coverslips were washed in PBS two times, incubated with

Staining Buffer (Akoya) for 20 minutes, and then placed in a

humidity chamber for staining with the 13-antibody panel. All

samples were stained for three hours at room temperature in the

humidity chamber with CD45 (Catalog # 4150003), CD2 (Catalog #

4250005), CD19 (Catalog # 4350003), CD38 (Catalog # 4150007),

CD11c (Catalog # 4350012), CD278 (Catalog # 4250013), CD8

(Catalog # 4150004), CD3 (Catalog # 4350008), CD69 (Catalog #

4250022), CD4 (Catalog # 4350010), Ki67 (Catalog # 4250019),

CD279 (Catalog # 4250010), and HLA-DR (Catalog # 4250006)

using Akoya manufacturer’s instructions and blockers (Further

information on antibodies in Supplementary Table E2).

Coverslips were then washed in Staining Buffer two times,

followed by a post-staining fixation with 1.6% PFA in Storage

Buffer (Catalogue # 232107) for 10 minutes at room temperature.

Slides were washed three times in PBS and incubated in ice cold

methanol for 5 minutes. Samples were washed three times with PBS

and then prepared for a final fixation in fresh BS3 diluted in PBS for

20 minutes before being washed in PBS three times and stored at 4

degrees C in Storage Buffer until imaging.
Multiplex imaging and processing

Samples stained with the 13-antibody immune panel underwent

multiplexed imaging using the spatial-omics platform PhenoCycler

(Akoya) in combination with the BZ-X810 slide scanning

microscope (Keyence). Further detail on automated imaging

acquisition and fluidics exchange using the PhenoCycler is

described by Goltsev et al. and Schürch et al. (28, 29). Raw TIFF

images were stitched and processed using the PhenoCycler

Processor which executes drift compensation, deconvolution,

background subtraction, cycle alignment, and cell segmentation

via a watershed cell segmentation algorithm. Data was then

visualized and analyzed in MAV (Multiplex Analysis Viewer), a

FIJI/ImageJ plugin.

Flow cytometry standard (FCS) files were generated from the

processed data for each sample and imported to FCS Express 7 for

further analysis.
Quantification of protein expression and
cell gating

FCS files for each image region generated by the PhenoCycler

were concatenated by staining batch and analyzed in FCS Express 7.

Gates to determine cell type and protein expression were tailored to

each sample in a blinded fashion by experienced flow cytometrist.
Frontiers in Immunology 05
Samples were gated on DAPI and CD45 double positive cells to

identify nucleated PBMCs. Gating strategy for determining major

cell types (CD4+ T cell, CD8+ T cell, CD11c+ Monocytes, CD3-

CD2-CD19-CD11c- Natural Killer-like cells) is shown in Figure 2D.

Gates to quantify percent of cells expressing HLA-DR, CD69,

CD38, ICOS, PD-1, and Ki-67 were kept consistent when possible

for each imaging batch, and known negative cell populations were

used as an internal control, where possible. Signal and gating were

confirmed by referencing processed images in MAV. All bar charts

representing relative cell abundance and protein expression were

constructed in GraphPad Prism 9.4.1.
Statistics

Details regarding statistical tests used for each analysis are

included above or in the respective figure caption. All statistical

tests were performed in R Studio 4.1.1 or GraphPad Prism 9.4.1.

Fisher’s Exact test was performed to evaluate whether there was a

significant difference between sex and ethnicity of all COVID

associated pulmonary fibrosis patients and Idiopathic Pulmonary

Fibrosis. Mann-Whitney U test was used to compare Early- and

Late-Resolving COVID associated pulmonary fibrosis hospital

length of stay. For relative cell abundances and protein expression

of specific markers significance was tested using Mann Whitney U

test when comparing two groups, and Kruskal-Wallis test with

Dunn’s multiple comparison when comparing three groups.

Pearson correlation was used to determine significant correlations

between PFT values and relative cell abundance. For genes

displayed as violin plots, significance of the differentially

expressed genes between two groups were tested using the default

Wilcoxon rank sum test and adjusted with Bonferroni correction.

For genes displayed on volcano plots the adjusted p value was

calculated through MAST analysis with Bonferroni correction.
Study approval

All studies performed at UVA were approved by the UVA

Human Investigations Committee (IRB-HSR 13166, IRB-HSR

20937). Studies performed at the Mayo Clinic were approved by

Mayo Clinic Institutional Review Boards (protocol ID 20-004911).

