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The initial idea of a distinct group of T-cells responsible for suppressing immune

responses was first postulated half a century ago. However, it is only in the last

three decades that we have identified what we now term regulatory T-cells

(Tregs), and subsequently elucidated and crystallized our understanding of them.

Human Tregs have emerged as essential to immune tolerance and the

prevention of autoimmune diseases and are typically contemporaneously

characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is

important to note that FOXP3+ Tregs exhibit substantial diversity in their origin,

phenotypic characteristics, and function. Identifying reliable markers is crucial to

the accurate identification, quantification, and assessment of Tregs in health and

disease, as well as the enrichment and expansion of viable cells for adoptive cell

therapy. In our comprehensive review, we address the contributions of various

markers identified in the last two decades since the master transcriptional factor

FOXP3 was identified in establishing and enriching purity, lineage stability, tissue

homing and suppressive proficiency in CD4+ Tregs. Additionally, our review

delves into recent breakthroughs in innovative Treg-based therapies,

underscoring the significance of distinct markers in their therapeutic utilization.

Understanding Treg subsets holds the key to effectively harnessing human Tregs

for immunotherapeutic approaches.
KEYWORDS

regulatory T cells, FOXP3, Treg markers, Treg heterogeneity, Treg function, Treg
therapy, Treg chemokine receptors
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1 Introduction

FOXP3+ regulatory T-cells (Tregs) represent 4-7% of the CD4+

T-cell population and are essential for regulating peripheral

tolerance and immune homeostasis. Early phase clinical trials

have demonstrated proof-of-principle for the use of isolated and

expanded polyclonal Tregs in the treatment of inflammatory

disorders, transplant rejection and autoimmune diseases. Treg

research traces its origins back more than 40 years. The first

evidence for thymus-derived cells with suppressive function came

from mouse thymectomy experiments conducted in the early 1970s

(1). Mice thymectomised between day two and four of life

developed severe autoimmunity, which did not occur if

thymectomy was performed before 24 hours or after day five of

life (2). This led to the hypothesis that autoreactive T-cells are

exported from the thymus within the first few days of life, followed

later by an anergising subset of T-cells. Importantly, autoimmunity

could be reversed with thymic transplantation at day ten. In line

with these findings, Gershon and Kondo showed thymus-derived

lymphocytes were crucial for inducing tolerance (3), and tolerance

could be adoptively transferred to naïve recipients (4). The presence

of suppressor T-cells, however, was questioned when several other

groups failed to verify the mechanisms of suppression postulated

using the novel techniques, including monoclonal antibodies and

Sanger sequencing. These negative findings together with a lack of

specific markers led to a loss of interest in the suppressor T-cell

theory in the mid-1980s.

In the 1990s, a significant breakthrough emerged with the

identification of regulatory T-cells (Tregs), by Sakaguchi and

colleagues following the work on tolerance induction by Hall (5–

7). Sakaguchi et al. demonstrated that Tregs could be distinguished

by the expression of the IL-2 receptor a-chain, CD25, which was

exclusive to a minority of CD4+ cells, facilitating the isolation of

relatively pure Tregs populations from mice. The Shevach group

provided the first direct evidence of Tregs inhibiting CD4+ effector

T-cell proliferation in culture (8). In 2001, several research groups

independently succeeded in identifying Tregs in human peripheral

blood utilizing CD25 (9–11). Given human conventional T-cells

upregulate CD25 upon activation, it soon became evident that this

early cell-surface marker had certain limitations, despite David

Hafler’s group demonstrating CD25 expression directly correlates

with suppressive capacity (12).

The discovery of Foxp3, a forkhead box transcription factor, as

the master control gene in mouse Treg development and function,

provided further progress in the field and crucial insights into Treg

regulatory mechanisms (13–15). It also explained the fatal

lymphoproliferative disease observed in scurfy mice, which carry

a frameshift mutation resulting in scurfin lacking the forkhead

domain, and consequently autoimmunity (16). Intranuclear FOXP3

expression was demonstrated in human Tregs in 2005 (17), and

mutations in FOXP3 explained the immune dysregulation,

polyendocrinopathy, enteropathy and X-linked clinical syndrome

(IPEX) (18, 19). Due to its intranuclear localization necessitating

cell fixation, this new marker could not be used for the isolation of

live Tregs. The discovery that FOXP3 expression could be induced
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the identification of pure human Tregs (20).

In 2006, the expression of the IL-7 receptor a-chain CD127 was

found to inversely correlate with FOXP3 expression and

suppressive function (21, 22). In combination with CD25, low

CD127 expression levels facilitated the isolation of live human

Tregs with high purity and FOXP3 expression in post-sort

analyses. Shortly thereafter, a more specific method to determine

Treg purity among FOXP3 expressing cells was identified.

Methylation analysis of the FOXP3 conserved non-coding

sequence 2 (CNS2) (also termed the Tregs-Specific Demethylated

Region (TSDR)) is at least partially methylated in conventional T-

cells, but is completely demethylated in bona fides FOXP3+ Tregs

and remains the most specific method of identifying Tregs (23, 24).

Currently, CD3+CD4+CD25hiCD127lo remains the most widely

used gating strategy for the isolation of viable Tregs when cell

sorting, with intranuclear staining of FOXP3 used to confirm purity

and function. Of note, however, FOXP3, whilst exclusive to Tregs in

mice, does not provide unambiguous identification of human Tregs.

Finding a specific marker for human Tregs remains an unmet need.

Nevertheless, over the past two decades, a substantial number of

novel Treg markers associated with their origin, maturity, stability,

and function have been identified (Figure 1). This review gives a

comprehensive analysis of human Treg markers, facilitating the

precise identification of CD4+ Tregs and their subsets, enabling the

characterization of Tregs in a variety of immunological disorders

and physiological processes.
2 Naïve and memory T-cell
components as markers of Treg
heterogeneity and functional diversity

Until 2005, Tregs in the peripheral blood were believed to

predominantly exhibit a memory-like phenotype, characterized by

the expression of CD45RO, until Valmori et al. described the

existence of circulating Tregs expressing the naïve T-cell marker

CD45RA (25). The prevalence of this subset inversely correlates

with age, and concomitantly falls with the naïve CD4+ T-cell

fraction, whilst the total Treg frequency remains constant

throughout life. Naïve Tregs also have longer telomeres than their

memory counterparts, similar to naïve conventional CD4+ T-cells.

These naïve Tregs were postulated to be derived from CD4+CD25+

cells, selected in the thymus as precursors to antigen-experienced

memory Treg subsets, awaiting TCR stimulation-mediated

maturation, leading to an interest in umbilical cord blood Tregs.

A comparative study of CD45RA+ naïve Tregs from umbilical

cord blood and adult blood found slightly lower levels of CD25 and

FOXP3 expression in both when compared to memory Tregs, but

similar in vitro suppressive capacities to memory Tregs (26). In

2006, Hofmann and Edinger showed the CD45RA+ naïve fraction

of adult Tregs, which phenotypically resemble cord blood Tregs,

gives rise to a more homogeneous Treg pool upon in vitro

expansion as compared to bulk Tregs, thus proposing naïve Tregs

as the optimal source of Tregs for adoptive cell therapies (27). They
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also demonstrated the superior stability of CD45RA+FOXP3+ cells.

However, after three weeks of in vitro expansion with repetitive

stimulation, CD45RA− Tregs preferentially down-regulated FOXP3

expression and were liable to produce pro-inflammatory cytokines

(28). Miyara et al. confirmed the enhanced proliferative capacity of

naïve Tregs and found that once activated, naïve Tregs upregulate

FOXP3 and convert to an activated memory phenotype, all whilst

exerting suppression during and after their proliferation and

conversion (24).

Furthermore, both adult naïve and cord blood Tregs were

shown to express significant levels of the secondary lymph node

homing receptors CD62L (L-selectin) and CCR7 (25, 26). These

markers, along with CD45RA/RO are commonly used to

distinguish between naïve (CD45RA+/RO-, CD62Lhi, CCR7hi),

effector memory (Tem) (CD45RA-/RO+, CD62Llo, CCR7lo), and

central memory (Tcm) (CD45RA-/RO+, CD62Lhi, CCR7hi)

conventional CD4+ T-cells. While studies have identified CCR7 as

a differential marker defining Tem and Tcm subsets within the

human CD4+CD25+ Treg population (29, 30), there is limited

evidence for clear Tem and Tcm characteristics in Tregs based

solely on these markers. Nevertheless, the expression of CD62L and

CCR7 is crucial to the migration of Tregs to secondary lymphoid

organs in murine models, proving essential to Treg-mediated

suppression of autoimmune (30–33), allograft and other immune

responses (34–38). Interestingly, even after undergoing extensive in

vitro polyclonal expansion, human CD4+CD25high Tregs retain the

expression of CD62L and CCR7 (39). It would be intriguing to

monitor CD62L and CCR7 expression in Tregs used for human cell

therapy trials, examining if, and how, these markers change with

Treg migration to secondary lymphoid organs and inflamed tissues.

In contrast to conventional CD4+ T-cells, the majority of Tregs

in adult peripheral blood exhibit elevated levels of CD45RO and

CD95, making them susceptible to CD95L-mediated apoptosis (40).

Interestingly, CD4+CD25+FOXP3+ T-cells present in cord blood are

predominantly naïve, display low expression of CD95 like adult

naïve Tregs, and remain resistant to FAS-mediated apoptosis.

However, upon brief stimulation with anti-CD3/CD28
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CD95, sensitizing them to CD95L (40).

The expression of CD44, a cell surface molecule with important

roles in activation, migration, and apoptosis, is linked to FOXP3

expression and Treg function in mice (41). Similar studies in human

Tregs indicated that CD44 enhances the suppressive action of

CD4+CD25+ Tregs (42). Further investigation in 2009

demonstrated that CD44 co-stimulation plays a crucial role in

enhancing the persistence and function of FOXP3+ Tregs through

the production of IL-2, IL-10, and TGF-b1 in both humans and

mice (43).
3 Phenotypic markers of Tregs derived
from the thymus

It was formerly believed that natural Tregs are thymically

derived CD4+ cells that constitutively display CD25. Work in

mice demonstrating the capacity for naïve CD4+ T-cells to

transform into FOXP3+ Tregs in the periphery led to a paradigm

shift. Subsequent categorization of Treg subsets now includes

thymically derived Tregs (tTregs) and peripherally induced Tregs

(pTregs) (44). However, the presence of pTregs in humans remains

a controversial topic. Multiple reports have indicated that pTregs

are plastic and can produce inflammatory cytokines (45–47).

Significant attention has been devoted to identifying phenotypic

markers capable of distinguishing between pTregs and tTregs.

Helios (Ikzf2) is a member of the Ikaros transcription factor

family and is restricted to T lymphocytes. Microarray studies

characterizing unique gene signatures in FOXP3+ mouse Tregs

provided the first indication of Helios as a Treg-specific gene (48,

49). In 2010, the Shevach group published work indicating Helios to

be a potential marker specific to FOXP3+ tTregs in mice and

humans (50). Approximately 70% of Tregs in human peripheral

blood and mouse peripheral lymphoid tissues, as well as over 95% of

Tregs in mouse thymi, were Helios positive. Additionally, Helios

expression was not seen neither in murine nor human in vitro or in
FIGURE 1

A timeline representing the discovery of human Treg markers.
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vivo induced Tregs. Interestingly, the majority of FOXP3+ Tregs

producing IL2, IL17, and IFN-g belong to the Helios negative

subset. Additionally, more than 90% of Tregs in human cord

blood and thymic samples express Helios (51). Crucially, the

Helios-negative Treg subset, comprising less than 10% of the

total, does not originate exclusively from the thymus. Studies

have suggested, in the case of cord blood, Helios-negative Tregs

are generated in the periphery during fetal gestation, while those

found in the thymus are recirculated Tregs from the periphery.

