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Current understanding of
macrophages in intracranial
aneurysm: relevant etiological
manifestations, signaling
modulation and
therapeutic strategies
Jian Duan1†, Qijie Zhao1,2†, Zeyuan He1, Shuang Tang1,
Jia Duan1* and Wenli Xing1*

1Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China,
2Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Macrophages activation and inflammatory response play crucial roles in

intracranial aneurysm (IA) formation and progression. The outcome of ruptured

IA is considerably poor, and the mechanisms that trigger IA progression and

rupture remain to be clarified, thereby developing effective therapy to prevent

subarachnoid hemorrhage (SAH) become difficult. Recently, climbing evidences

have been expanding our understanding of the macrophages relevant IA

pathogenesis, such as immune cells population, inflammatory activation,

intra-/inter-cellular signaling transductions and drug administration responses.

Crosstalk between macrophages disorder, inflammation and cellular signaling

transduction aggravates the devastating consequences of IA. Illustrating the pros

and cons mechanisms of macrophages in IA progression are expected to achieve

more efficient treatment interventions. In this review, we summarized the current

advanced knowledge of macrophages activation, infiltration, polarization and

inflammatory responses in IA occurrence and development, as well as the most

relevant NF-kB, signal transducer and activator of transcription 1 (STAT1) and

Toll-Like Receptor 4 (TLR4) regulatory signaling modulation. The understanding

of macrophages regulatory mechanisms is important for IA patients’ clinical

outcomes. Gaining insight into the macrophages regulation potentially

contributes to more precise IA interventions and will also greatly facilitate the

development of novel medical therapy.
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Introduction

The global prevalence of current intracranial aneurysm (IA) is

approximate 3.2% (1). Saccular IA is a pathological dilation at

major branching brain arteries (2). Generally, more than 80% of

saccular IA is acquired lesions within the anterior circulation, and is

characterized by an out-bulging within the thinning arterial wall

region. Recent high-resolution magnetic resonance imaging (HR-

MRI) technology shows a great potential in detecting unstable and

unruptured IA (3). The intracranial aneurysm rupture will cause

subarachnoid hemorrhage (SAH) and classic presentation of a

thunderclap headache, which has a poor outcome and presented

with a severe mortality more than 25% (4). According to the current

understanding, IA is not a congenital disorder, but develops over

the life course, where hemodynamic stress, vascular risk

(hypertension, lipid accumulation, arteriosclerosis and smoking),

genetic and environmental risk factors are involved in the process of

IA (5). In a prospective study with 30 IA patients, enhanced-MRI

visually shows macrophages as markers of inflammation in the

aneurysm wall (6). Degeneration or disruption of the internal

elastic lamina at an arterial bifurcation is a key event in IA

out-bulging formation (7). The IA growth is discontinuous

and stochastic rather than linear, which remains unchanged

and inflammatory microenvironment for a long time before

undergoing episodes of rapid growth and easy rupturing (8).

Some IA seems to have no symptom when measured at a size of

7 mm or less (1), and natural pathological mechanisms of IA remain

poorly understood. Therefore, it is still necessary to understand the

pathophysiological processes and develop treatment strategies

for IA.

IA is associated with complex pathological changes

characterized by hemodynamics, genetics, inflammatory and

immune response in cerebral arteries (9). Of note, the high wall

shear stress in IA site has been reported to evoke endothelial cells

inflammatory response and immune cells accumulation,

subsequently spreading to more arterial wall region under the

stimulation of macrophages and proinflammatory factors

secretion (10). Due to macrophages are prevalently observed in

human IA, they have gained wide attention in the IA pathogenesis.

Recent studies have shown that macrophages infiltration and

relevant cellular and molecular regulations are important in IA

progression (11). The macrophages-induced cytokines and matrix

metalloproteinases (MMPs) showed the ability to digest

extracellular matrix and thin the vessel wall, consequently

promoting the aneurysmal formation (12). There are mounting

clues indicated that inflammatory macrophages are the dominant

factor in IA, while macrophages microenvironment is complex and

the pathogenic mechanisms are still poorly understood. Of note,

various evidences indicated a causal link between the cellular

signaling pathway and IA progression, such as C-C motif

chemokine ligands (CCLs), NF-kB, signal transducer and

activator of transcription 1 (STAT1), and toll like receptor 4

(TLR4) signaling (13–15). Although the current diagnosis and

treatment technology have made significant progress, further

research is needed to improve the inflammatory response and
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progression of IA with specific signaling target interventions. A

safe and noninvasive therapy strategy is urgently needed to prevent

IA progression and rupture. To achieve this goal, the underlying

mechanisms by which macrophages cause the initialization and

development of IA should be elucidated.