All subjects provided written informed consent.
Results

COVID associated pulmonary fibrosis,
idiopathic pulmonary fibrosis, and control
cohort clinical features

To examine the immune response of patients with COVID

associated PF, we recruited 16 patients without pre-existing PF. All

had dyspnea, fatigue and abnormal lung function at their first

outpatient visit after acute COVID-19 recovery. 14 were

hospitalized and received: mechanical ventilation (n=10, mean
frontiersin.org
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FIGURE 2 (Continued)

Cell abundances vary between ER and LR COVID-PF. (A) Dot plot denoting expression of marker genes used to identify 16 PBMC
subpopulations as well as platelets and erythrocytes. (B) UMAP of cell clusters from integrated data of control, COVID, and IPF PBMCs
generated through scRNA-seq in Seurat (21 samples total). (C) Stacked bar chart depicting relative cell abundances within each group
(Control, ER COVID-PF, LR COVID-PF, and IPF) for the 16 subclusters identified by scRNA-seq. (D) Representative gating strategy used to
identify 6 subpopulations from PBMCs immunostained on PhenoCycler. (E) Stacked bar chart depicting relative cell abundances within each
treatment (ER COVID-PF, LR COVID-PF, and IPF) for the 6 subpopulations identified by immunostaining and imaging with the PhenoCycler.
(F) ScRNA-seq relative abundances of monocyte subpopulations in Control, ER COVID-PF, and LR COVID-PF. (G) Relative abundance of
total monocyte cell identified by scRNA-seq, left (solid), and protein on PhenoCycler, right (striped). (H) ScRNA-seq relative abundances of
CD4+ T cell populations and ratio of naïve to differentiated (defined as the sum of effector, memory, and regulatory cells) in Control, ER
COVID-PF, and LR COVID-PF. (I) ScRNA-seq relative abundances of CD8+ T cell populations in Control, ER COVID-PF, and LR COVID-PF.
Relative total abundances of CD4+ T cells (J) and CD8+ T cells (K) identified by scRNA-seq, left (solid bar chart), and protein on
PhenoCycler, right (striped bar chart). (L) ScRNA-seq relative abundances of natural killer subpopulations. (M) Relative abundance of total
natural killer cell population identified by scRNA-seq, left (solid), and protein on PhenoCycler, right (striped). (N) ScRNA-seq relative
abundances of B and plasma cell subpopulations (solid) and protien quantification of total CD19+ B cell population on PhenoCycler, right
(striped). Transcript data acquired through scRNA-seq is displayed as solid bar charts, while protein data acquired through multiplex imaging
on the PhenoCycler are displayed as striped bar charts. Kruskall-Wallis test with Dunn’s multiple comparison test was used to test
significance when comparing ER COVID-PF, LR COVID-PF, and non-diseased control in F-N. Mann-Whitney U test was used when
comparing two groups (ER COVID-PF and LR COVID-PF). *p ≤ 0.05, and ** p ≤ 0.01. All non-significant values p ≤ 0.1 are shown.*PBMC,
peripheral blood mononuclear cell; scRNA-seq, single cell RNA sequencing; ER COVID-PF, “Early-Resolvers”; LR COVID-PF, “Late
Resolvers”; IPF, Idiopathic Pulmonary Fibrosis; NK, Natural Killer Cells; FVC, Forced Vital Capacity; DLCO, Diffusing Capacity for Carbon
Monoxide; TLC, Total Lung Capacity; Eff, Effector; Mem, memory; Reg, regulatory.
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time 30 ± 18 days), non-invasive positive pressure ventilation (n=1),

high-flow nasal cannula oxygen (n=3) and 3 remained on

outpatient supplemental oxygen. Hospital length of stay was

prolonged (Table 1; Supplementary Table E1). Mean time since

testing positive for COVID-19 was 6 ± 3.5 months.

At mean follow-up 5.4 months, 9 patients showed a late

recovery trajectory which presented a unique opportunity to

investigate the resolution and persistence of COVID associated

PF (Figure 1A). There was no significant difference in age, sex, body

mass index (Table 1) or medical comorbidities between ER and LR

COVID-PF. 89% of LR and 29% of ER COVID-PF patients

underwent mechanical ventilation. 86% of ER COVID-PF had

normalized PFTs at mean 9.5 months after testing positive for

COVID-19. 33% of LR COVID-PF patients normalized, while the

majority had persistent restrictive lung physiology at mean 11

months after testing positive for COVID-19 and 7 months after

hospital discharge. All LR COVID-PF had chest imaging showing

persistent bilateral fibrotic change.