Subsequent studies have demonstrated that human FOXP3+Helios+

Tregs demonstrate less than 10% CpG methylation in the TSDR,

while FOXP3+Helios− Tregs are more than 40% methylated (52,

53). Thus, the early consensus was Helios could serve as a marker

for tTregs, with Tregs lacking Helios representing pTregs.

More recent studies have disputed this consensus (54, 55),

demonstrating inducible Helios expression in pTregs (56), findig

Helios expression with Treg activation and proliferation (57). The

coexistence of both Helios positive and negative human FOXP3+

tTregs has also been demonstrated (58), with further studies

supporting the notion that Helios expression cannot differentiate

between tTregs or pTregs (59). Thus, the question of whether Helios

is a reliable specific marker for tTregs remains open (60).

A 2007 study by Hass et al. on Treg dysfunction in multiple

sclerosis demonstrated a significant correlation between Treg-

mediated immunosuppression and the presence of recent thymic

emigrants (RTE) Tregs (61). Naïve Tregs expressing CD31

(PECAM1) play a role in the functional characteristics of the

entire Treg population. CD45RA+CD45RO−CD31+ naive Tregs

have been observed to decline with age in healthy individuals,

contrasting with their CD31− memory Tregs counterparts.

Subsequent studies indicate that, unlike memory Tregs, a

substantial proportion of CD45RA+ naive Tregs express CD31

(62, 63).

A novel marker, Neuropilin-1 (Nrp-1), was identified in 2012

by Bluestone and Lafaille. It was found to be expressed on tTregs,

but not on in vivo or in vitro induced pTregs in mice (64, 65). While

these murine studies are useful to our understanding of Treg

development and putative tTreg biomarkers, the translation of

these findings into the human context remains disputed (59, 66, 67).

Glycoprotein A33 (GPA33) is a cell surface antigen and a

member of the immunoglobulin superfamily. While this marker

is known to be expressed in approximately >95% of primary and

metastatic colon cancers, its presence on normal tissues and cells

was previously unreported (68). In a 2020 study, Opstelten et al.

identified GPA33 on tTregs, reporting high levels of mRNA and

surface protein expression in CD4+CD25+CD45RA+ naive Tregs

(69). All CD4+CD25+CD127-GPA33+ Tregs were shown to express

FOXP3 and Helios, whereas only 86% of CD4+CD25+CD127-

CD45RA+ expressed FOXP3 and Helios, suggesting CD127-

GPA33+ selects naïve Tregs with enhanced purity, lineage

stability, and suppressive function. Subsequent single-cell

transcriptomic studies have demonstrated that GPA33 is acquired

by pre-Tregs in a late developmental stage, prior to the acquisition

of CD45RA, validating GPA33 as a tTreg marker (70). Combined,

this suggests GPA33+ is found on a highly pure and stable

population of CD45RA+ Tregs originating from the thymus. It
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marker for the isolation and expansion of functional Tregs,

especially as the function of GPA33 is presently unclear.
4 Co-signaling receptors as markers
of Treg proliferation and function

Co-stimulatory and co-inhibitory receptors, collectively

described as co-signaling receptors, are crucial to regulating the

expansion and function of conventional CD4+ T-cells, modulating

immune responses. Their discovery marked a turning point in our

understanding of Treg function, eventually leading to various

clinically employed therapeutic agents, called checkpoint

inhibitors, which target Co-signaling receptors to restore desired

immune responses (71, 72).

Cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4), also

known as CD152, is an immunoglobulin superfamily (Ig SF)

member expressed by activated inhibitory conventional T-cells

(73). CTLA-4 is often referred to as a “moving target” due to its

rapid internalization and recycling to the plasma membrane of T-

cells (74). Notably, while CTLA-4 is expressed in conventional T-

cells upon activation, it is constitutively expressed in resting Tregs,

representing one of the hallmarks of this cell subset (75, 76). Post

TCR-mediated activation, human Tregs strongly upregulate

CTLA-4.

In 2000, work by the Powrie and Sakaguchi groups provided

compelling evidence of CTLA-4’s crucial role in contact-dependent

suppressive function in mice (76, 77). Subsequent human Treg in

vitro studies demonstrated conflicting results. Some supported the

notion that blocking CTLA-4 using anti-CTLA-4 monoclonal

antibodies (mAbs) or Fab fragments reversed the suppressive

effect of CD4+CD25+ Tregs on Teff proliferation (78–80). Other

studies came to the opposite conclusion (9, 10, 81, 82), highlighting

the complex nature of CTLA-4’s role in Treg-mediated suppression.

However, variations in assay conditions, including the type of

antigen-presenting cells (APCs) used and the strength of the TCR

stimulus may account for the differing results observed. CTLA-4

interacts with CD80/CD86 on APCs with higher affinity and avidity

than its counterpart CD28, which competes to interact with CD80/

86. As a target gene of FOXP3, CTLA-4 plays a pivotal role in

regulating Treg homeostasis by acting as an intrinsic regulator of

Treg proliferation. Deletion or blockade of CTLA-4 enhances Treg

proliferation and affects the number and function of memory Tregs

(83–86). Although the role of CTLA-4 in Treg biology has remained

controversial for several years, its established use as a diagnostic

marker and therapeutic target for various human pathologies

confirms its critical role in Treg-mediated immunosuppression

(72, 87–89).

In parallel to CTLA-4, programmed cell death 1 (PD-1) is

another co-inhibitory molecule from the Ig SF found in Tregs. In

2003, it was found that blocking the interaction between PD-1 and

its ligand, PD-L1, influences Treg suppressive function (82). A more

comprehensive 2006 study demonstrated that freshly isolated

murine and human Tregs retain PD-1 in the intracellular

compartment (90). PD-1 appears to transmigrate to the cell
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surface upon TCR stimulation, indicating that purifying CD25+PD-

1− T-cells may give a pure population of resting Tregs, prompting

evaluation of PD-1 as a marker to distinguish Tregs from activated

CD4+CD25+ T-cells. Francisco et al. showed that the expression of

PD-1 minimally converts naive CD4+ T-cells into induced Tregs

(iTregs) by promoting FOXP3 expression, enhancing iTreg

suppressive activity (91). Our current understanding of PD-1/PD-

L1 signaling in Tregs is complex and context-dependent, with

effects including Treg expansion (92), survival and functionality

(93) in addition to suppression of effector T-cells and autoreactive

B-cells (94). These effects have implications for tumor immunity

and autoimmunity, as reviewed by Cai et al. (95) and the clinical use

of PD-1 inhibitors highlights the therapeutic value of targeting this

receptor. Nevertheless, further research deciphering the intricate

mechanisms of PD-1 signaling in Treg development and function

is required.

Inducible T-cell costimulator (ICOS) is another CD28-related

member of the immunoglobulin superfamily of molecules (IgSF)

that stands apart from CTLA-4 and PD-1 by functioning as a

costimulatory receptor. ICOS’s discovery on the surface of T-cells

following TCR-mediated stimulation in 1999 represented a

breakthrough in T-cell research (96). ICOS+ T-cells, although a

minority among peripheral blood CD4+ T-cells, comprise

approximately 20% of FOXP3+ Tregs (97). Ito et al. observed that

both ICOS+ and ICOS– Tregs exist in cord blood and neonatal

thymi (98) and that ICOS+ Tregs are able to produce IL-10 and

suppress CD86 upregulation on DCs, while ICOS- Tregs produce

TGFb. Early investigations unveiled a link between elevated ICOS

expression on CD4+ T-cells and IL-10 production in mice (99). This

was later confirmed in humans (98) and demonstrated the central

role ICOS has in the differentiation and function of FOXP3+ Tregs.

Over the past decade, ICOS’s multifaceted roles, including

involvement in the production, proliferation and survival of Tregs

and enhancing Treg suppressive function have been unraveled

(100–103).

CTLA4, PD1 and ICOS are now recognized targets in cancer

immunotherapy, leading to an interest in novel Ig SF co-inhibitory

receptors such as Lymphocyte activation gene-3 (Lag-3), T-cell (or

transmembrane) immunoglobulin and mucin domain 3 (Tim-3),

and T-cell immunoreceptor with Ig and ITIM domains (TIGIT), to

address CTLA-4 and PD-1 checkpoint inhibitor non-responders.

Lag-3, also called CD223, belongs to the CD2/Signaling

Lymphocytic Activation Molecule (SLAM) family of the Ig SF. It

was initially discovered as a molecule upregulated on activated

CD4+ and CD8+ T-cells (104) and has subsequently been reported

to be highly expressed in both tTregs and pTregs upon activation

(105). Lag-3 blockade on Tregs abolishes Treg suppressor function,

while ectopic expression of Lag-3 in non-Treg CD4+ T-cells confers

suppressive activity. Additionally, Lag-3 is necessary for Treg-

mediated control of T-cell homeostasis (106). In subsequent

years, Lag-3 has emerged as a useful Treg surface marker that can

be cleaved into a soluble form (107, 108). Functional studies of Lag-

3 in human Tregs report only small proportions of Tregs are LAG-3

positive, although this fraction increases in inflamed tissues such as

in the lamina propria of ulcerative colitis (UC) patients, and various

tumors (109–111). Thus, Lag-3 may serve as a diagnostic and
Frontiers in Immunology 05
treatment response biomarker in the future, however further

research into the mechanism of action of Lag-3 in Tregs and its

impact on T-cells is warranted.

TIGIT, a member of the poliovirus receptor (PVR)-like family

of Ig SFs, is a co-inhibitory receptor expressed on many lymphocyte

subsets. It is highly expressed on Tregs, where it promotes

suppressive function. The first link between TIGIT and human

Treg biology was reported in 2009 (112), however, its functional

role in Tregs was not shown until 2014 (113). TIGIT is present on

the surface of both human and murine Tregs, including tTregs and

pTregs. TIGIT-positive Tregs exhibit increased expression of key

Treg-associated genes, including FOXP3, CD25, and CTLA-4, and

demonstrate enhanced demethylation in the TSDR, indicating

lineage stability. Activation of TIGIT on Tregs triggers the

production of suppressive molecules like IL-10 and Fgl2.

Moreover, TIGIT expression defines a Treg subset that

demonstrates selective suppression of Th1 and Th17 but not Th2

responses. Additional studies have reported TIGIT to identify

highly suppressive Tregs, indicating the therapeutic potential of

TIGIT Tregs in treating disease (114–116).

Tim-3 (HAVCR2) has attracted significant attention as a

potential negative regulator of T-cell responses (117, 118). Tim-3

expression is limited to a small subset (2-5%) of Tregs in the

periphery during steady-state conditions. However, during immune

responses, Tim-3 is upregulated on Tregs, with elevated expression

in Tregs infiltrating allografts, tissues, and tumors in mice (119).

Subsequent studies have found that Tim-3 is predominantly

expressed on tumor-infiltrating Tregs in both human and

experimental tumor models (120–126), and Tim-3+ Tregs exhibit

enhanced suppressive capacity in in vitro suppression assays

compared to Tim-3- Tregs (122, 124). Moreover, Tim-3+ Tregs

display increased expression of suppressive molecules (CTLA-4,

Lag-3, and PD-1), and enhanced secretion of immunosuppressive

cytokines (IL-10 and TGF-b). These, and more recent findings,

strongly argue for Tim-3+ Tregs cells as promising therapeutic

target in cancer immunotherapy (127). Furthermore, a substantial

increase in Tim-3 levels are seen following the ex vivo expansion of

clinical-grade human Tregs, increasing to 29% (128). Sorted Tim-3+

Treg populations show significant enhancements in IL-10 and

Granzyme B production, indicating the suppressive capacity of

this subset and its potential as a cell-based therapy to induce

allograft tolerance.