In this review, we summarized the macrophages abnormalities

and inflammation regulations during the occurrence and

progression of IA. According to recent thought-provoking studies,

etiology and molecular basis of macrophages relevant IA are

highlighted through different prospective of intracellular and

extracellular regulation in this review. Several pivotal

manifestations in macrophages activation, polarization, lipids

metabolism and signaling transduction (NF-kB, STAT1, and

TLR4) were also discussed in our study. Understanding the

macrophages relevant mechanisms in specific IA pathogenesis is

important for developing therapeutic strategies to prevent disease

development and brain injury.
Macrophages recruitment and
activation in IA

Sever morphological changes and significantly increased

macrophages were observed in IA, wherein the increased M2/M1

ratio seems to be the hallmark of ruptured IA (16). Noteworthily,

higher proportion of M2 macrophages was observed in ruptured IA

compared with unruptured IA. In both animal models and human

IA (Figure 1), high recruitment and infiltration of macrophages

have been observed in aneurysm walls (17). On the other hand, the

exhaustion of macrophages showed the ability to reduce the IA

incidence (18). Due to the intracranial arteries lack vasa vasorum in

the adventitia, macrophages and other immune inflammatory cells

could pass through the endothelial cells and infiltrate into aneurysm

walls (18, 19). Of note, increased macrophages marker CD68

expression has been observed in cerebral arteries smooth muscle

cells and along with CXCL1, monocyte chemoattractant protein 1

(MCP-1), TNF-a upregulation (20). Different subtypes of

macrophages presented with asymmetrical distribution, where

CD68+ macrophages have trended towards predominance within

myointimal hyperplasia region rather than CD163- macrophages

(21). The higher CD68+ macrophages accumulation in IA region

was accompanied with higher density of mast cells and neo-vessels,

as well as being associated with disease progression (22). Recent

single-cell transcriptome evidence demonstrated that ApoE+

macrophages presented with overwhelming infiltration in some

IA, and macrophage-derived ApoE potentially served as a

biomarker to distinguish IA in molecular pathology (23). In

vascular diseases, ApoE has been reported to reduced smooth

muscle cells proliferation and be involved in phenotypic

remodeling (24). As a lipid transport molecule, the ApoE relevant

lipid efflux is a feature of peripheral vascular structural variations

and aneurysm lesions (25, 26). Moreover, with various macrophage

phenotypes gene signatures, single-cell transcriptome evidences

profiled more macrophage subtypes like macrophage-type5

(HLA-DQAs/MRC1) and macrophage-type6 (C1QA/C1QB/
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CD74) (23). These two types macrophages were presented with

chemotaxis and exhibited antigen-presenting effects, particularly

involved in IA progression and inflammation. Moreover, the mouse

model based single cell transcriptome evidences indicated that IA

induction led to significant expansion of the total macrophage

populations, as well as macrophages further expansion after

rupture (27). Among which, six macrophage subtypes were

identified in IA and act as major source of vascular inflammation.

ApoE/Wfdc17/Pf4 enriched macrophages were proved to promote

cytokine, inflammatory responses and differentiation, Ly6c2/Chil3/

Plac8 enriched macrophage presented with higher infiltrating

ability, MHC-II/cd74positive macrophages were more likely

contribute to IA-associated acute injury. On the other hand, high

levels of fatty acid b-oxidation and OXPHOS macrophages in IA

were categorized in M2-like macrophages, which were related to

ribosomal/mitochondrial activation and had lower levels of

inflammatory stimulus (27). During the IA progression and

rupture, dramatic change in the macrophages is complex in

vascular wall lesion region and inflammation, the discrepancy is

likely due to the macrophage heterogeneity and requires further

investigation (27, 28).

Macrophage-derived exosomal miR-155-5p, an antagonist target

for bone morphogenetic protein Gremlin 1 (GREM1) secretion, which

shows the ability to stimulate macrophages activation and infiltration

by promoting smooth muscle cells migration in IA (29). The

macrophages migration and activation in IA will further impair the

endothelial cells inter-cellular junction, consequently leading to the

severe structural lesions (17). Higher macrophages accumulation will

lead to degenerative wall remodeling in IA and make it predisposing to

rupture (21). In terms of this, the sphigosine-1-phosphate receptor type

1 (S1P1) potentially strengthens the endothelial cells structural integrity

and simultaneously reduces macrophages infiltrating, whose activation
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will regress the IA out-bulging lesion (30). The S1P1 has been reported

to inhibit vascular inflammation and lesion, which regulates vascular

development and microvascular barrier function (31). S1P1 agonist

shows a promising future for the treatment of ischemic and

hemorrhagic stroke (32). Similarly, prostaglandin E (PGE) receptor

subtype 2 (EP2), its specifically silence could almost completely

suppress macrophages infiltration and inflammatory responses in IA

(10). The EP2 comprises G protein–coupled receptors to recognize

PGE and plays an important role in the modulation of blood pressure

and inflammatory response (33). The PGE implicated in the vascular

remodeling in response to inflammation and hypertension (34).

Injured vascular region presented with PGE secretion and modulated

vascular smooth muscle cell proliferation, and PGE-induced growth

state-dependent actions was mediated via the receptor EP2 (35).