8 IPF patients comparable in age were also selected as a positive

control of chronic progressive pulmonary fibrosis. Mean age was 64,

mean BMI was 34, and 7 of the 8 patients were men, matching the

demographics and body mass of the COVID-19 cohort (Table 1;

Supplementary Table E1). PFTs measured at their clinically stable

outpatient visit were mean forced vital capacity (FVC) 62%

predicted and diffusion capacity (DLCO) 42% predicted. Six used

supplemental oxygen. In addition, 3 age-matched patients without

known pulmonary disease were sequenced as non-pulmonary

disease controls (Mean age = 69, All male).
Frontiers in Immunology 08
Single-cell RNA sequencing and
multiplex immunostaining

To profile the peripheral immune response in post-COVID

pulmonary fibrosis, we generated two rich and complementary

datasets using PBMC samples collected at the COVID-19

patients’ first outpatient visit after COVID recovery (Figure 1B).

For in-depth characterization of transcriptional differences, we

performed scRNA-seq on 21 subjects (seven ER COVID-PF,

seven LR COVID-PF, four IPF, and three controls) and

integrated the data to yield a combined 71,574 cells

(Supplementary Figure 1B1). Dimensionality reduction by

uniform manifold approximation and projection (UMAP)

identified 19 cell clusters. We removed erythrocytes and merged

two CD4+ T effector cell clusters to yield 16 distinct immune

subpopulations (69,868 cells), which were identified and annotated

using established markers (Figures 2A, B).

To complement and validate this sequencing dataset with

protein-level data, we generated a 13-antibody panel

(Supplementary Figures 1B2, E1; Supplementary Table E2) and

immunostained PBMC samples from 17 subjects (six ER COVID-

PF, seven LR COVID-PF, and four IPF). After blinded gating, B cell,

Monocyte, NK-like, CD4+ and CD8+ T cell subpopulations were

identified (Figure 2D). Eleven COVID samples underwent both

scRNA-seq and multiplex immunostaining (Supplementary

Table E3).

All major subpopulations identified by immunostaining and all

16 subpopulations identified by scRNA-seq were present in each
TABLE 1 COVID associated pulmonary fibrosis and idiopathic pulmonary fibrosis cohort characteristics.

Early Resolving COVID PF Late Resolving COVID PF IPF p-value

n=7 n=9 n=8

Sex >0.999

Male 6 7 7 -

Female 1 2 1 -

Ethnicity 0.624

White 6 6 7 -

African American 1 2 1 -

Native American 0 1 0 -

Age (years) 56 [52, 62] 59 [54, 68] 64 [63, 72] 0.1027

Body Mass Index (kg/m2) 36 [30, 40] 35 [30, 35] 34 [29, 37] 0.9723

FVC (% predicted) 79 [67, 94] 63 [59, 73] 62 [55, 80] 0.1466

DLCO (% predicted) 67 [57, 95] 56 [52, 67] 42 [38, 60] 0.1079

TLC (% predicted) 76 [63, 87] 64 [59, 74] 59 [54, 73] 0.1074

Hospital Length of Stay (days) 19 [4, 19] 38 [30, 54] NA 0.0209
PF, pulmonary fibrosis; IPF, Idiopathic Pulmonary Fibrosis; FVC, forced vital capacity; DLCO, diffusing capacity of lung for carbon monoxide; TLC, total lung capacity; NA, not applicable.
Table detailing clinical features of early and late resolvers within COVID associated pulmonary fibrosis patients with Idiopathic Pulmonary Fibrosis (IPF). Data shown are displayed as mean [Q1,
Q3] or raw numbers for sex and ethnicity. Two patients were unable to perform TLC testing on draw date and were therefore not incorporated into statistics. Fisher’s Exact test was performed to
evaluate whether there was a significant difference between sex and ethnicity of all COVID associated pulmonary fibrosis patients and Idiopathic Pulmonary Fibrosis. Mann-Whitney U test was
used to compare Early- and Late-Resolving COVID associated pulmonary fibrosis hospital length of stay. Kruskal-Wallis test was performed on all other values to test whether there was a
significant difference between Idiopathic Pulmonary Fibrosis, Early- and Late- Resolving COVID associated pulmonary fibrosis.
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FIGURE 3