The TNF receptor superfamily also includes several co-

stimulatory molecules that have been identified on Tregs,

including GITR, 4-1BB, OX40 and CD27.

Glucocorticoid-induced tumor necrosis factor receptor-related

protein (GITR), also known as TNFRSF18 and CD357, acts as a

costimulatory molecule. While expressed at low levels on naïve T-

cells, Tregs and activated T-cells show high surface expression of

GITR (129, 130). Soon after the discovery of GITR on murine Tregs

(131, 132), studies reported GITR to be co-expressed with CD25

and FOXP3 in human tTregs (133–135). GITR is now an

established Treg marker with tTreg specificity, whose gene loci is

demethylated in Tregs (136). Tregs upregulate GITR expression

upon ac t i va t ion , w i th l eve l s corr e l a t ing wi th Treg

immunosuppressive function, leading to the proposal of using
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GITR as a marker for selecting highly functional Tregs.

Additionally, Tregs residence in the tumor microenvironment

demonstrates GITR upregulation and GITR’s expression in Tregs

has been extensively studied in autoimmune diseases,

demonstrating its potential as an immunotherapy target having

already shown promise in murine models (137, 138).

4-1BB (also known as CD137), was initially considered a

proliferation and activation marker of CD8+ conventional T-cells,

but was later found to be constitutively expressed in murine

CD4+CD25+ Tregs in two separate DNA microarray studies (132,

139). 4-1BB expression on resting Tregs was subsequently

identified, with upregulation demonstrated following 2 days of in

vitro combined CD3 and IL-2 stimulation (140). Subsequently, in

both in vitro and in vivo conditions, 4-1BB mediated enhanced Treg

survival and proliferation was observed, without alteration to

immunosuppressive function (140, 141). Additionally, animal

studies have shown infusions of agonistic anti–4-1BB mAbs lead

to increases in splenic Tregs, with suppression of chemically

induced colitis (142). Furthermore, artificial APCs (aAPCs)

expressing 4-1BBL have been shown to expand human umbilical

cord blood Tregs and enhance their suppressive function (143).

Most significantly, it has been found that gating on 4-1BB+CD40L-

(CD137+CD154-) identifies both ex vivo, and in vitro activated

Tregs, facilitating the isolation of epigenetically stable antigen-

activated Tregs, enabling their rapid functional testing (144, 145).

Along with the discovery of 4-1BB on Tregs, the

aforementioned DNA microarray studies also identified OX40

(CD134) to be highly expressed on Tregs, which had previously

been recognized as a costimulatory molecule on activated CD4+

effector T-cells (132, 139). OX40 signaling is crucial to the

development, homeostasis, and suppressive activity of mouse

Tregs (146). Early studies of human cord blood Tregs

demonstrated significantly higher Treg expansion using aAPCs

modified to express OX40L compared to bead- or non-modified

aAPCs (143). However, OX40 signaling has also shown the

potential to oppose Treg-mediated suppression in antigen-

engaged naive T-cells in in vivo mouse models (146). The

contrasting functions of OX40 in Tregs, which has also been

reported in a variety of human and mouse studies, make its exact

role in Tregs unclear (147–151). While uncertainty continues

regarding OX40 in Tregs, it remains recognized as a Treg

activation marker and is believed to contribute to Treg proliferation.

CD27 is present on the majority of CD4+ T-cells, interacting

with CD70 on APCs, and in vitro T-cell expansion can be enhanced

using anti-CD27 antibodies (152). Initially discovered through

DNA microarray studies (132), CD27 is now recognized for its

crucial role in Treg function. Along with CD25, CD27 can identify

highly suppressive FOXP3+ Tregs (153) and subsequent

investigations have illustrated a novel use of CD27 to induce,

expand, and select highly suppressive, Ag-specific human Treg

subsets (154). Moreover, following the ex vivo expansion of

human pTregs, CD27 can discriminate between regulatory and

non-regulatory cells (155). With multiple studies highlighting CD27

as a reliable marker for the identification of highly functional Tregs

(156, 157), CD27 demonstrates significant potential as a marker for

the isolation of suppressive Tregs for clinical application.
Frontiers in Immunology 06
Potential markers of Tregs exhaustion: Whilst the effects of

chronic T-cell stimulation have been extensively studied, our

understanding of Treg exhaustion is limited. In conventional T-

cells, exhaustion from chronic antigen exposure is characterized by

the expression of inhibitory receptors (PD-1, TIM-3, and LAG-3),

reduced proliferation, cytokine production, and increased apoptosis

(158–161). Studying Treg exhaustion in vitro is hampered by the

contradictory roles of inhibitory receptors in Tregs, as discussed

above. Tonic-signaling chimeric antigen receptors (TS-CARs) have

facilitated the first comprehensive investigation of exhaustion in

Tregs, revealing that Tregs rapidly acquire an exhaustion-like

phenotype, with increased expression of inhibitory receptors and

transcription factors including PD-1, TIM3, TOX and BLIMP1,

akin to conventional T-cells (162). Epigenetic changes can also be

observed with repetitive TCR-mediated stimulation, including

those that may affect Treg functionality and lead to exhaustion,

with TIM-3 and TIGIT implicated, among others (163). However,

further clarification is needed on the implications of these recent

studies on these markers for identifying exhausted Tregs.
5 Exclusion markers for human
Treg isolation

One of the major obstacles hampering the clinical application of

Tregs is the lack of suitable extracellular markers, complicating their

identification and isolation. Due to a lack of clinical-grade CD4

negative isolation reagents, clinical grade GMP magnetic

enrichment typically involves CD8 depletion, an optional CD19

depletion step, followed by CD25 enrichment. Where cell sorting is

possible, Tregs are typically isolated as CD4+CD25+/hiCD127-/low.

Over the past decade, numerous studies have attempted to identify

additional negative selection markers to facilitate the efficient

sorting of pure and highly functional Tregs, while eliminating

contaminating effector T-cells. In this section, we explore cell

surface markers that are specifically absent on Tregs and consider

negative selection strategies for Treg isolation for both functional

research and clinical application.

CD49d, the a chain of the integrin VLA-4 (a4b1), functions as
a costimulatory and adhesion molecule for lymphocyte

transmigration into inflamed tissues (164, 165). In 2009,

Kleinewietfeld et al. demonstrated CD49d expression on more

than 80% of human PBMCs, with expression predominantly on

pro-inflammatory effector cells, including non-regulatory

CD4+CD25low T-cells, cytokine-secreting CD4+ effector cells, and

FOXP3 expressing Th1- and Th17-like cells. Significantly,

approximately 70% of immunosuppressive FOXP3+ Tregs are

CD49d-/low. Considering the differential distribution of CD49d,

this marker has been proposed to effectively deplete cells that

otherwise contaminate CD25+-based Treg preparations (166).

This has led to novel CD49d- gating strategies, designed to obtain

“untouched” FOXP3+ Tregs (i.e. cells that have not been targeted by

an antibody during purification) in combination with CD127-.

Tregs isolated in this manner are highly pure, can be expanded,

and show effective in vitro and in vivo suppressive function (166).

However, other data has shown CD49d-CD127- isolated Tregs after
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in vitro expansion are less suppressive, exhibit lower levels of

FOXP3 and TSDR demethylation than CD4+CD25hiCD127- or

CD4+CD25hiICOS+ isolated cells (167). Despite this conflicting

evidence, untouched Treg isolation protocols have been scaled up

for the generation of GMP cell therapy products from large-scale

leukapheresis samples, with the final product demonstrating <10%

contamination with CD4 effector T-cells and <2% of all other cell

types (168). Singapore General Hospital is currently preparing to

conduct T-cell therapy trials using untouched Tregs in graft-versus-

host disease following stem cell transplantation.

Another putative negative selection marker for Tregs is CD26, a

widely distributed, 110-kDa, membrane-bound glycoprotein with

intrinsic dipeptidyl peptidase IV activity. The ectonucleotidases,

CD39 and CD73, in combination with adenosine deaminase

(ADA), which degrades adenosine into inosine, together regulate

pericellular adenosine concentrations. In humans, ADA is

associated with the extracellular domain of CD26, a complex not

seen in mice (169). The lack of anti-ADA antibodies suitable for

flow cytometry necessitates CD26 analysis as a surrogate for ADA

expression in T-cells. Despite a large amount of data supporting the

costimulatory role of CD26 in T-cells (170–172), its exact function

in Tregs has not been confirmed. The absence of CD26-ADA

expression in Tregs was first described in 2010 (173). More

comprehensive work in 2012 reported the presence of CD26-

ADA on FOXP3-expressing activated CD4+ Teff cells, but not

suppressive Tregs (174). In combination with markers like CD25,

FOXP3 and CD127, CD26 may facilitate quantitative evaluation of

Tregs or Treg isolation from samples containing activated Teff cells.

Other studies have also described the use of CD26 as a negative

selection marker for Tregs (175–178). However, further

investigation is required to determine whether the CD26-/low

phenotype is a reliable method of isolating human Tregs and one

that improves on current protocols.

CD6 and CD226 have not only facilitated the depletion of

contaminants but also shed light on further subclassifications of

tTregs. CD6 is a cell-surface glycoprotein predominantly expressed

on T-cells (179, 180). It functions as a costimulatory molecule

during TCR activation and plays a role in the responses of mature

T-cells to both nominal antigens and autoantigens (181, 182). In

2014, Garcia Santana et al. identified CD4+CD25hiCD6lo/- Tregs in

man as FOXP3+ natural Tregs (nTregs), exhibiting in vitro

suppressive activity on CD8+ T-cell proliferation. CD6 in

combination with CD127 was postulated to serve as a tool to

identify and isolate nTregs (183). Although CD6 has been

reported as a negative marker for human Tregs in different

studies, further investigation is needed to validate the utility of

CD6 as a Treg exclusion marker (175, 184).

Although CD226, also known as DNAM-1, plays a critical role

in immunoregulation, little was known about its cellular

distribution in human Tregs until 2015, when Fuhrman et al.

demonstrated that isolating CD226- Tregs gave a highly pure and

suppressive population. The CD226+ population is less pure and

suppressive after expansion and demonstrated less demethylation in

the TSDR locus, as well as significantly higher production of effector

cytokines (185). Further work showed CD4+CD25+CD226- cells,

after 14 days of expansion, are more suppressive, produce more
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TGF-b1 and fewer effector cytokines like IFN-g, TNF, and IL-17A

than CD4+CD25+CD127lo/- cells (186). Furthermore, CD4+ CD25+

CD226- Tregs may not only be long-lived but also potentially

localize more readily to secondary lymphoid organs. These data

argue for CD226 as an important negative phenotypic marker of

Tregs and the excluding CD226-expressing cells during Tregs

sorting yields a population with increased purity, lineage stability,

and suppressive capabilities, which may benefit Treg adoptive cell

therapy. However, this approach should be taken with caution, as

CD226 is also highly expressed by IL-10-secreting Tr1-like T-

cells (187).

In addition to the aforementioned, CD154, also known as

CD40L, can also be used to negatively identify activated Tregs.

This member of the TNF superfamily is a recognized activation

marker of CD4+ Teff cells (188, 189). The absence of CD154

expression in the presence of 4-1BB (4-1BB+CD154-) has

emerged as an ex vivo and in vitro Treg activation signature,

allowing for the identification and isolation of epigenetically

stable, antigen-activated Tregs for rapid functional assessment

(144, 145).
6 Key markers associated with the
Treg function

Tregs exert their suppressive effects via a plethora of

mechanisms, acting on various targets. These include modulating

the cytokine microenvironment (85, 190, 191), metabolic disruption

of target T-cells (8, 192), regulating the activation capacity of

dendritic cells (193, 194), and direct cytolysis (195, 196). Building

upon this, we next review previously discovered and newly

identified markers of Tregs function.