Inhibition of EP2 could decrease PGE activation and inflammation

microvascular dysfunction in the brain retinopathy (36). In contrast,

within the IA, the EP2-induced macrophages self-amplification loop

will promotemacrophages activation and infiltration in the out-bulging

lesions (10). Recently, transcriptome and functional experimental

evidences suggested that macrophages are abnormally enriched in IA

lesions, wherein the core macrophage scavenger receptor 1 (MSR1)

gene was demonstrated to be associated with its activation and

migration (9). The MSR1 named CD204, was primarily found on

the various types of macrophage surface and was responsible for the

pro-inflammatory polarization both in vivo and in vitro (37, 38). In the

aspect of nutrition improvement, recent studies demonstrated that iron

limitation and coenzyme Q10 (CoQ10) administration significantly

ameliorated the macrophages infiltration and oxidative stress, thereby

attenuating IA progression and rupture (39, 40). Through engulfed

ultrasmall superparamagnetic iron oxide particle, the macrophages

enrichment vessel wall imaging in IA has potential in qualitative

evaluation and can be used to evaluate the efficacy of medication (41).
FIGURE 1

Mechanisms of macrophages recruitment and activation in IA lesion.
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In the clinical practice, thickening of the vessel wall and IA were

accompanied with abundant infiltration of inflammatory cells like

macrophages. The macrophages infiltrating and inflammation

around the sites of neovascularization play an important role in

the pathophysiology of IA, especially promoting aneurysm wall

degeneration (20). Macrophages recruitment and activation could

imply degeneration of the aneurysm wall in remodeling process

with inflammation. However, the IA progression and rupture could

be various and have been explained on the unstable vascular tissue

environment and hemodynamics (5). According to the current

histopathologic studies, aneurysm walls are individually

heterogeneous, and individualized treatment options remain to be

addressed. The submillimeter structures of small IA were

inadequate to visualize all the components under the limited

spatial resolution (42). The proteases and other matrix degrading

enzymes secreted by macrophages would demolish extracellular

matrix and destabilize the IA wall (43, 44). Due to the differential

characteristics of macrophages functions in IA and limited clinical

validation size, complex regulation is exhibited by complex stimuli

of multiple factors rather than single factor stimuli, making clinical

translation difficult (1). Some IA may rupture regardless of the size

in the early phase or enlarge in a short time because of excessive wall

thinning by advancement of degenerative changes, but currently no

accurate methods are available for predicting which patients are at

macrophages-induced IA rupture risk and benefit from surgical or

endovascular intervention (45). On the other hand, many reports

have been conducted only on macrophages, while many types of

immune cells interaction and working together in the IA

symptomatic responses still need further investigation, such as T

lymphocytes and mast cells (27, 46, 47).

Macrophages contribute not only to the pathogenesis of IA but

also various other important vascular diseases. In the abdominal

aortic aneurysms (AAA), CD11c positive macrophages were

present throughout the diseased region (48). With the Th1

immune responses, the cytokines induced macrophages would

generate central proteases MMP-3 and MMP-9 to remodel AAA

vascular wall matrix (49). In terms of this, the TRAP-positive

macrophages were demonstrated to increase MMP-9 expression

and were positively associated with AAA progression (50, 51). The

AAA local inflammatory environment undergoes macrophages

accumulation and polarization, as well as cytokines TNF-a, IL6,
IL-12 and IL-1b secretion (52, 53). Different from IA, the aortic

walls undergo a switch from M1 macrophage phenotype to M2

macrophage phenotype during AAA progression, and presented a

compensatory mechanism of the anti-inflammatory and tissue-

repair effect (54). Moreover, with the JNK and p38 pathways

regulation, macrophage-derived exosomes could stimulate MMP-

2 in vascular smooth muscle cells and contribute to the AAA

development (53). Noteworthy, Previous mouse aneurysm model

study indicated that higher macrophages migration was presented

in AAA when compared with thoracic aortas aneurysms (TAA)

(55). Similarly, in both AAA and TAA, the CCN4 blocking

significantly reduced the macrophages migration and activation

rather than smooth muscle cells, thereby decreasing the number of

ruptured aortae (56). In the TAAs with dilatation ≤ 6cm, the

upregulated CD68+ macrophages accumulation was upregulated
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in the lesion region and mainly accompanied with huge amounts of

MMP-9 production, while MMP-2 only has a slight elevation (57).

Through disrupting the extra-cellular matrix components and

aortic wall, elevated levels of extracellular metalloproteinases and

macrophages will further facilitate TAA inflammation and

progression (58). On the contrary, with the inhibition of NLRP3/

IL-1b inflammatory signaling, macrophages and MMP-9 levels

could be restricted in TAA (59, 60). The decreasing of

macrophages and extracellular metalloproteinases significantly

attenuated TAA formation and progression (61). Moreover, in

the b-aminopropionitrile fumarate (BAPN) induced TAA,

macrophages were predominantly in the G0/G1 phase and

potentially be inhibited by SIRT1 signaling activation (62).

Although both AAA and TAA are characterized by progressive

dilation of the aortic wall, detail molecular mechanisms underlying

TAA have some different and more likely develop structural

instability (63). The familial TAA is predominantly caused by

genomic alteration that encodes extracellular matrix proteins and

stimulates TGF-b signaling pathway, while the sporadic TAA

presented with increased inflammation and vascular degradation

(63, 64).In addition, another fatal vessel vascular disease aortic

dissection (AD) also presented with inflammation and structural

destroy, wherein macrophages are the hub of inflammation in the

aortic wall and angiotensin II (Ang II) has been shown to be an

important factor for macrophages stimulation (65, 66).