Decreased monocyte abundance correlates with decreased lung function in COVID associated pulmonary fibrosis. Pearson correlation of % Forced
Vital Capacity (FVC) (A) and % Diffusing Capacity for Carbon Monoxide (DLCO) (B) compared to relative abundance of CD14+, intermediate, and
total monocytes of ER and LR COVID-PF patients from scRNA-seq dataset. Volcano plot showing differentially expressed genes between ER and LR
COVID-PF generated from MAST analysis for CD14+ monocytes (C) and intermediate monocytes (D) where positive log2FC values represent genes
upregulated in ER COVID-PF relative to LR COVID-PF and negative log2FC represent genes upregulated in LR COVID-PF relative to ER COVID-PF. Y
axis of the volcano plot is the -log10 of the padj-value calculated using Bonferroni correction to correct for multiple testing (E) Violin plots showing
gene expression of the alarmin, S100A9, between control, ER COVID-PF, and LR COVID-PF in CD14+ and Intermediate Monocytes. Expression of
S100A9 in CD14+ and Intermediate Monocytes of LR COVID-PF is significantly lower than control and ER COVID-PF where padj-value ≤ 1E-40 as
determined by non-parametric Wilcoxon rank sum test and adjusted using Bonferroni correction. (F) Representative gating strategy used for
quantifying high and low expression of HLA-DR on monocytes. (G) Quantification of the ratio of high to low expression of HLA-DR among HLA-DR
+ monocytes at the protein level from imaging with the PhenoCycler. Significance for protein quantification in (G) was tested using Mann-Whitney U
test. *p ≤ 0.05.
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FIGURE 4

Late-Resolving COVID associated pulmonary fibrosis exhibits molecular hallmarks of prolonged T cell activation. (A) Volcano plot showing
differentially expressed genes between ER and LR COVID-PF generated from MAST analysis for CD8+ T effector cells where positive log2FC values
represent genes upregulated in ER COVID-PF relative to LR COVID-PF and negative log2FC represent genes upregulated in LR COVID-PF relative to
ER COVID-PF. Y axis of the volcano plot is the -log10 of the padj-value calculated using Bonferroni correction to correct for multiple testing.
(B) Violin plots showing gene expression of MHC-II molecules in CD8+ T effector cells between control, ER COVID-PF, and LR COVID-PF.
Expression of HLA-DRA, HLA-DRB1, and HLA-DRB5 in LR COVID-PF CD8+ T effector cells is signifcantly lower than control and ER COVID-PF
where padj-value ≤ 1E-26 as determined by non-parametric Wilcoxon rank sum test and adjusted using Bonferroni correction. (C) Representative
gating of HLA-DR expression on CD8+ T cells. (D) Quantification of HLA-DR expression on CD8 T cells as a percent of CD8+ T cells at the protein
level from imaging with the PhenoCycler in ER and LR COVID-PF. (E) Dot plot denoting expression of marker genes used to identify CD4+ T cell
subpopulations. (F) UMAP of subclusters generated from re-clustering CD4+ T cells. (G) ScRNA-seq relative abundances of CD4+ T relative to the
total CD4+ T cell population for control, ER COVID-PF, and LR COVID-PF. (H) Violin plot showing gene expression of ICOS in CD4+ T memory cells
between control, ER COVID-PF, and LR COVID-PF. (I) Quantification of the percent of CD4+ T cells in ER and LR COVID-PF expressing ICOS at the
protein level from imaging with the PhenoCycler. Transcript data acquired through scRNA-seq is displayed as solid bar charts, while protein data
acquired through multiplex imaging on the PhenoCycler are displayed as striped bar charts. Mann-Whitney U test was used when comparing two
groups in (D, I). Kruskal Wallis test with Dunn’s multiple comparison test was used to test significance when comparing ER COVID-PF, LR COVID-PF,
and non-diseased control in (F).*p ≤ 0.05 and ** p ≤ 0.01. All non-significant values p ≤ 0.1 are shown.
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sample, indicating data consistency (Figures 2C, E; Supplementary

Figure E2). These datasets enabled comparisons of immune cell

abundance and gene expression of each cell type among ER and LR

COVID-PF, IPF and controls.
Cell abundance varies between early- and
late-resolving COVID-PF

First, we examined whether the relative abundances of

circulating immune cells differ in ER and LR COVID-PF

(Figures 2F–N). Compared to controls, LR COVID-PF had

significantly fewer plasma cells (p = 0.0231, Figure 2N). There

were no differences in NK like cells or CD4+ T cell abundance

between groups, however the ratio of naïve to differentiated (where

CD4 differentiated is the sum of regulatory, memory, and effector

subpopulations) decreased in the LR COVID-PF (p=0.1252). LR

COVID-PF had increased CD8+ T cells compared to ER COVID-

PF, showing a 1.6-fold increase in CD8+ Tmemory cells. Within LR

COVID-PF, there were no significant but trending increases in

effector and total CD8+ T cells at the transcript and protein level

(Figures 2I, K).