Transforming growth factor-b (TGF-b), the most common

isoform of which is TGF-b1, is a pleiotropic cytokine. First

discovered in 1986, it was noted to induce anchorage-

independent growth (197). TGF-b later became the primary focus

of the immunosuppression and tolerance research field because of

its potent inhibition of immune responses, impacting particularly

upon T-cell proliferation and differentiation (198, 199). This was

solidified when the connection between TGF-b and the suppressive

function of murine Tregs was identified (77, 200), and the concept

of TGF-b1 tethered to the cell surface of Tregs was introduced.

Upon stimulation, CD4+CD25+ Tregs but not CD4+CD25-

conventional T-cells express high and persistent levels of TGF-b1
on the cell surface. However, the role of TGF-b in the

immunoregulatory function of Tregs has sparked controversy, as

previous studies had shown that neutralizing TGF-b using anti-

TGF-b antibodies failed to reverse the suppressive function of Tregs

in vitro. This was addressed in 2004 when it was reported that

Latency associated protein (LAP) binds latent TGF-b1 in Tregs

(201). Thus, TGF-b1-mediated immunosuppression occurs in a

two-step process: first, TGF-b1 dissociates from LAP, then free

TGF-b1 can interact with its receptor. This multistep process

explains why antibody mediated TGF-b inhibition requires the

high antibody concentrations necessary for TGF-b1 quenching.

Crucially, expression of LAP on activated human FOXP3+ Tregs
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has since been shown to identify highly pure and functional Tregs

from ex vivo expansion cultures (202, 203). For reviews on TGF-b in
Treg biology, and the associated debates, see reviews by Tran and

Moreau et al. (204, 205).

The cell surface molecule Glycoprotein A repetitions

predominant (GARP), also known as LRRC32, was first reported

in human Tregs by Wang et al. and has since been identified to be

involved in TGF-b1 mediated Treg immunosuppression. TCR-

activated Tregs exhibit significant upregulation of GARP on their

cell surface, which has been linked to enhanced Treg suppressive

capacity (206). Several groups have independently reported that

GARP on Tregs binds latent TGF-b1, promoting the release of the

activated TGF-b, leading to TGF-b mediated immunosuppression

(207–209). Studies of Tregs in human disease have confirmed that

TGF-b, GARP and LAP are vital to Treg function in inflammatory

diseases (210) and cancers (211), highlighting the potential value of

these receptors as immunotherapy targets.

Tregs can also suppress effector T-cells through adenosine binding

to A2A receptors (212, 213). ATP is cleaved in tandem by two Treg-

associated ectonucleotidases, CD39 and CD73, leading to adenosine

production. Of the two ectonucleotidases, CD39, which hydrolyses

ATP and ADP into AMP, is the rate-limiting enzyme (212). CD73, an

ecto-5′-nucleotidase, exists in both soluble and membrane-bound

forms and catalyzes the dephosphorylation of AMP into adenosine

(214, 215). Adenosine then binds the A2A receptor on T-cells, leading

to cAMP-mediated suppression of TCR signaling via PKA.

The role of adenosine in the function of human Tregs was

discovered in 2010, introducing CD39 as a novel phenotypic and

functional marker specific to human Tregs (173). In contrast to

mice, which express CD39 constitutively on virtually all

CD4+CD25+ T-cells, expression on human T-cells is restricted to

a subset of FOXP3+ effector/memory-like Tregs (216, 217). Nearly

all (>90%) CD4+CD25hiFOXP3+ adult human Tregs are CD39

positive, distinguishing human Tregs from other T-cell subsets.

Due to its expression on the cell surface, CD39 has facilitated the

successful and reliable isolation of functionally active human

natural Tregs from peripheral blood (218). However, this

approach should be taken with caution, as CD39 is not exclusive

to Tregs and the CD4+CD39+ fraction of PBMCs also includes

CD25-FOXP3- T-cells (219, 220). Nevertheless, several studies have

revealed that CD39+ Tregs demonstrate stronger stability and

function under inflammatory conditions and superior suppressive

capacity in vitro and in vivo (221–224), as well as an ability to

suppress pathogenic Th17 responses (225).

CD73 was initially described as a characteristic surface marker

of murine Tregs, however, it was only observed in a small

proportion of human Tregs. Over 70% of CD4+CD25hi Tregs

express CD73 intracellularly, while the expression is limited to

20% of CD4+CD25- T-cells (173). These data indicate that CD73 is

readily internalized from the surface of human lymphocytes (226,

227) and is predominantly cytosolic in human Tregs. However,

expanded human CD4+CD25hiCD127lo cells show a higher surface

expression of CD73 (~35%) as compared to unstimulated memory

Tregs (CD4+CD25hiCD127loCD45RA-) (~5%) (228). These

expanded Tregs are highly suppressive, attributable to the surface

expression of CD73 along with CD39. Additionally, CD73 on
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murine Tregs has been shown to suppress proliferation and

cytokine secretion by T helper 1 (Th1) and Th2 cells (229).

Taken together, these results strongly indicate the physiological

importance of CD39 and CD73 expression in Tregs (228, 230).
7 Emerging markers of Tregs function

As previously discussed, a multitude of Treg markers are

associated with their origin, maturation, stability, and functional

characteristics, as concisely delineated in Figure 2. In recent years,

several emerging markers have garnered attention for their

potential contributions to Treg-mediated immunosuppression.

Although the precise roles and mechanisms of action remain a

subject of ongoing investigation, preliminary research suggests their

potential significance in modulating immune responses.

CD121a and CD121b are two unique cell-surface antigens on

human Tregs that are transiently expressed upon TCR-mediated Treg

activation, distinguishing functionalTregs fromactivated FOXP3- and

FOXP3+ non-Tregs, alongside LAP (202). These two highly specific

surface markers were recommended for high yield, high purity Treg

isolation, promising a rapid advancement in the therapeutic

application and functional analysis of Tregs in human disease.

However, the popularity of these two markers has waned due to a

lack of subsequent studies that could verify these properties.

CD69 and HLA-DR are widely recognized as activation-induced

cell surface markers in both conventional T-cells and Tregs, as well as

markers of Treg differentiation and immunosuppression. CD69, upon

binding with its ligand the S100A8/S100A9 complex, regulates Treg

differentiation (231). Further reports indicateCD69 expressionmaybe

essential for tTreg development (232). Moreover, FOXP3+CD69+

Tregs express higher surface levels of suppression-associated

markers and display enhanced suppressive activity as compared to

FOXP3+CD69- Tregs (233, 234). CD69 also enhances the

immunosuppressive function of Tregs by prompting IL-10

production (235). However, due to the lack of knowledge regarding

the functional roles ofCD69 inhumanTregs, nodefinitive conclusions

can be drawn at this time.

Approximately one-third of adult human peripheral blood CD4

+ effector Tregs express HLA-DR, identifying a distinct and highly

functional subset of terminally differentiated Tregs (236). HLA-DR+

Tregs exhibit higher levels of FOXP3 and employ contact-

dependent immunosuppression, indicating superior suppressive

capabilities (237, 238). However, despite HLA-DR+ Tregs being

regarded as superior in functionality (239–241), there is insufficient

data demonstrating HLA-DR as a marker of Treg function.

Two other cell surface receptors, CD101 and CD129, have been

linked with Treg suppressive activity (242). Earlier mouse studies

revealed that CD101 surface expression is strongly correlated with

suppressive activity in CD4+CD25+ Tregs, both in vitro and in vivo

(243). However, studies in human Tregs have not replicated this

observation (244). Similarly, IL-9 generated by activated T-cells

promotes the proliferation of Th clones and enhances the

suppressive function of CD129 (the IL-9 receptor) expressing Tregs

(245, 246). However, these two markers have lost popularity given the

lack of evidence for them in man.
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CD103, also known as integrin aEb7 (ITGAE), is expressed on

approximately 10-30% of mouse pTregs. Whilst not indicative of

activation status, its levels can be upregulated in inflamed tissues

(247–249). CD103+ Tregs have been found to exhibit slightly higher

suppressive capacity and express higher levels of IL-10, contributing to

their anti-inflammatory activity (132). Other findings in mice include

the ability of CD103+ Tregs to restrain CD8+ T-cell activation (250).

Human CD25+FOXP3+ Tregs, however, show limited expression of

CD103 in various tissues, including blood (<5%) (251–254).

Nevertheless, human CD4 T-cells can be induced to express CD103

through various stimuli in vitro (255, 256) and the percentage of

CD103+ cells among CD4+ CD25+ T-cells is significantly higher than

CD4+CD25− T-cells in patients with multiple sclerosis (251). Further

investigation is needed to determinewhetherCD103 is upregulated on

human Tregs in other inflammatory conditions.

Recent studies have identified the potential expression of CD70

(157), CD80, and CD86 (257) in Tregs, opening new possibilities for

identifying novel Tregs subsets and markers of their potential

therapeutic efficacy.

The summary of all the markers discussed above with their

alternative designations, and their patterns of expression in human

Tregs is presented in Table 1.
8 The functional role of chemokines
and chemokine receptor interactions
in Treg migration

Chemokines are a group of small heparin-binding proteins that

direct the movement of circulating immune cells, influencing their
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migration within inflamed tissues (258, 259). When initially

identified, chemokines were described to be associated with

inflammatory diseases (260–262). Later, their involvement in the

migration of immune cells was identified (263), followed by

production by immune cells themselves (264, 265). A plethora of

studies have shown how perturbations in the distribution of Tregs

can lead to organ-specific inflammatory diseases (258, 266–275).

Chemokines govern the trafficking and homing of Tregs, and

understanding how Tregs reach their site of action sets the

ground for targeting the pathogenic Treg distribution in the

context of cancer and may facilitate tissue-specific targeting in the

context of Treg therapy. Variations in chemokine expressions

across different human organs is summarized in Figure 3.

Several integrins have been identified to be crucial toTreg function

and localization. The avb8 integrin is key to activating latent TGF-b
and Tregs lacking avb8 are unable to suppress T-cell-mediated

inflammation in vivo (276, 277). The a4b7 integrin (also known as

LPAM-1 and whose classical ligand is MAD-CAM1) is recognized to

play a crucial role in the migration of Tregs to the intestine and

associated lymphoid tissues. Loss of the b7 has been shown to lead to

disrupted migration, with subsequent colitis observed (266, 278, 279).

The expression of thea4b7 integrin and CCR9 enables Tregs to home

to the gut’s lamina propria, allowing for tolerance to food antigens,

crucial to maintaining gut health (266, 267).
8.1 Tregs in lymphoid tissue

Tregs play a major role in constraining immune response in

secondary lymphoid organs, with CCR7 being one of the first
FIGURE 2

Multitude of markers illuminating the heterogeneity of Treg subpopulation.
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TABLE 1 Markers of human functional FOXP3+ Tregs.