Macrophages infiltration may be more severe in AD than in

aortic aneurysm and is critical for early AD formation (67). In

the Ang II induced macrophages accumulation, the FKBP11/NF-kB
cascade and SMAD4 mutation were involved in macrophages

infiltration and M1 differentiation, thereby further promoting

MMPs secretion (68, 69). In addition, upstream Th-17/IL-17 axis

is another regulator for Ang II-induced macrophages inflammation

and aortic wall remodeling (70). In most recent studies, NLRP3,

Nrg4, JAK2, CD31 disregulation were emerged to be positively

associated with macrophages activation and AD inflammation (71–

74). Recovering the pro- and anti-inflammatory macrophages

balance would ameliorate AD lesion. Of note, highly increased

granulocyte macrophage colony-stimulating factor (GM-CSF) is a

triggering molecule for AD progression and may be important for

diagnostic and therapeutic exploitation (75, 76). On the other hand,

the macrophage metabolic reprogramming will activate HIF-1a/
ADAM17 signaling and promote AD inflammation and

progression (77) Taken together, the macrophages share the

similar manifestation in vascular aberration disease, but the

underlying mechanisms still need to be further identified in

different perspectives.
Macrophages relevant inflammatory
response in IA

Finding from previous studies suggested that macrophages

mediated cellular and molecular inflammation are closely

involved in IA progression and rupture, including cytokine and

proteinase production (Figure 2). Chronic inflammation due to
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macrophages in vascular wall is a fundamental mechanism in the

enlargement of IA (78). Transcriptomic analysis of IA revealed that

upregulation of pro-inflammatory cytokine genes was associated

with macrophages. For instance, the activation of NF-kB and MCP-

1 were involved in macrophages-derived IA inflammation, as well

as regulating inflammation associated genes, such as interleukin

(IL)−1b, inducible nitric oxide synthase (iNOS) and MMPs (79).

Among which, the NF-kB is responsible for MCP-1 upregulation,

which cooperated with turbulent flow low wall shear stress to

exacerbate macrophages inflammation (80, 81). The increased IL-

1b and iNOS have been reported to cause vascular smooth muscle

cells apoptosis, thereby impairing endothelial and internal elastic

lamina in IA progression (82). Meanwhile, the MMP family

member MMP-2 and MMP-9 were supposed to participate in
Frontiers in Immunology 05
collagen degradation and breakdown relevant vessel wall

remodeling, while the MMP-12 did not involve in IA

macrophages inflammatory response (18, 44). In this aspect, as an

up-stream regulator, EP2-induced NF-kB singling activation will

further maintain macrophages inflammatory responses in IA

lesions (10). However, in compared with other pro-inflammatory

cytokines, NF-kB inflammatory manifestation is more inferior than

TNF-a. In addition, the peroxisome proliferator-activated receptor-

g (PPARg)-mediated cellular IL-1 and IL-6 reduction will contribute

to pro-inflammatory M1 macrophages regression, which reduced

the IA rupture risk in human (81, 83). Even in ruptured IA with

severe morphological changes and higher inflammatory cells

amount, PPARg activation could reduce M1/M2 macrophage

ratio and improve the inflammatory response (83).
FIGURE 2

Schematic summary of macrophage inflammation involved in IA progression.
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Of note, Taichi et, al. reported that macrophages extracellular

signal-regulated kinase 5 (ERK5) activation could inhibit the MCP-

1 and IL-6 generation in IA and promote anti-inflammatory effects,

thereby shrinking the out-bulging lesions (84). Additionally, ERK5

activation also shows the ability to suppress the phosphorylated NF-

kB subunit in vitro. The serum NF-kB concentrations were

positively correlated with the number and pro-inflammatory

response in aneurysms (85–87). Through clinical biospecimen

comparison, higher S100A8/A9 protein complex concentration

was observed in IA, which will induce macrophages inflammation

and vessel wall degeneration (88). Continuous decrease tensile

strength in IA wall will accelerate the rupture ending. The

S100A8/A9 complex is an adverse cardiovascular events indicator,

where proteins S100A8 and S100A9 are recognized to form a

heterodimer, they are released by neutrophils, monocytes, and

activated macrophages (89, 90). The neutrophilic inflammation

can accelerate the macrophages inflammatory process (78).

Moreover, the S100A8/A9 is a well-known pro-inflammatory

mediator that binds to toll-like receptor 4 (TLR-4) and advanced

glycation receptor, consequently promoting various types of cells

activation and resulting in reactive oxygen species, cytokines and

enzymes upregulation in IA (91, 92). As a cellular surface protein,

TLR-4 not merely contributes to innate immune responses, but also

promotes macrophages-derived inflammatory processes in IA (13).