Notably, LR COVID-PF showed significant decreases in all

monocyte populations compared to ER COVID-PF and controls

(Figures 2F, G). For rigor, we tested whether time from initial

COVID positivity to sample collection was correlated with

monocyte abundance and found no correlation (Supplementary

Table E4). Quantification of cellular abundance by multiplex

immunostaining corroborated that relative abundance of CD11c+

monocytes to all PBMCs is significantly lower in LR versus ER

COVID-PF (p = 0.0023, Figure 2G).
Circulating monocyte depletion associates
with decreased pulmonary function in
COVID-PF

The decrease in relative monocyte abundance within LR

COVID-PF was the only abundance difference found to be

significant at both the transcript and protein level. We therefore

next determined whether monocyte abundance correlates with

pulmonary function in COVID-PF. The relative abundances of

CD14+ monocytes, intermediate monocytes (CD14+ CD16+), and

total monocytes each positively correlated with both FVC (%

predicted FVC, R2 = 0.52, 0.60, 0.55, respectively) and DLCO (%

predicted DLCO, R2 = 0.50, 0.53, 0.51, respectively) (Figures 3A, B).

To evaluate whether there were differences in the transcriptome

of ER and LR COVID-PF monocytes, differential expression

analysis was performed. Alarmins, such as S100A12, S100A9, and

S100A8, were among the most significantly enriched genes within

LR COVID-PF monocytes (Figure 3E). Differential expression

analysis also revealed downregulation of MHC class II molecules,

such as HLA-DPA1, HLA-DPB1, HLA-DRB1, and HLA-DRA, in

circulating CD14+ and intermediate monocytes from LR COVID-

PF in comparison to ER COVID-PF and controls (Figures 3C, D;

Supplementary Tables E5, 6). Consistent with these transcriptomic
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results, the ratio of high to low HLA-DR protein expression on

monocytes revealed a four-fold decrease (p = 0.0221) in LR versus

ER COVID-PF (Figures 3F, G). Our data are consistent with

previous studies showing increased alarmins and decreased

MHC-II molecule expression on monocytes in severe versus mild

COVID-19 in acute cases (12, 30–34), while also establishing that

these markers can differentiate post-acute COVID-19 recovery

trajectory including COVID-PF.
Late-resolving COVID associated
pulmonary fibrosis patients show
prolonged CD8+ T cell activation and
increases in CD4+ T effector populations

To investigate whether T cell-associated mechanisms differentiated

ER and LR COVID-PF, we identified unique transcript and protein

signatures among lymphocytes. CD8+ T effector cells had the highest

number of differentially expressed genes (DEGs) of all PBMC

subpopulations, suggesting elevated activation status (Supplementary

Table E7). Contrary to LR COVID-PF monocytes, HLA-DRA, HLA-

DPA1, and HLA-DRB5 were among the top DEGs upregulated in LR

COVID-PF CD8+ T effector cells compared to ER COVID-PF and

controls (padj-value<1.0E-10, Wilcoxon Rank Sum test with Bonferroni

correction) (Figures 4A, B). These increases persisted when controlling

for time from initial COVID positivity to sample collection as a

confounding variable (Supplementary Table E7). Immunofluorescent

staining confirmed CD8+ T cells of LR COVID-PF had a nearly 3-fold

increase in HLA-DR protein expression (Figures 4C, D) and 4-fold

increase in the proportion of CD8+ T cells that co-express HLA-DR+

and CD38+, a phenotype associated with lymphocyte activation

(Supplementary Figure E5). Given that PBMCs were collected

months after initial infection, these results suggest LR COVID

patients exhibit prolonged immune activation, reminiscent of

chronic inflammation.

To execute an unbiased analysis of the changes between ER and

LR COVID-PF gene expression within CD4+ and CD8+ T effector

cells, we implemented the Model-based Analysis of Single-cell

Transcriptomics (MAST) test and clusterProfiler package to

perform gene set enrichment analysis (GSEA) (35–37). In

alignment with our hypothesis that LR COVID-PF exhibits

prolonged T cell activation, eight T cell receptor signaling

pathways were enriched in LR COVID-PF compared to controls

(Supplementary Tables E8; Supplementary Figure E4).

Furthermore, CD8+ T effector cells in both ER and LR COVID-

PF were posi t ively enriched for gene sets involv ing

Proinflammatory and Profibrotic Mediators, Cytokine-cytokine

Receptor Interactions, and the Network Map of SARS-CoV2

Signaling Pathway when compared to control. Within ER and LR

COVID-PF, we also observed enrichment of multiple IL-1 and

CD40 pathways as well as the Senescence Associated Secretory

Phenotype (SASP). Notably, Allograft Rejection and Interferon

Gamma (IFN-g) Signaling were significantly enriched in LR

COVID-PF compared to control and ER COVID-PF. This

corroborates other studies which have found increased IFN-g in

severe COVID (30, 38, 39). Both CD8+ and CD4+ T effector cells in
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FIGURE 5