Markers Alternative
name(s)

Marker
location

Expression on resting Treg Expression level
upon activation

CD25 IL-2Ra Surface CD25high Very high

FOXP3 N/A Intranuclear FOXP3high Very high

CD127 IL-7Ra Surface CD127low/- Low/-

CD45RA N/A Surface Naïve Treg are predominantly CD45RA+ Low/-

CD45RO N/A Surface Memory Treg are predominantly CD45RO+ High

CD62L L-selectin Surface Treg with secondary lymph node homing capacity are
predominantly CD62L+

Retained

CCR7 CD197 Surface Most of the Treg with secondary lymph node homing capacity
are CCR7+

Retained

CD95 Fas Surface Most of the naïve Treg are CD95low/- High

CD44 N/A Surface Most of the Treg are CD44low/- High

CD31 PECAM-1 Surface Recent thymic emigrant Treg are CD31+ Low

Helios IKZF2 Intranuclear Thymus derived stable Treg are Helios+ Stable over time

GPA33 A33 Surface Pure and stable naïve Treg population, that are also derived from
thymus, are GPA33+

low

CTLA-4 CD152 Surface/
Intracellular

Treg express CTLA-4 constitutively at low level High

PD-1 CD279 Surface/
Intracellular

Most of the PD-1 expressing Treg retain its expression in the
intracellular compartments

High
(surface)

ICOS CD278 Surface About 20% of the peripheral Treg are ICOS+ High

TIGIT VSTM3 Surface Few Treg with activated phenotype are TIGIT+ High

LAG-3 CD223 Surface Most of the resting Treg are LAG3low/- High

TIM-3 CD366
HAVCR2

Surface Only 2-5% of Treg in periphery are TIM-3+ High

GITR TNFRSF18
CD357

Surface Few Treg with activated phenotype are GITR+ High

OX-40 CD134 Surface Few Treg with activated phenotype are OX-40+ High

4-1BB CD137 Surface Few Treg with activated phenotype are 4-1BB+ High

CD27 N/A Surface Treg with high suppressive capacity are CD27+ Mostly stable over time

CD49d a4 integrin VLA-4 a Surface 70% of the immunosuppressive FOXP3+ Treg are CD49dlow/- High

CD26 ADA binding protein Surface Most of the Treg are CD26low/- High

CD6 – Surface Most of the Treg are CD6low/- High

CD226 DNAM-1 Surface Most of the Treg are CD226low/- High

TGF-b TGF-b1, LAP Surface/
Intracellular

Most of the resting Treg are TGF-blow/- High

LAP TGF-b1 Surface/
Intracellular

Most of the resting Treg are LAPlow/- High

GARP LRRC32 Surface Most of the resting Treg are GARPlow/- High

CD39 N/A Surface Only effector/memory-like Treg are CD39+ High

CD73 N/A Surface/
Intracellular

Most of the CD73 expressing Treg retain in the
intracellular compartments

High
(surface)

CD121a/b IL-1R I/II Surface Most of the resting Treg are CD121a/blow/- High (transient)

(Continued)
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chemokine receptors identified on Tregs (30, 280). CD62LhiCCR7+

naïve Tregs favor migration into secondary lymphoid organs where

professional antigen presentation allows for antigen-dependent

stimulation, modifying the pattern of receptor expression to

enable tissue homing (30, 30, 33, 281, 282). Lymph nodes

draining these organs act with local dendritic cells to induce Treg

activation and action, while CCR7 is downregulated, promoting

accumulation in inflamed tissues (38, 283–285). Notably, the loss of

CCR7 results in impaired in vivo Treg suppressive activity, while

their in vitro activity remains intact. This highlights the significance

of CCR7 to Treg function through facilitating localization (33, 38,

286, 287).

Native Th1 responses are dependent on CXCR3-mediated

signals. Tregs inhibit stable contacts between CD4+ T-cells and

dendritic cells and can influence the expression of CXCR3 ligands

in draining lymph nodes. Early data demonstrated that Treg

localization in the lymph node, when suppressing CD4+ T-cell

responses, was via localization with dendritic cells, rather than the

CD4+ T-cells, suggesting they act by inhibiting the dendritic cell-

CD4+ T-cell interaction (193, 194). Further data has suggested,

Tregs can also prevent the expression of CXCR3 on effector T-cells,

inhibiting their migration and trafficking (288, 289). Tregs can also

upregulate T-bet and express CXCR3 in response to INF-g. These
CXCR3 expressing Tregs not only resemble Th1 subsets of effector

T-cells, expressing T-bet in addition to FOXP3 but also

demonstrate an ability to produce INF-g and IL-10. Crucially,

they are essential to the suppression of Th1-mediated

inflammation, and imaging data suggests their function is

mediated by colocalization with effector Th1 CD4+ and CD8+ T-

cells in secondary lymphoid organs (36, 290–292).

CCL3 and CCL4 interactions with CCR5 are recognized to be

important to CD4+ and CD8+ T-cell interactions in the lymph node

for generating memory CD8+ T-cells (293). The production of

CCL3 and CCL4 by Tregs has been observed, attracting CD4+ and

CD8+ T-cells via CCR5 expressed on these cells; bringing them into

proximity and allowing Tregs to exert their suppressive function.

Tregs deficient in CCL3 and CCL4 fail to prevent the progression of
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experimental autoimmune encephalomyelitis or islet allograft

rejection in murine models and Tregs from individuals with type

1 diabetes demonstrate an impaired ability to produce CCL3 and

CCL4 (268). Additionally, Tregs can interfere with the priming of

CD8+ T-cells by modulating the expression of the CCR5 ligands

CCL3, CCL4 and CCL5. The deletion of Tregs leads to the

stabilization of interactions between dendritic cells and low-

avidity T-cells, compromising the responses of high-avidity

memory T-cells and memory responses (289, 294).

CXCR5 is key to the function of Tregs in modulating B cell and

humoral responses. Chung et al. were able to show Tregs expressing

CXCR5 and Bcl-6 localize to germinal centers, with CXCR5

expression being Bcl-6 dependent (295). These follicular Tregs,

are absent in the thymus. Their depletion leads to exaggerated

germinal center reactions, including germinal center B cells, affinity

maturation of antibodies and the differentiation of plasma cells

(289, 295). These results were confirmed by work by Linterman

et al., which showed follicular Tregs regulate B cell responses,

controlling germinal center responses (289, 296–299). Follicular

Tregs are hypothesized to exert their effect via various mechanisms,

including the production of IL-10, and TGF-b (300–302).

Intriguingly, CXCR5 is not necessary for the localization of

follicular Tregs, but the transcription factor Bcl-6 is necessary for

function and localization (36, 297, 298, 303, 304).

Finally, a CCR6+ Treg subset has recently been demonstrated to

be significant to thymic Treg development and function. These IL-

1R2-positive Tregs express CCR6, but not CCR7, which suggests

they recirculate from the periphery with an activated phenotype.

These Tregs can quench IL-1, indicating they can maintain tTreg

development even in inflammatory conditions (305).
8.2 Tregs in various tissues

Tregs in various tissues demonstrate specificity to site and

function. Here we describe selected examples of organ-specific

Tregs and the chemokine receptor profiles that facilitate and
TABLE 1 Continued

Markers Alternative
name(s)

Marker
location

Expression on resting Treg Expression level
upon activation

CD69 N/A Surface Most of the resting Treg are CD69low/- High

HLA-DR N/A Surface Few Treg with activated phenotype are HLA-DR+ High

CD101 BB27 Surface Less studied in humans N/A

CD129 IL-9R Surface Less studied in humans N/A

CD103 Integrin aEb7 Surface <5% Treg in various tissues, including blood are CD103+ N/A

Neuropilin-
1

CD304 Surface Thymic derived mouse Treg are Neuropilin-1+ (Human studies
are controversial)

N/A

CD70 CD27L Surface Only 5-6% Tregs are CD70+ High

CD80/
CD86

B7 1/2 Surface 20% Treg are CD80+ and <1% Treg are CD86+ High
References are indicated in the text.
The table above presents an overview of human Treg markers that delineate different subsets of Treg cells, along with their respective properties, as detailed in the review.
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define their tissue tropism, allowing immunosuppression within

their unique environments (285, 306).

Visceral Adipose Tissue: Tregs in visceral adipose tissue (VAT)

show enrichment in CCR1, CCR2, CCR5 and CXCR3, as well as the

IL-33 receptor, ST2 (also known as IL-1RL1) (307–309). Tregs in

visceral adipose tissue migrate under the influence of the IL-33/ST2

axis, with the majority of IL-33 arising from mesenchymal stromal

cells (310, 311). Hydroxyprostaglandin dehydrogenase expressed by

VAT Tregs exerts an inhibitory effect on conventional T-cells and

inflammation (312). Most interestingly, however, is the limited range

and repertoire in Treg TCRs present on VAT Tregs, suggesting they

respond to specific antigens found in the tissue of residence (275, 309,

313). This may relate to their function in regulating inflammation

within VAT, and thus having a restricted repertoire of antigens which

they may need to respond to, as it appears VAT Tregs regulate the

inflammatory state and promote insulin sensitivity (314). Knockout

of this subset of Tregs leads to impaired function in the insulin

receptor and chronic inflammation (314).

Skin Tregs: A significant subset of peripheral blood Tregs appear

to express CCR4, but Tregs in certain tissues seem to upregulate the

expression of this receptor, with its presence noted in skin, liver, lung

and intestinal Tregs (315–317). The loss of CCR4 on murine Tregs

impairs Treg accumulation in skin and lung tissues, with complete

loss of CCR4 in the Treg cell compartment leading to severe

dermatitis, pneumonitis and lymphadenopathy (316).
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CCR5 has been shown to be key to the function of many tissue

resident Tregs, as well as potentially having a role in persistent

infections. In a Leishmania majormodel, CCR5 was essential to the

homing of Tregs to Leishmania infected dermal sites, promoting

infection and parasite survival (318). Similar results have been

observed in chronic fungal granulomata, with chronic

inflammation mediated by CCR5 expressing Tregs, as pathogens

generate CCR5 ligands, leading to Treg recruitment and dampened

immune responses (270).

In neonates, CCR6 is crucial to Treg tropism to the skin.

Interactions in early life between commensals and CCR6

expressing Tregs induce Treg accumulation at this site, facilitating

tolerance to normal skin commensals, mediated by CCL20 and

CCR6 interactions (319, 320).

Skeletal muscle and regulatory T-cells: Tregs in muscle are

characterized in part by the presence of CCR1 on the surface, as well

as ST2 and the key growth factor Amphiregulin (271). These Tregs

seem to demonstrate a key role in promoting muscle repair and

regeneration (271, 272, 321–323). Tregs in muscle are

predominantly recruited from the circulation via the IL-33/ST2

axis, as is seen in VAT Tregs (321). Once in the muscle, CD103

plays a key role in adherence and retention of these Tregs (324).

Interestingly, muscle Tregs seem to show a high level of Helios and

Neuropilin, suggesting a thymic origin, however, data clearly shows

their recruitment from the circulation. Similar to VAT Tregs,
FIGURE 3

Tregs in diverse anatomical compartments exhibiting differential chemokine expressions and chemokine receptor profiles.
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muscle Tregs demonstrate a limited repertoire of TCRs, suggesting

specific and limited targets (271). They are recognized to be

involved in the repair and regeneration of muscle tissue, having

been identified in the inflammatory infiltrate of injured muscle,

both in acute and chronic muscle injury, expressing IL-10 where

observed (271, 272). Indeed, muscle Tregs were shown to decline

with age which likely contributes to defects in muscle regeneration

seen in aging (325). Amphiregulin seems to play a crucial role in the

regeneration of muscle cells, acting directly on satellite cells,

promoting myocyte differentiation in vitro and enhancing muscle

repair in vivo (271, 272, 275, 308, 326).

Lung Tregs: Tregs found in the lung, as discussed above,

predominantly demonstrate upregulation in CCR4 (327). Similar

to muscle Tregs, Tregs in the lung also appear to have a high

expression of amphiregulin. Distinct to these Tregs however is the

expression of IL18R1, ST2, CCR5, CXCR4, and KGF with

downregulation of CXCR5 upon activation (307, 328). Tregs are

recruited to the lung via TGFb expression by a resident IFNAR1hi

TNFR2+ conventional dendritic cell 2 (iR2D2) population (329).