The TLR-4 induced macrophages inflammatory response will

increase the IA rupture rate, as well as enhancing TNF-a, IL-1b,
and IL-6 generation. The above mechanism was might stimulated

by TLR4 adaptor protein MyD88, which shows a great potential in

improving IA progression (13). Taken together, restricting the

macrophages-derived inflammation might be a promising

approach to prevent IA rupture and subsequent SAH.
Inducing alternative polarization
of macrophages

Monocytes could differentiate into heterogeneous cells.

Differential expression of specific membrane molecules underlies

artificial division basis for monocyte subsets identification in both

human and mouse (93). M1 macrophages were mainly

differentiated from Ly6Chigh monocytes, while the M2

macrophages derived from Ly6Clow monocytes (94). Moreover,

macrophages were also skewed during differentiation, and the

resultant phenotype is delivered on the microenvironment

cytokines (95). Among which, the pro-inflammatory TNF-a,
TLR4, Myd88, NF-kB were associated with M1 macrophages,

whereas PPARg and ERK5 were involved in M2 macrophages

(96). Sufficient evidences indicated that GM-CSF contributed to

M1 polarization in IA, which was positively correlated with out-

bulging lesions volume, especially IA volume larger than 7 mm (20,

97, 98). The blocking of GM-CSF significantly inhibited M1

macrophages and MMP-9 secretion (75). In addition, the STAT

signaling is an important clue in modulating macrophage M1/M2

polarization (99, 100). The intervention of STAT signaling could
Frontiers in Immunology 06
significantly decrease the M1 macrophages polarization in IA (15).

During the IA progression, inhibition of CXCL1 reversed the

macrophages M1-like polarization (101). The CXCL1-induced

pro-inflammatory neutrophils were observed to promote the

macrophage inflammatory protein-1a (MIP-1a/CCL3) secretion,

subsequently polarizing macrophages into the M1 phenotypes (102,

103). More recently, the receptor tyrosine kinase Axl was

demonstrated to promote M1 macrophages polarization in IA,

wherein the STAT1 knockdown showed the ability to abolish

above polarization process (11). The activated STAT1/HIF-1a
signaling might be responsible for Axl-mediated M1 phenotype

polarization paradigm and served as downstream of Axl signaling,

ultimately increasing the IA rupture risk (11).

Relationship between the M1 (pro-inflammatory) and M2

(reparative) macrophages subtypes will influence IA structural

integrity and rupture (94). Generally, IA was characterized by

mild structural alteration, and presented with M1 macrophages

subtypes predominance (Figure 3). M1 macrophages are classical

subtypes activated by IFN-a, TNF, microbial stimuli and other

cytokines, which show a prevalence in the early inflammation phase

(20). Recent study has demonstrated that M1 macrophages driven

IA formation and growth, thereby M1/M2 ratio was increased in IA

formation over time (101). In terms of L-arginine metabolic

process, M1 macrophages mainly utilize arginase II (Arg II) and

iNOS to increase nitric oxide (NO), while M2 macrophages transfer

arginine to arginase I (Arg I) to increase ornithine and L-proline

(95). Because M1 and M2 macrophage subtypes are extreme forms

of a functional continuum, both of them polarization have some

limitations. The M2 macrophages are alternatively activated

macrophages and play an important role in clearing of

extracellular matrix, vascular wall repair/remodeling and

inflammation resolution (104). Understanding macrophages

differentiation will decipher important pathophysiological

mechanisms that occur in IA progression.

On the other hand, after IA rupture, the M2 macrophages

polarization was outnumbered than M1 macrophages (105). M2

macrophages upregulation was a distinctive feature of ruptured IA

with severe structural changes. The accumulation of erythrocytes

and/or their degradation by-product could shift macrophages

towards M2 phenotype (21). Due to compensatory regulation, the

M2 macrophages potentially be elevated in the wall of ruptured IA,

consequently contributing to upregulated M2/M1 ratio (16). The

M2 macrophages participated in lesion fibrosis, granulations and

wound healing through generating extracellular matrix, VEGF and

CCL18 (106, 107). Meanwhile, M2 macrophages were also reported

to promote histologic healing and collagen deposition in ruptured

IA (108). In line with this, the intramural blood leakage before IA

rupture potentially promotes M2 macrophages polarization,

subsequently initiating aneurysm wall repair and remodeling (16).

However, with the aneurysm structure deterioration and severe

destructed aneurysm wall after IA, the M2 macrophages will be

continuously reduced (105). One hypothesis is that intraluminal

thrombus (ILT) lead to fragile aneurysm wall and macrophages

polarization towards M2 phenotype, as well as enhancing
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bioreactivity of M2 macrophages (16, 109). For the extracellular

stimulation, M-CSF supposed to be linked with M2 macrophages

polarization, while above process cannot exhibit full M2 phenotypes

and can be reversibly modulated by antagonistic agent (110). Due to

oxidative stress cause of the programmed cell death intrinsic

activation within the aneurysm wall (111), the hypoxic condition

was deemed to be another stimulator for the M2 macrophages

polarization (16). The M2 macrophages cellular marker CD163 and

HO-1 showed a great potential in antioxidant defense and were

significantly elevated in ruptured IA (112, 113). These complexities

were associated with the variable inflammatory injure, stimulus

exposure, and distinct cellular features of macrophages in IA.
Characteristics of macrophage
lipids regulation