Adaptive immune cells differentiate IPF and COVID-PF. (A) ScRNA-seq data of CD4+ T cells showing the ratio of naïve to differentiated (defined as
the sum of effector, memory, and regulatory cells) and relative total abundance of CD4+ T cells in Control, LR COVID-PF, and IPF. (B) Protein
quantification of relative total abundance of CD4+ T cells in LR COVID-PF and IPF as a percent of all CD3+ T cells. (C) ScRNA-seq data of CD8+ T
cells showing the ratio of naïve to differentiated (defined as the sum of effector and memory cells) and relative total abundance of CD8+ T cells in
Control, LR COVID-PF, and IPF. (D) Protein quantification of relative total abundance of CD8+ T cells in LR COVID-PF and IPF as a percent of all
CD3+ T cells. (E) Volcano plot showing differentially expressed genes between IPF and LR COVID-PF generated from MAST analysis for CD4+ T
memory cells where positive log2FC values represent genes upregulated in IPF relative to LR COVID-PF and negative log2FC represent genes
upregulated in LR COVID-PF relative to IPF. Y axis of the volcano plot is the -log10 of the padj-value calculated using Bonferroni correction to correct
for multiple testing. (F) Violin plots showing gene expression of ICOS in CD4+ T memory cells between control, ER COVID-PF, and LR COVID-PF
and quantification of the percent of CD4+ T cells expressing ICOS at the protein level from imaging with the PhenoCycler. (G) Violin plots showing
gene expression of MHC-II molecules (HLA-DR) in CD8+ T effector cells between control, ER COVID-PF, and LR COVID-PF and quantification of
the percent of CD8+ T cells expressing HLA-DR at the protein level from imaging with the PhenoCycler. Gene expression of ICOS in LR COVID-PF
CD4+ T memory cells and HLA-DRA in LR COVID-PF CD8+ T effector cells is signifcantly lower than control and ER COVID-PF where padj-value ≤

1E-14 as determined by non-parametric Wilcoxon rank sum test and adjusted using Bonferroni correction. (H) Dot plot depicting GSEA analysis
results of the top 20 pathways enriched in LR COVID-PF compared to IPF, where negative NES are enriched in LR COVID-PF relative IPF. (I) ScRNA-
seq relative abuduances of the CD4+ T cells relative to the total CD4+ T cell population for control, LR COVID-PF, and IPF. Transcript data acquired
through scRNA-seq is displayed as solid bar charts, while protein data acquired through multiplex imaging on the PhenoCycler are displayed as
striped bar charts. Kruskal Wallis test with Dunn’s multiple comparison test was used to test significance when comparing ER COVID-PF, LR COVID-
PF, and non-diseased control in (A, C, I). Mann-Whitney U test was used when comparing two groups in (B, D, F, G). *p ≤ 0.05, and ** p ≤ 0.01. All
non-significant values p ≤ 0.1 are shown.
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ER and LR COVID-PF were positively enriched for IL-10, IL-18,

and multiple MAPK and Toll Like Receptor Signaling pathways

compared to control (Supplementary Table E8). Interestingly, ER

and LR COVID-PF were negatively enriched for Extracellular

Matrix (ECM) Organization in CD8+ T effector cells and ECM

Regulators in CD4+ T effector cells in comparison to control,

suggesting that T cell mediated ECM regulation may be decreased

in COVID-PF. Lastly, we observed upregulation of the TGF-b
pathway, a key driver of fibrosis, in ER and LR COVID-PF CD4+

T effector cells (Supplementary Table E8).

To further identify classical T helper cell subtypes, we

reclustered all CD4+ T cells, yielding seven distinct populations:

Naïve, Early Activation (denoted by high expression of naïve

markers with moderate expression of activation markers), Central

Memory, and several distinct effector populations (Th1, Th2, Th17,

and Treg) that expressed canonical markers (Figures 4E, F).

Corroborating results in Figure 2H, LR COVID-PF patients had

significantly fewer naïve CD4+ T cells than control (Figure 4G), and

had a smaller Early Activated population compared to ER COVID-

PF. In contrast, central memory, Treg, and effector (sum of Th1,

Th2, and Th17) CD4+ T cells were increased in LR COVID-PF,

although not significantly. These results suggest that the CD4+ T

helper response in LR COVID-PF has been skewed to an active

effector/memory phenotype. In support of this notion, we found an

increase in the protein expression of the co-stimulatory molecule

ICOS (Figure 4I), as well as increased protein expression of PD1 and

CD69 on CD4+ T cells of LR COVID-PF patients compared to

those of ER COVID-PF patients (Supplementary Figure E3). To

determine which CD4+ T cell population was expressing ICOS, we

queried our scRNA-seq data and detected ICOS on the CD4+ T

memory population (Figure 4H). As ICOS is rapidly expressed after

T cell receptor engagement and broadly expressed in activated T

cells, this data aligns with our GSEA and CD4+ T cell abundance

findings which suggested an activated phenotype within LR

COVID-PF patients.
Late-resolving COVID associated
pulmonary fibrosis patients maintain a
perpetual T cell activation response