Tregs play a crucial role in the resolution of lung injury, modulating

immune responses and enhancing alveolar epithelial proliferation

and tissue repair through the expression of amphiregulin and

keratinocyte growth factor (KFG) (330). Inflammatory responses

are also dampened by the upregulation of Mmp12, inhibiting

neutrophil recruitment. Sik1, meanwhile, has been shown to be

downregulated on activation of lung Tregs, leading to an increase in

the expression of CD103 (aEb7) in response, facilitating Treg

adhesion and tissue retention (328). Furthermore, Tregs have

been highlighted to play a role in asthma. The Notch4 pathway

has been found to be upregulated in Tregs in asthmatics. Defective

Hippo signaling gives rise to FOXP3 CN2 methylation in Tregs,

impairing Treg stability and thus their ability to regulate

inflammation in this environment. Thus, the rescue of Tregs in

this environment and restabilizing them presents a future

therapeutic direction in asthma (273).

Tregs in the gut: The gut provides a dynamic environment,

containing a complex interplay of food antigens and resident

microbial antigens. As the principal digestive and absorptive site

in mammals, an immense range and variety of peptides are

present. There is a complex interplay in the gut of various

resident and migrating immune cells, from both innate and

adaptive systems. Regulating these interactions is essential, and

Tregs play a crucial role in orchestrating responses (331). The

ablation of colonic Tregs has been demonstrated to lead to

aberrant Th1 and Th17 mucosal responses, which are rescued

with adoptive transfer (274, 275, 332). Chemokine receptors in gut

resident Tregs include CCR1, CCR4, CCR5, CCR8, CCR9 and

CXCR3, in addition to the integrin a4b7 (discussed above) (306,

307, 333). This subset of Tregs play a key role in the regulation of

complex immune interactions and have been found to perhaps

represent two distinct populations, one derived from the thymus

and another from peripheral Tregs.

Single-cell transcriptomic data has since shown the colon has

populations of tTregs, reflecting those seen in non-lymphoid tissues

(expressing GATA-3, neuropillin-1, amphiregulin, ST2 and Helios),

and suppressive pTregs (expressing IL-10, Granzyme B, LAG3 and
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CXCR3) defined by the expression of the transcriptional factor

RORgt (306). Interestingly, the microbiome seems to play a crucial

role in the recruitment of the latter, being totally absent in germ free

mice, and bile acid metabolites impact their function and

proliferation (334–337). The two first reports of RORgt Tregs

were published together in 2015 (335, 336). Crucially, the data on

the function of these cells was divergent, with one group finding

that they inhibit Th1/17 responses, while the other demonstrated

they respond to Th2 cells. Others have shown that RORgt
expression in Tregs may represent a step in the process towards a

Th17 Treg phenotype, expressing CCR6 and sharing phenotypic

features usually observed in Th17 T-cells (97, 338).

IL-33 has been noted to be present in high quantities in human

inflammatory bowel disease, as well as colonic inflammatory

lesions. This binds ST2 on Tregs, stimulating responses by

enhancing TGF- b1-mediated differentiation and providing

signals for the accumulation and maintenance of Tregs in

inflamed tissues. Conversely, IL-23, inhibits IL-33 responses.

These data suggest that ST2-mediated responses and the balance

between IL-33 and IL-23 may contribute to the control of intestinal

immune responses (339). Additionally, Blimp-1 has been shown to

control the differentiation and function of Tregs, promoting IL-10

generation and ICOS expression in Tregs and suppressing colitis via

an IRF4-dependent pathway (340, 341).

Treg/Th17 imbalances are well established to be at play in the

pathogenesis of ulcerative colitis. CCR6 Tregs have been shown to

be enriched in ulcerative colitis patients and correlated with disease

activity. CCR6+ Tregs also demonstrated a higher propensity to

secrete IL-17A, suggesting that they may play a part in the ongoing

colitis (269). RORgt expressing Tregs have been noted to express

CCR6 and this may be a marker of Th17 biased Tregs (338).

In addition to the above, a novel chemokine receptor, GPR15,

an orphan GPCR which binds to its own ligand (GPR15L) has been

shown to play a role in the trafficking of Tregs to barrier tissues,

including skin and colon, where it is involved in the suppression of

colitis and graft rejection. GPR15 has been shown to have its

expression modulated by both gut microbiota and TGF-b, with
knockout of this receptor giving rise to colitis, rescued by transfer of

Tregs with intact GPR15, suggesting GPR15 has a crucial role to

play in mucosal health (36, 342, 343).

Liver Tregs: The liver, is a key organ to gut health and

homeostasis. With a dual blood supply, and 75% of this from the

portal system, it attracts a high burden of various food and

microbial antigens and consequently, a tolerogenic environment

has to be maintained. However, appropriate responses must be

mounted to remove pathological antigens and particulates,

preventing them from entering the systemic circulation (344).

CXCR3 is critical to Treg migration into the liver and liver

sinusoids. This chemokine receptor allows for the colocalization of

Tregs within the liver, with CCR4 cognate ligands (CCL-17 and -22)

allowing for colocalization with infiltrating dendritic cells within

inflammatory infiltrates in liver diseases (344, 345). Diseased livers

demonstrate elevated expression of CXCR3 on Tregs (258). This

adhesion is mediated by CXCL-9, -10 and -11 expression. In vitro

models have demonstrated the upregulation of this chemokine

under stress (346). Contacts made by lymphocytes and sinusoidal
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epithelial cells activates integrins, including LFA-1 and VLA-4 (also

known as a4b1) on lymphocyte. These integrins engage adhesion

molecules, including ICAM, VCAM and VAP-1 on epithelial cells,

facilitating Treg transmigration into the hepatic parenchyma (347).

This process enables Tregs to access the hepatic sinusoidal

environment and may be utilized for clinical applications, as

described below (258).

Additionally, CCL28 production in the biliary epithelium

recruits CCR10 expressing Tregs. CCL28 is secreted by primary

human cholangiocytes in response to LPS, IL-1 and bile acids. The

CCL28 - CCR10+ interaction induces adhesion molecule

expression, including VCAM-1, and a4b7. Furthermore, CCR10+

Tregs exhibit low expression of CCR7 (indicating a memory

phenotype) and high levels of CXCR3 (348).

In inflamed bile ducts, CCL20 is secreted by biliary epithelial

cells. In a Th17 inflammatory environment, replicated in vitro by a

cocktail of IL1b, TNFa, IFNg and IL-17, CCL20 is secreted by

human biliary epithelium and leads to recruitment of CCR6

chemokine receptor expressing effector T-cells to sites of biliary

inflammation (97, 349, 350). Additionally, CCR6 is a common Treg

marker, associated with Th17 skewing. However, in the liver, CCR6

Tregs are liable to phenotypic instability and conversion to a Th17

inflammatory phenotype. This instability challenges their viablility

as a candidate for clinical application or cell therapeutic (258).

Additionally, it has been noted that CCR6 expressing Tregs in the

colon can mount Th17 responses, regulated by IL-10 production in

CCR6 expressing Tregs (97, 351, 352).

By demonstrating tissue selectivity and specificity through

chemokine receptors, Treg cell products can be designed for

organ-specific cell therapy. Liver diseases such as primary

sclerosing cholangitis, primary biliary cirrhosis, autoimmune

hepatitis and liver transplant rejection all demonstrate a

significant contribution from T-cell immune responses to

autoantigens expressed in either the biliary epithelium or

hepatocytes (353–365). The proof-of-concept AUTUMN study

(Autologous regUlatory T-cells infUsion and tracking in

autoiMmuNe hepatitis) employed GMP-manufactured Tregs and

found infused Tregs favoured migration to the liver (366).

Tregs in the Bone Marrow: Tregs expressing CXCR4 have been

shown to collect in the bone marrow, with loss of CXCR4 impairing

accumulation in the bone marrow. The depletion of CXCR4 Tregs

has also been shown to lead to an increase in B1 mature B cells,

exclusively within the bone marrow, with no observed changes in

plasma cells or hematopoietic stem cells and no signs of immune

activation elsewhere. However, the loss of these CXCR4 Tregs does

lead to an increase in total serum IgM levels and a highly specific

increase in IgM autoantibodies (367).
8.3 Chemokine receptors in cancer

Tregs are enriched in the tumour microenvironment, and their

enrichment has been correlated with worse outcomes (368). Tregs

in the tumour microenvironment supress host immune responses,

subverting immune destruction and thus supporting tumor growth

(369). Consequently, Tregs have become a focus of cancer
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immunotherapy (370). However, specifically targeting cancer

facilitating Tregs and Tregs in the tumour microenvironment

remains a barrier to effective cancer immunotherapy with limited

offsite side effects (371, 372).

CCR4 is predominantly expressed in tumor resident Tregs,

enabling tumor immune evasion, and is thus regarded as a potential

candidate target for cancer immunotherapy (71, 373, 374). CCR8’s

more recent identification as a chemokine receptor specifically

upregulated in cancer Tregs and it’s correlation with poor

outcomes in patients has garnered significant interest (36, 375,

376). This cytokine receptor has been shown to be upregulated in

colorectal, non-small cell lung, breast, and other cancers.

Additionally, some data has shown CCR8 to be upregulated upon

Treg activation, with autocrine production of CCR8’s ligand CCL1

(377). Data on targeting CCR8 in cancer thus far, however, has been

conflicting, but some preclinical models have shown promise

(378–381).

Nevertheless, both CCR4 and CCR8 appear to be expressed

under the control of GATA3 and IRF4, both of which are canonical

Th2 transcription factors (36). The expression of these transcription

factors on activated Tregs hints at a Th2 skewed Treg population

and suggests that CCR4 and CCR8 may be chemokines specific to

Th2 Treg function (382–384). GATA-3, meanwhile, has been

shown to be essential to Treg function, binding to the CNS2 in

Foxp3 promoting Foxp3; with loss of GATA-3 leading to a 50%

reduction in FOXP3 mRNA transcripts compared to baseline, with

the same seen in other Tregs signature genes (CD25, CTLA-4,

GITR). Furthermore, GATA-3 deficient Foxp3 Tregs acquire Th17

cytokine expression profiles (383, 385).

CCR6 has been shown to be a target of certain cancer-derived

factors, promoting Treg migration. Eomesodermin has been shown

to be generated by oesophageal adenocarcinoma, and this has been

shown to drive CCL20 secretion, which binds to CCR6 on Tregs

driving Treg chemotaxis and residency intratumorally, promoting

cancer growth (386).
8.4 Chemokine receptors in graft-versus-
host disease

GVHD is a complication affecting every second stem cell

transplanted patient. Both acute and chronic GvHD are

characterised by a systemic inflammation of recipient tissue

caused by donor cells in the graft. Severe treatment refractory

GvHD can often be lethal. Polyclonal Tregs have successfully

been used in named patient programs and clinical trials by us

(Trzonkowski; Fuchs(Theil)) and others, both to prevent and to

treat GVHD (387–393).