The cellular metabolism is essential for macrophages function

maintenance, especially lipid accumulation. The intracellular lipid

accumulation disturbs the homeostasis of the lipid-laden cells (114,

115). The coordinating role between ApoB/E lipoprotein particles

(VLDL and LDL) and ApoA (HDL) is the major protein fundament

of lipids transportation from circulation into the vessel walls, and

lipid accumulation might trigger cell death and inflammation in the

IA lesion (Figure 3). Of note, both CD68- and CD163-positive

macrophages were presented with high levels of apoB-100 and

adipophilin (116). The adipophilin is a protein attached to

intracellular lipid droplets and contributes to lipid accumulation,
Frontiers in Immunology 07
thereby reflecting the death of macrophages (117). However, the

apoB-100 is mostly abundant in extracellular matrix and

contributes local l ipids-derived inflammation, whose

accumulation is associated with IA wall degeneration and

macrophages infiltration (117). Intriguingly, as a molecular

containing apoB-100 structure lipoproteins, ApoE shows the

ability to upregulate extracellular retention of HDL (116, 118). In

the arterial intima, HDL particles are able to initiate the

macrophage-specific reverse cholesterol transport related

multistep pathways (119, 120). In terms of this, macrophages

activation may reduce lipid burden and reverse cholesterol

transport. Moreover, intracellular cholesterol efflux transporter

ABCA1 expression in macrophages extent was negatively

associated with lipid accumulation and macrophages infiltration

in IA (116). With the stimulation of G protein-coupled receptor

(GPR-120), the ABCA1-mediated free cholesterol efflux will be

enhanced through PLC/Ca2+/CaMKK/AMPK cascade in

macrophages (121). The activation of GPR-120 has been observed

to suppress macrophages infiltration and inflammatory response in

un-ruptured IA lesion (122). On the other hand, recent study

reported that the macrophages-derived foam cells could increase

extracellular cholesterol levels and facilitate degenerative changes,

thereby promoting the progression of IA (123, 124). The deposition

of lipid on macrophages will facilitate foam cells transformation

(123). Due to the cytotoxic lipids, the activated macrophages might

increase lipid burden, foam cell formation and vascular wall smooth

muscle cells (SMCs) loss, thereby promoting un-ruptured IA

degenerative remodeling and rupture risk (117).
FIGURE 3

Representation of the macrophages relevant polarization (lower) and lipids regulation (upper) in IA.
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Macrophages relevant signaling
pathways and therapy strategies in IA

NF-kB signaling
The NF-kB signaling is important for macrophages, which is a

most prevalent modulator for macrophages in IA lesion (Figure 4).

Ptger2 and IkBa genomic alteration would inhibit the nuclear

translocation of NF-kB in macrophages, subsequently influencing

the macrophages inflammatory responses in IA (17). The activation

of NF-kB is a major transcription signaling for important pro-

inflammatory genes regulation, such as TNF, IL-1b, MMPs, and

COX-2. The specific deletion of Ptger2, an EP2 encoding protein,

which will dampen the macrophages pathogenic effect like

infiltration and inflammatory activation through EP2/NF-kB

cascade (10). The above mechanism plays a crucial role in the IA

progression, especially macrophages infiltration and activation (10).

Of note, EP2 not merely stimulates NF-kB and macrophages

inflammation, but also induces RNA-binding protein (HuR) to

stabilize and encode MCP-1 generation (10). The administration of

antagonist (PF-04418948) specific for EP2 might be a powerful

candidate to prevent IA lesion enlargement and macrophages-

related degenerative changes (10). Moreover, destroying

macrophages own MCP-1 chemotactic signaling in inflammatory

microenvironment could suspend self-amplification loop in the IA,

thereby reducing macrophages infiltration in IA walls (125).

Pharmacological inhibition suppressed macrophages infiltration

and IA progression in mouse model, while there are still lack

further preclinical evidences. Similarly, the Anagliptin activated

ERK5 in macrophages was demonstrated to promote anti-

inflammatory effects by inhibiting NF-kB signaling (Table 1),

namely inhibitory effect to MCP-1 and IL-6 production (84).

Among which, the transmembrane protein DPP-4 with large
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extracellular domain acts as a target for Anagliptin, which could

prevent the lipopolysaccharide/NF-kB-induced macrophage

proinflammatory cytokines generation through activating ERK5

in IA lesion (84). Similarly, Abekura et al. reported that GPR120

could partly suppress the lipopolysaccharide-induced NF-kB

signaling activation and subsequently inhibit transcriptional

induction of MCP-1 (122). The GPR120 may impair

macrophages chemo-attractive abundance in IA lesions, which

can be remarkably enhanced by eicosapentaenoic acid (EPA)