We next evaluated whether immune signatures in LR COVID-

PF had similarities to progressive pulmonary fibrosis. There was no

significant difference in relative monocyte abundance

(Supplementary Figures E6B, C), total number of T cells, or ratio

of naïve to differentiated T cells in IPF compared to control

(Figures 5A–D). The ratio of naïve to differentiated CD4 T cells

was significantly lower in LR COVID-PF compared to IPF

(p=0.0123). Re-clustering the CD4+ T cell dataset showed IPF

patients had more naïve CD4 T cells and decreases in all effector

cells, except Th1-like cells, compared to LR COVID-PF (Figure 5I).

To determine which genes were most significantly up or down-

regulated in LR COVID-PF compared to IPF, we performed DEG

analysis on all 16 scRNA-seq clusters. CD4+ T memory cells had

the most DEGs. Genes involved in interferon signaling (e.g., IRF1,

IFITM3, ISG15), highlighted as a key pathway in severe COVID
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(30, 38, 39), were upregulated in CD4+ T memory cells of LR

COVID-PF (Figure 5E; Supplementary Table E9). In accordance

with previous IPF literature (40–42), we find CD4+ T memory cells

in IPF were characterized by gene expression patterns associated

with senescence and exhaustion, such as ZEB2, EOMES, and

decreased CD28 expression (43–45). Previously, loss of CD28 and

ICOS correlated with reduced transplant-free survival in IPF (40).

We observed reductions in both CD28 and ICOS in IPF compared

to LR COVID-PF at the transcript level (Figure 5E). Expression of

ICOS protein was also significantly greater (p=0.0424) in CD4+ T

cells of LR COVID-PF compared to IPF, suggesting that T cell

activation is enhanced in LR COVID-PF in comparison to control,

ER COVID-PF, and IPF (Figure 5F). GSEA of CD4+ T memory

cells in IPF versus LR COVID-PF further demonstrated that LR

COVID-PF patients exhibit signs of potentiated inflammation as

indicated by enrichment of TNFa, cytokine, and multiple

interleukin signaling pathways (Figure 5H). Furthermore, LR

COVID-PF had increased expression of HLA-DRA in CD8+ T

effector cells (padj-value=1.265E-14, Wilcoxon Rank Sum test

with Bonferroni correction) and a significantly higher percentage

of CD8+ T cells co-expressing HLA-DR+ and CD38+ (p=0.0273)

when compared to IPF (Figure 5G; Supplementary Figure E5F).

These data suggest T cells from LR COVID-PF patients are more

active than their IPF counterparts, which express more senescence

and exhaustion markers.

DEG analysis of monocytes revealed decreased expression of

HLA-DR/DP on non-classical CD16+ monocytes in IPF

(Supplementary Tables E5, 6), and on classical CD14+ and

intermediate monocytes in LR COVID-PF (padj-value<1E-7,

Supplementary Figure E6A). These results suggest that reductions

in monocyte HLA-DR are a common feature of PF.
Discussion

We examined COVID-19 convalescent patients with persistent

dyspnea and fatigue, abnormal PFTs and imaging suggestive of

early pulmonary fibrosis. While some patients clinically improved

in the outpatient setting in a matter of months (ER COVID-PF),

others did not (LR COVID-PF). Here, we used single cell

transcriptomics and a multiplex imaging approach to analyze

blood samples collected more than one-month post-infection but

before these two cohorts clinically diverged, and we uncovered that

immune cell composition and gene expression significantly differed

between ER and LR COVID-PF patients.

A key finding of this study is LR COVID-PF patients had

significantly fewer monocytes than ER COVID-PF patients and

controls. Our study is the first to identify that decreased relative

monocyte abundance correlates with impaired pulmonary function

in COVID-PF. These findings demonstrate that monocyte

depletion not only distinguishes severe COVID from controls (31,

32, 46), but also has potential to stratify severity of COVID-19

sequelae. We hypothesize that in LR COVID-PF monocytes are

either systemically depleted or alternatively recruited from the

periphery to the lung or other tissues. Studies confirm increased

infi l trat ion of monocyte-derived macrophages in the
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bronchoalveolar lavage fluid of severe COVID-19 patients (47) and

lungs of fatal COVID-19 (48). This observation suggests inhibiting

monocyte recruitment may improve recovery from COVID-PF.