administration. However, the EPA has various targets on

inflammation beyond being a GPR120 agonist (130, 131), thus,

more experimental evidence of the role of EPA in IA progression is

necessary for its clinical translation. Furthermore, the NLRX1 was

also observed to alleviate NF-kB signaling and macrophages

infiltration in IA wall (126). The silence of NLRX1 increased NF-

kB signaling and apoptosis-related genes expression. However,

there are few studies evaluated NLRX1 function in the brain. On

the other hand, Kong et al. indicated that MSR1-induced NF-kB
signaling promotes myelin debris phagocytosis and macrophages

pro-inflammatory polarization, consequently leading to neuronal

apoptosis (38). MSR1 primarily mediates oxidized lipoprotein

uptake and facilitates foam cell production, which was also

correlated with macrophages activation and apoptotic responses

in IA lesion (9). In recent, the zinc-induced protein A20 and

Tanshinone IIA showed a great potential in NF-kB signaling

inhibition and macrophages infiltration, thereby suppressing the

inflammatory responses and IA progression (79, 127). As an

essential micronutrient and antioxidant supplements, zinc

potentially to be a safe intervention and/or auxiliary strategy for

IA clinical treatment, especially in elderly individuals (127).

Additionally, zinc increased serum estrogen and progesterone

levels in ovariectomized mouse, thus the preventive effect of zinc

in female mouse IA progression might stronger than male, which

needs further preclinical translation investigations. Taken together,
FIGURE 4

The specific role played by NF-kB, STAT1, and TLR4 signaling in macrophages following IA.
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understanding and intervention of NF-kB signaling is important for

macrophages-relevant IA prevention and treatment.
STAT1 signaling

The STAT signaling is a key factor that regulates the activation

of macrophages, which is also associated with physiological

processes in cell proliferation, differentiation, and apoptosis (132).

As a transcriptional regulator, the STAT1 signaling could further

modulate downstream target genes by binding to promoter, as well

as transducing signals from the cell membrane to the nucleus (133).

The interaction between STAT1 signaling and its related

modulators has been emerged as important determinants of

immune and inflammatory functions (133). In IA lesion, STAT1/

HIF-1a signaling was proved to promote macrophages activation

and polarization, whose stimulation can be enhanced by Axl

phosphorylation (11). On the contrary, the STAT1 knockdown

directly abolished the Axl effects on macrophages, and emphasized

the key role of Axl in STAT1 signaling. As auxiliary evidence, the

lipopolysaccharide (LPS) induced macrophages were accompanied

with increased Axl expression and phosphorylation, which might

further promote inflammatory response in IA lesion (134). The

immunofluorescence colocalization of Axl and macrophage-specific

marker has shown reliable evidence in the macrophages of IA

lesion. The Axl-specific inhibitor R428 showed a significant inhibit

effect to the levels of pSTAT1 and HIF-1a (11), wherein the STAT1

signaling is responsible for HIF-1a expression (135), ultimately

decreasing the macrophages level in the IA. In line with this, the

STAT1-induced HIF-1a could further stimulate IL-1b (136), which

might cause macrophages-induced inflammation in unruptured IA.

Due to the complex effects of Axl in IA, R428 treatment inhibits

AXL activation in LPS/IFN-g-primed THP-1 cells, but human

primary M1 macrophages in vitro did not provide additional

translational evidences (11). In inflammatory diseases, the INF-g-
induced STAT1 signaling contributed to downstream transcription

targets activation and oxidative stress (137, 138). Of note, this
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mechanism is also observed in the pro-inflammatory macrophages

of IA lesion (96). Most recent, the STAT1 gain-of-function

mutation was reported to strengthen the response of INF-g and

macrophages recruitment in IA (128). The upstream inhibitors

administration shows potential to interfere patients STAT1 gain-of-

function and improve immune dysregulation related clinical

outcomes. Together, these findings potentially provide a new

therapeutic target and facilitate pharmacological treatment for IA.
TLR4 signaling

TLR4 is known as a critical receptor for innate immunity activation

relevant exogenous ligands, such as lipopolysaccharide induced

macrophages (139, 140). TLR4 has cytoplasmic toll/IL-1R

homologous domain that can bind to MyD88, thereby promoting

inflammatory macrophages in aneurysmal walls and ruptured

aneurysm (13). In terms of this, TLR4 signaling could delivery

activation signal to IKKb and result in inhibitor kappaB

phosphorylation and degradation, ultimately promoting NF-kB p65/

p50 heterodimer activation (13) (96). In the IA initialization,

upregulated TLR4 signaling was accompanied with NF-kB activation

(141, 142). Interestingly, in inflammation-driven diseases, the Notch1

signaling was involved in macrophages TLR4/IKKb/NF-kB signaling,

wherein the TLR4 stimulated the Notch1 signaling and promoted NF-

kB activation (143). Due to the vascular wall pressure, the Notch1

signaling-induced cells polarization existed in IA (144). The Notch

signaling interaction is an important factor for IA angiogenesis

molecules, inflammation and structural fragility (145, 146). In

addition, the pro-inflammatory mediator S100A8/A9 heterodimer

was reported to bind to TLR4 and contributed to the macrophages

activation (88). The Sandip et al. reported that 2-Bromoergocryptine

Mesylate is a potential candidate drug to prevent IA rupture by

targeting TLR4 receptor (129). However, as a special agent for

targeting TLR4 protein active region in diabetes and Alzheimer’s

disease inflammation, 2-Bromoergocryptine Mesylate still has

obstacles in broadening pharmacological effects for the IA.
TABLE 1 Intervene of macrophages and associated targets in IA.