We also find monocytes of LR COVID-PF patients expressed

lower levels of MHC class II molecules. CD16+ monocytes are more

mature and express more HLA-DR than CD14+ monocytes,

therefore reduction in HLA-DR+ CD14+ monocytes associates

with mobilization of immature monocytes from the bone marrow

for emergency myelopoiesis (49) which we observe here and others

reported as a marker of severe COVID-19 (46, 50). Loss of HLA-DR

on monocytes is also an established marker of immunosuppression,

so these findings may also suggest dampening of antigen-mediated

stimulation and inhibition of antigen-specific T cell responses as has

been shown in sepsis (51–53). Aligned with this hypothesis,

Arunachalam et al. reported functional suppression of COVID-19

monocytes compared to healthy controls (34). Decrease in the

MHC class II molecule HLA-DR on monocytes also associates

with severe respiratory failure in COVID-19 pneumonia (12),

immunosuppression (54), and decreased oxygen saturation in

severe COVID-19 (55). Of note, the cohorts in these studies

included patients who were acutely infected, whereas our study

shows that HLA-DR downregulation can be prolonged months

after infection. Parackova et al. found that monocyte HLA-DR in

COVID-19 patients began to recover four weeks into hospital

admission (31). Thus, expression of HLA-DR on monocytes may

indicate recovery, as the LR COVID-PF cohort had low HLA-DR

expression more than 1-month post-infection, while patients with

ER COVID-PF maintained or recovered HLA-DR expression.

Patients with IPF also display decreased expression of MHC-II

molecules on monocytes relative to age-matched controls. Importantly,

we demonstrate HLA-DR expression decreased exclusively on CD16+

monocytes in IPF, while conversely CD14+ and intermediate

monocytes are the key populations affected in LR COVID-PF. It is

possible that our results in IPF indicate immunoparesis, while in

COVID-PF, enhanced migration of monocytes to the lung during

COVID-PF may evoke emergency myelopoiesis and eventually

promote a state of exhaustion. Whether the observed decrease in

HLA-DR+ monocytes in IPF and LR COVID-PF arise from the same

mechanism remains unknown, but further review of monocyte

dysfunction in pulmonary fibrosis will require careful consideration

of which monocyte subpopulations are affected.

Severe COVID-19 has been associated with increased CD8+ T

cell activation (30, 56) and suppression of naïve CD4 T cells (8, 57–

60). We observe both T cell phenotypes in LR COVID-PF.

Compared to ER COVID-PF, controls, and IPF, LR COVID-PF

had fewer naïve CD4+ T cells, and their CD8+ T cells expressed

significantly greater levels of activation markers (HLA-DR and

CD38). We therefore posit that the T cell response in LR

COVID-PF is polarized toward an effector or memory phenotype

rather than naïve state, extending the timeline of T cell

abnormalities described in immediate post-acute COVID-19 (59).

This chronic inflammatory state may lead to senescence of CD8+ T

cells, a state common in IPF (40–42). In support of this notion,

shortened telomere length, a defining characteristic of cellular

senescence and feature associated with worse survival in IPF (61),

was shown to be an independent risk factor for developing fibrotic-
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like radiographic abnormalities after severe COVID-19 (18). Future

studies may explore whether monocytes in patients with LR

COVID-PF have shortened telomeres and whether telomere

length is a risk for LR COVID-PF.

Our cohorts were majority male to facilitate comparisons with our

IPF cohort. However, this intentional gender composition decreases

our capacity to draw comparisons between genders. Furthermore, the

sample size was constrained by the unique nature of our cohort, and

follow-up was confined to the first year after COVID-19 survivorship.

Further studies in diverse large multicenter cohorts and analysis of

immune signature changes in lung tissue are necessary for a more

thorough understanding of the observed responses.

Post-COVID fibrosis is an emerging cause of global morbidity,

and longitudinal studies are needed to evaluate the disease course in

these patients. Our data mitigates fears that COVID-19 drives

relentlessly progressive pulmonary fibrosis akin to IPF, even in

the most persistently symptomatic COVID-19 survivors. Rather we

demonstrate the peripheral immune response of LR COVID-PF is

distinct from IPF, with decreases in HLA-DR expression on

different monocyte populations. Our data provokes future studies

of the systemic immune response in ER versus LR COVID-PF and

identifies targets for future testing. We propose that relative

monocyte abundance may be a clinically useful and simple

prognostic indicator for determining whether long-haul COVID

patients will resolve or have persistent pulmonary complications

after acute COVID-19 recovery.
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