Drug Targets Macrophage Regulation Contribution References

CoQ10 NA Infiltration and oxidative stress Positive (39, 40)

Iron limitation NA Infiltration and oxidative stress Positive (84)

Anagliptin DPP-4 Anti-inflammation Positive (84)

EPA GPR120 Chemo-attractive abundance Positive (126)

Protein A20 NF-kB Infiltration Positive (79, 127)

Tanshinone IIA NF-kB Infiltration Positive (79, 127)

R428 Axl Activation and polarization Positive (11)

Jakinibs STAT1 Recruitment Positive (128)

2-Bromoergocryptine Mesylate TLR4 – – (129)

PF-04418948 EP2 Degenerative changes Positive (10)
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Conclusions and perspectives

IA is a devastating disease with high fate death ratio, as well as

limited prevention and treatment approaches. In recent years,

achievements have been made in our understanding of

dysregulated macrophages in IA initiation and progression,

whereas detailed mechanisms remain fragmentary. The

macrophages were ubiquitously detected in both ruptured and

unruptured IA walls. Intriguingly, the macrophages accumulation

not merely lead to endothelial degeneration and hyperactive

inflammatory signals, but also show a protect effect in ruptured

IA under certain conditions. Hence, we summarized the regulation

mechanisms regarding the roles of macrophages that may play.

Particularly, through modulating polarization phenotypes, lipids

metabolism, cellular signaling and inflammation stimulation,

macrophages will help to clarify the IA process and provide

insights to therapeutic strategies. Severe morphological changes in

IA were associated with higher numbers of pro-inflammatory

macrophages activation and infiltration, wherein the polarization

tendency and inflammatory cytokines generation can provide some

speculative insight into the nature of IA formation and rupture.

Meanwhile, compelling evidences revealed NF-kB, STAT1 and

TLR4 signaling cascade have an essential role in macrophages

inflammatory response during IA lesion deterioration.

Noteworthy, the lipid metabolism has controversial effects in

macrophages, while its function in macrophages relevant IA is

not negligible. The pros and cons of macrophages immune

inflammatory modulation in IA pathogenesis and progression

should be further elucidated.

In general, most of the macrophages intra/inter-cellular

modulation has been linked to macrophages pathogenic reaction

and promotes IA lesion. The nutritional restriction and anti-

inflammation treatments are mild and safe approaches for IA, but

clinical evidence is still lacking. According to current knowledge,

suppression of pro-inflammatory macrophages accumulation and

cytokines generation through modulating key molecules is crucial

in prevent IA progression. The macrophages specific signaling

intervention like NF-kB and STAT1 cascades showed a great

potential in ameliorating IA structural changes and inflammation

condition. However, due to the controversial signaling interaction

between inflammation, macrophages and complex IA pathological

conditions, underlying regulation mechanisms are yet to be fully
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clarified. Distinguishing the mechanisms of macrophages

heterogeneities and hyperactivation will facilitate our

understanding of personalized rupture and unruptured IA

therapeutic strategies. In this regard, it will be interesting to

determine the diverse abilities of macrophages in the complex

context of IA lesion and develop innovative therapeutic strategies

to improve clinical outcomes.
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Glossary

IA Intracranial aneurysm

HR-MRI High-resolution magnetic resonance imaging

SAH Subarachnoid hemorrhage

MMPs Matrix metalloproteinases

GREM1 Morphogenetic protein Gremlin 1

S1P1 Sphigosine-1-phosphate receptor type 1

PGE Prostaglandin E

EP2 Receptor subtype 2

CoQ10 Coenzyme Q10

IL Interleukin

iNOS Inducible nitric oxide synthase

PPARg Peroxisome proliferator-activated receptor-g

ERK5 Extracellular signal-regulated kinase 5

TLR-4 Toll-like receptor 4

NO Nitric oxide

Arg Arginase

STAT Signal transducer and activator of transcription

GM-CSF Granulocyte-macrophage colony stimulating factor

M-CSF Macrophage colony stimulating factor

MIP-1a Macrophage inflammatory protein-1a

ILT Intraluminal thrombus

VLDL Very low density lipoprotein

HDL High density lipoprotein

GPR-120 G protein-coupled receptor

ABCA1 ATP-binding cassette transporter A1

EPA Eicosapentaenoic acid

LPS Lipopolysaccharide

NF-kB Nuclear factor kappa-B

CXCL1 C-X-C motif chemokine ligand 1

ApoE Apolipoprotein E

OXPHOS Oxidative phosphorylation

TRAP Triiodothyronine receptor auxiliary protein

JNK C-Jun N-terminal Kinase

TGF-b Transforming growth factor beta

TNF-a Tumor necrosis factor a

HO-1 Heme oxygenase-1

COX-2 Cytochrome c oxidase subunit II

NLRX1 NLR family member X1
F
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