In a murine model of GVHD, the knock-out of CCR5 impaired

the migration of donor Tregs to GVHD target organs, leading to

lethal outcomes (394). Additionally, CCR8 in GVHD has been

shown to promote Treg maintenance, by allowing tolerogenic

interactions with donor CD11c+ antigen presenters. In a murine

model of islet transplantation, CCR5 along with CCR2, CCR4 and

P- and E-selectins were essential to the movement of Tregs from

blood into pancreatic islet allografts. Subsequent migration to
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lymph nodes was found to be CCR2, CCR4 and CCR7 dependent,

from which they could inhibit effector T-cell responses in both the

allograft and lymph node (395).
9 Genetic engineering to enhance
Treg function

Deep understanding of Treg biology, mechanisms of

immunosuppression, as well as identification of chemokine

receptor patterns responsible for tissue tropism are cornerstones

for the generation of genetically modified cells with improved

function and enhanced infiltration of the target tissue. Polyclonal

autologous Tregs have demonstrated efficacy in several trials, but

accumulating evidence from preclinical models demonstrate

increased potency of antigen-targeted approaches (1) (388, 390,

396–399). Recent success and FDA/EMA approval of chimeric

antigen receptor (CAR)-T-cells in hematological cancers has

caused a paradigm shift (400), with increased interest in CAR-

Tregs. For example the technology enables generation of Tregs that

will precisely target HLA mismatches in transplantation or antigens

within inflamed tissues, facilitating direct local suppressive effects.

CAR constructs in general are built from: 1) an extracellular ligand

binding domain which consists of the antigen-specific variable

fragment of heavy and light antibody chains (single-chain

variable fragment; scFv), 2) hinge region (providing scFv

flexibility), 3) transmemberane domain (that anchors the receptor

in plasmalemma) and finally 3) an intracellular costimulatory

domain derived from T-cells (401, 402). Until now five

generations of CARs have been developed and tested with the

main difference in the intracellular domain. The first-generation

CARs comprised CD3z, a part of the T-cell receptor-CD3 complex,

while second-generation CARs combine CD3z with costimulatory

molecules such as CD28, CD137, CD27 or CD134 delivering a

second signal and were the most extensively studied approach. The

third-generation CARs comprise of two costimulatory molecules

(403–405), fourth generation CARs co-express cytokine or

chemokine genes, While the fifth generation receptors contain

intracellular domain of a cytokine receptor (e.g., IL2RB chain)

that interacts with STAT3 (406–409). In case of genetic Treg

modifications, mostly 2nd generation CARs were tested. The

Levings´group conducted a comprehensive study exploring the

Treg immunosuppressive capaci ty and stabi l i ty after

incorporation of various costimulatory domains into the CAR

(including CD28, ICOS, CTLA4, PD1, GITR, OX40, CD137, and

TNFR2) (410). Interestingy, in contrast to anti-tumor conventional

CAR-T cells, Tregs with CD28-encoding CAR exhibited superior in

vitro and in vivo performance in terms of proliferation,

suppression, and delaying GvHD symptoms. In addition, both

CD137- and TNFR2-CARs were found to negatively affect Treg

function and stability, leading to FOXP3 locus methylation,

decreased Helios expression, and reduced suppressive function in

vitro and in vivo. Interesting the group published very recently, that

Tregs expressing CARs encoding CD28, ICOS, PD1, and GITR, but

not 4-1BB or OX40, all extended skin allograft survival in an
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immunocompetent transplant model (411). With other studies

(412, 413) consistently reporting adverse consequences of using

CD137 in Tregs, one may conclude that this co-stimulatory domain

is suboptimal for CAR-Tregs. However, in the case of flexible

modular chimeric antigen receptor technology called universal

CAR (UniCAR-Tregs), both CD137 and CD28 costimulation

induced robust suppressive capabilities. Nevertheless, due to

higher background activation of Treg in case of CD28, UniCARs

featuring a CD137-CD3z signaling domain were discussed as the

preferred constructs for the clinical application of redirected Tregs

(414). An intriguing avenue for exploration involves combining

CD28 and CD137 domains to potentially optimize CAR-Treg

suppression, as reviewed by Zhang, Qunfang et al. (415).

Noteworthy, IL-10 secretion was successfully induced into 4th

generation CAR-Tregs, enhancing suppressive function (416).

However, no reports on fifth- generation CAR-Tregs have been

available yet and their specific effects on CAR-Tregs needs further

investigation. The state of knowledge on CAR-Treg generation is

summarized in a review by M. Levings, 2020 (417). Further innovative

adaptations of CAR designs have emerged with the potential to enhance

the durability, stability, proliferative capacity, and function of CAR-Tregs.

Additionally, novel CAR-Tregs specific for E.coli-derived flagellin have

been designed and introduced into humanized murine models. These

FliC-CAR-Tregs were directed to the colon (which confirmed improved

homing abilities) and were characterized by higher expression of PD-1,

highlighting higher immunosuppressive capacity and potential for

application in inflammatory bowel diseases (418). Adoptive Treg

therapy is limited by the plasticity of Tregs, potentially transforming

into conventional T-cells. To overcome this challenge, additional genetic

engineering has been suggested to enhance Treg stability and robustness.

Examples include engineered epigenetic and post-transcriptional changes

in FOXP3 and metabolic stabilization by enhancing CD39 and CD73

expression. Elevating IL-10, TGFb, IL-34, IL-35, and FGL-2 can boost

Treg function, while suicide genes help manage Treg adverse effects. This

idea of the next generation of Super-Tregs with increased function,

stability, redirected specificity and survival is summarized by Amini

et al. (419).

Engineered antigen-specificity has demonstrated improved

responses in mouse models, emphasizing utility (420, 421). In

mouse models, researchers demonstrated that lentiviral

transduction did not alter the Treg phenotype and HLA-A2

CAR-Tregs were effective in suppression. CAR-Tregs produced

small amounts of IFN-ɣ, but more importantly, secreted the

highest amounts of IL-10. Finally, transduced cells migrated more

rapidly through HLA-A2+ HUVECs and contributed to the survival

of human skin grafts (416).

Currently, CAR-Tregs remain under investigation (422), and

two clinical trials focused on transplantation are registered on

clinicaltrials.gov. Sangamo Therapeutics in 2021 initiated the first

trial using CAR-Tregs (NCT04817774), infusing TX200-TR101

into HLA-A02-negative patients awaiting kidney transplants from

HLA-A02-positive donors. Encouraging preclinical studies

demonstrated specific activation and potent allogeneic Tconv

suppression by TX200-TR101, both in vitro and vivo. No side

effects have been reported underscoring its potential as a safe and

effective therapeutic alternative (423–425). Quell Therapeutics’s
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QEL-001, similar to TX200-TR101, utilizes an HLA-A2-specific

CAR to abrogate immunosuppression (426, 427)Tregs, and the

LIBERATE clinical trial (NCT05234190) is currently enrolling

patients who have received HLA A2-mismatched liver transplants

12 months to 5 years prior the time of enrolment.

Sonoma Biotechnologies’s pipeline includes SBT-77-7101, a

CAR-Treg product specific to citrullinated vimentin (CV), a

known antigen present in the synovial fluid (SF) of Rheumatoid

arthritis (RA) patients (428). Preclinical studies (429–432) have

shown promise in using Treg therapy for Systemic lupus

erythematosus (SLE), demonstrating the as-yet unrealized

potential benefit of these novel technologies.

Additionally, an inventive way of using Tregs in autoimmune

disease treatment is planning to be introduced into clinical trials on

Multiple sclerosis (MS) and type 1 diabetes. The company “Abata

Therapeutics” started to engineer Tregs expressing TCRs

recognizing tissue-restricted antigens. Similar to the CAR

concept, their TCR-based targeted methods reduce systemic

suppressive response limiting it to the specific tissue to which

autoimmune response is directed. The company PolTREG

develops TCR-engineered Tregs in type 1 diabetes. Interestingly,

this company works in neuroinflammatory conditions, such as MS

and amyotrophic lateral sclerosis, using a CAR-based concept in

which CAR-Tregs are designed to strengthen the blood-brain

barrier. As the engineered Tregs landscape expands, continued

investigation will unveil the most effective strategies to unlock the

full potential of engineered Tregs.
10 Concluding remarks

Tregs constitute a minor fraction of the broader population of

CD4+ T-cells. The lack of an exclusive Treg marker together with

phenotypical similarities to activated CD4+ effector cells present

challenges in the context of cell therapy. However, a variety of

markers, often applied in combinatorial approaches identifies

functional suppressive Tregs and distinct subsets, and contributed

to an enhanced understanding of biological processes. As our

knowledge improves and we enter the era of engineered Tregs,

significant strides addressing pathological immune-mediated

processes can be anticipated. Learnings from ongoing clinical trials,

advancement in methods to determine Treg function, together with

means to identify patients who are most likely to benefit from Treg

therapy, will determine the fate of Treg cell therapy.
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et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells
at the single-cell level. Eur J Immunol (2005) 35(6):1681–91. doi: 10.1002/eji.200526189

18. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al.
The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome
(IPEX) is caused by mutations of FOXP3. Nat Genet (2001) 27(1):20–1.
doi: 10.1038/83713

19. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, et al. X-linked
neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human
equivalent of mouse scurfy. Nat Genet (2001) 27(1):18–20. doi: 10.1038/83707

20. Wang J, Ioan-Facsinay A, van der Voort EIH, Huizinga TWJ, Toes REM.
Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J
Immunol (2007) 37(1):129–38. doi: 10.1002/eji.200636435

21. Liu W, Putnam AL, Xu-yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression
inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J
Exp Med (2006) 203(7):1701–11. doi: 10.1084/jem.20060772

22. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, et al.
Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human
regulatory and activated T cells. J Exp Med (2006) 203(7):1693–700. doi: 10.1084/
jem.20060468

23. Baron U, Floess S, Wieczorek G, Baumann K, Grützkau A, Dong J, et al. DNA
demethylation in the human FOXP3 locus discriminates regulatory T cells from
activated FOXP3(+) conventional T cells. Eur J Immunol (2007) 37(9):2378–89.
doi: 10.1002/eji.200737594
Frontiers in Immunology 17
24. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional
delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3
transcript ion factor . Immunity (2009) 30(6) :899–911. doi : 10.1016/
j.immuni.2009.03.019

25. Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M. A peripheral
circulating compartment of natural naive CD4+ Tregs. J Clin Invest (2005) 115
(7):1953–62. doi: 10.1172/JCI23963

26. Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S, et al.
Persistence of naive CD45RA+ regulatory T cells in adult life. Blood (2006) 107
(7):2830–8. doi: 10.1182/blood-2005-06-2403

27. Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R, et al. Only the
CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous
regulatory T-cell lines upon in vitro expansion. Blood (2006) 108(13):4260–7.
doi: 10.1182/blood-2006-06-027409

28. Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G, et al. Loss of
FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in
vitro stimulation. Eur J Immunol (2009) 39(4):1088–97. doi: 10.1002/eji.200838904

29. Tosello V, Odunsi K, Souleimanian NE, Lele S, Shrikant P, Old LJ, et al.
Differential expression of CCR7 defines two distinct subsets of human memory CD4
+CD25+ Tregs. Clin Immunol (2008) 126(3):291–302. doi: 10.1016/j.clim.2007.11.008

30. Szanya V, Ermann J, Taylor C, Holness C, Fathman CG. The subpopulation of CD4
+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high
levels of CCR7. J Immunol (2002) 169(5):2461–5. doi: 10.4049/jimmunol.169.5.2461

31. Samy ET, Parker LA, Sharp CP, Tung KSK. Continuous control of autoimmune
disease by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional
lymph node. J Exp Med (2005) 202(6):771–81. doi: 10.1084/jem.20041033

32. Fu S, Yopp AC, Mao X, Chen D, Zhang N, Chen D, et al. CD4+ CD25+ CD62+
T-regulatory cell subset has optimal suppressive and proliferative potential. Am J
Transplant (2004) 4(1):65–78. doi: 10.1046/j.1600-6143.2003.00293.x

33. Schneider MA, Meingassner JG, LippM, Moore HD, Rot A. CCR7 is required for
the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med (2007) 204(4):735–
45. doi: 10.1084/jem.20061405

34. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, Lucas PJ, Gress RE, Levine BL,
et al. L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent
inhibitors of GVHD and BM graft rejection. Blood (2004) 104(12):3804–12.
doi: 10.1182/blood-2004-05-1850

35. Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP, et al.
Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from
lethal acute GVHD. Blood (2005) 105(5):2220–6. doi: 10.1182/blood-2004-05-2044

36. Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity (2023)
56(2):240–55. doi: 10.1016/j.immuni.2023.01.004

37. Huehn J, Siegmund K, Lehmann JCU, Siewert C, Haubold U, Feuerer M, et al.
Developmental stage, phenotype, and migration distinguish naive- and effector/
memory-like CD4+ Regulatory T cells. J Exp Med (2004) 199(3):303–13.
doi: 10.1084/jem.20031562

38. Menning A, Höpken UE, Siegmund K, Lipp M, Hamann A, Huehn J. Distinctive
role of CCR7 in migration and functional activity of naive- and effector/memory-like
Treg subsets. Eur J Immunol (2007) 37(6):1575–83. doi: 10.1002/eji.200737201

39. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale
in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood
(2004) 104(3):895–903. doi: 10.1182/blood-2004-01-0086

40. Fritzsching B, Oberle N, Pauly E, Geffers R, Buer J, Poschl J, et al. Naive
regulatory T cells: a novel subpopulation defined by resistance toward CD95L-
mediated cell death. Blood (2006) 108(10):3371–8. doi: 10.1182/blood-2006-02-005660

41. Firan M, Dhillon S, Estess P, Siegelman MH. Suppressor activity and potency
among regulatory T cells is discriminated by functionally active CD44. Blood (2006)
107(2):619–27. doi: 10.1182/blood-2005-06-2277

42. Bollyky PL, Lord JD, Masewicz SA, Evanko SP, Buckner JH, Wight TN, et al.
Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of
CD4+CD25+ regulatory T cells. J Immunol (2007) 179(2):744–7. doi: 10.4049/
jimmunol.179.2.744

43. Bollyky PL, Falk BA, Long A, Preisinger A, Braun KR, Wu RP, et al. CD44 co-
stimulation promotes FoxP3+ regulatory T-cell persistence and function via
production of IL-2, IL-10 and TGF-beta. J Immunol (2009) 183(4):2232–41.
doi: 10.4049/jimmunol.0900191

44. Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ. CD25- T cells
generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J Immunol (2004)
173(12):7259–68. doi: 10.4049/jimmunol.173.12.7259

45. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA. Plasticity of CD4+ FoxP3+
T cells. Curr Opin Immunol (2009) 21(3):281–5. doi: 10.1016/j.coi.2009.05.007

46. Zhou L, Chong MMW, Littman DR. Plasticity of CD4+ T cell lineage
differentiation. Immunity (2009) 30(5):646–55. doi: 10.1016/j.immuni.2009.05.001

47. da Silva Martins M, Piccirillo CA. Functional stability of Foxp3+ regulatory T
cells. Trends Mol Med (2012) 18(8):454–62. doi: 10.1016/j.molmed.2012.06.001
frontiersin.org

https://doi.org/10.1007/BF01922839
https://doi.org/10.4049/jimmunol.155.3.1151
https://doi.org/10.1084/jem.171.1.141
https://doi.org/10.1097/00007890-199302000-00027
https://doi.org/10.1097/00007890-199302000-00027
https://doi.org/10.1084/jem.188.2.287
https://doi.org/10.1084/jem.193.11.1285
https://doi.org/10.1084/jem.193.11.1295
https://doi.org/10.1084/jem.193.11.1295
https://doi.org/10.1182/blood.V98.9.2736
https://doi.org/10.4049/jimmunol.167.3.1245
https://doi.org/10.4049/jimmunol.167.3.1245
https://doi.org/10.1038/ni904
https://doi.org/10.1038/ni909
https://doi.org/10.1126/science.1079490
https://doi.org/10.1126/science.1079490
https://doi.org/10.1038/83784
https://doi.org/10.1002/eji.200526189
https://doi.org/10.1038/83713
https://doi.org/10.1038/83707
https://doi.org/10.1002/eji.200636435
https://doi.org/10.1084/jem.20060772
https://doi.org/10.1084/jem.20060468
https://doi.org/10.1084/jem.20060468
https://doi.org/10.1002/eji.200737594
https://doi.org/10.1016/j.immuni.2009.03.019
https://doi.org/10.1016/j.immuni.2009.03.019
https://doi.org/10.1172/JCI23963
https://doi.org/10.1182/blood-2005-06-2403
https://doi.org/10.1182/blood-2006-06-027409
https://doi.org/10.1002/eji.200838904
https://doi.org/10.1016/j.clim.2007.11.008
https://doi.org/10.4049/jimmunol.169.5.2461
https://doi.org/10.1084/jem.20041033
https://doi.org/10.1046/j.1600-6143.2003.00293.x
https://doi.org/10.1084/jem.20061405
https://doi.org/10.1182/blood-2004-05-1850
https://doi.org/10.1182/blood-2004-05-2044
https://doi.org/10.1016/j.immuni.2023.01.004
https://doi.org/10.1084/jem.20031562
https://doi.org/10.1002/eji.200737201
https://doi.org/10.1182/blood-2004-01-0086
https://doi.org/10.1182/blood-2006-02-005660
https://doi.org/10.1182/blood-2005-06-2277
https://doi.org/10.4049/jimmunol.179.2.744
https://doi.org/10.4049/jimmunol.179.2.744
https://doi.org/10.4049/jimmunol.0900191
https://doi.org/10.4049/jimmunol.173.12.7259
https://doi.org/10.1016/j.coi.2009.05.007
https://doi.org/10.1016/j.immuni.2009.05.001
https://doi.org/10.1016/j.molmed.2012.06.001
https://doi.org/10.3389/fimmu.2023.1321228
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Santosh Nirmala et al. 10.3389/fimmu.2023.1321228
48. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, et al.
Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural
regulatory T cells revealed by DNA microarray analysis. Int Immunol (2006) 18
(8):1197–209. doi: 10.1093/intimm/dxl060

49. Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, et al. Foxp3
transcription-factor-dependent and -independent regulation of the regulatory T cell
transcriptional signature. Immunity (2007) 27(5):786–800. doi: 10.1016/
j.immuni.2007.09.010

50. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al.
Expression of helios, an ikaros transcription factor family member, differentiates
thymic-derived from peripherally induced foxp3+ T regulatory cells. J Immunol
(2010) 184(7):3433–41. doi: 10.4049/jimmunol.0904028

51. MacDonald KG, Han JM, Himmel ME, Huang Q, Kan B, Campbell AIM, et al.
Response to comment on ‘helios+ and helios- cells coexist within the natural FOXP3+
T regulatory cell subset in humans’. J Immunol (2013) 190(9):4440–1. doi: 10.4049/
jimmunol.1390019

52. McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, et al.
Plasticity of human regulatory T cells in healthy subjects and patients with type 1
diabetes. J Immunol (2011) 186(7):3918–26. doi: 10.4049/jimmunol.1003099

53. Kim YC, Bhairavabhotla R, Yoon J, Golding A, Thornton AM, Tran DQ, et al.
Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells
during in vitro expansion. Blood (2012) 119(12):2810–8. doi: 10.1182/blood-2011-09-
377895

54. Thornton AM, Shevach EM. Helios: still behind the clouds. Immunology (2019)
158(3):161–70. doi: 10.1111/imm.13115

55. Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and
differences. Immunol Rev (2014) 259(1):88–102. doi: 10.1111/imr.12160

56. Gottschalk RA, Corse E, Allison JP. Expression of Helios in peripherally induced
Foxp3+ regulatory T cells. J Immunol (2012) 188(3):976–80. doi: 10.4049/
jimmunol.1102964

57. Akimova T, Beier UH, Wang L, Levine MH, Hancock WW. Helios expression is
a marker of T cell activation and proliferation. PloS One (2011) 6(8):e24226. doi:
10.1371/journal.pone.0024226

58. Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK. Helios+ and
Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J
Immunol (2013) 190(5):2001–8. doi: 10.4049/jimmunol.1201379

59. Szurek E, Cebula A, Wojciech L, Pietrzak M, Rempala G, Kisielow P, et al.
Differences in expression level of helios and neuropilin-1 do not distinguish thymus-
derived from extrathymically-induced CD4+Foxp3+ Regulatory T cells. PloS One
(2015) 10(10):e0141161. doi: 10.1371/journal.pone.0141161

60. Elkord E. Helios should not be cited as a marker of human thymus-derived tregs.
Commentary: helios(+) and helios(-) cells coexist within the natural FOXP3(+) T
regulatory cell subset in humans. Front Immunol (2016) 7:276. doi: 10.3389/
fimmu.2016.00276

61. Haas J, Fritzsching B, Trübswetter P, Korporal M, Milkova L, Fritz B, et al.
Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg
suppressive function and determines Treg dysfunction in multiple sclerosis. J Immunol
(2007) 179(2):1322–30. doi: 10.4049/jimmunol.179.2.1322

62. Booth NJ, McQuaid AJ, Sobande T, Kissane S, Agius E, Jackson SE, et al.
Different proliferative potential and migratory characteristics of human CD4+
regulatory T cells that express either CD45RA or CD45RO. J Immunol (2010) 184
(8):4317–26. doi: 10.4049/jimmunol.0903781

63. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells
in the human immune system. Nat Rev Immunol (2010) 10(7):490–500. doi: 10.1038/
nri2785

64. Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-
Bucktrout S, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells
among regulatory T cell subsets in vivo. J Exp Med (2012) 209(10):1713–22.
doi: 10.1084/jem.20120822

65. Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN,
et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not
mucosa-generated induced Foxp3+ T reg cells. J Exp Med (2012) 209(10):1723–42.
doi: 10.1084/jem.20120914

66. Battaglia A, Buzzonetti A, Monego G, Peri L, Ferrandina G, Fanfani F, et al.
Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes
that is modulated by preoperative chemoradiation therapy in cervical cancer.
Immunology (2008) 123(1):129–38. doi: 10.1111/j.1365-2567.2007.02737.x

67. Milpied P, Renand A, Bruneau J, Mendes-da-Cruz DA, Jacquelin S, Asnafi V,
et al. Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur J Immunol (2009) 39
(6):1466–71. doi: 10.1002/eji.200839040

68. Frey D, Coelho V, Petrausch U, Schaefer M, Keilholz U, Thiel E, et al. Surface
expression of gpA33 is dependent on culture density and cell-cycle phase and is
regulated by intracellular traffic rather than gene transcription. Cancer Biother
Radiopharm (2008) 23(1):65–73. doi: 10.1089/cbr.2007.0407

69. Opstelten R, de Kivit S, Slot MC, van den Biggelaar M, Iwaszkiewicz-Grześ D,
Gliwiński M, et al. GPA33: A marker to identify stable human regulatory T cells. J
Immunol (2020) 204(12):3139–48. doi: 10.4049/jimmunol.1901250
Frontiers in Immunology 18
70. Morgana F, Opstelten R, Slot MC, Scott AM, van Lier RAW, Blom B, et al.
Single-cell transcriptomics reveals discrete steps in regulatory T cell development in the
human thymus. J Immunol (2022) 208(2):384–95. doi: 10.4049/jimmunol.2100506

71. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell (2011)
144(5):646–74. doi: 10.1016/j.cell.2011.02.013

72. Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune
checkpoint inhibitors and beyond. J Hematol Oncol (2021) 14(1):45. doi: 10.1186/
s13045-021-01056-8

73. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al.
CTLA-4 can function as a negative regulator of T cell activation. Immunity (1994) 1
(5):405–13. doi: 10.1016/1074-7613(94)90071-X

74. Chuang E, Alegre ML, Duckett CS, Noel PJ, Vander Heiden MG, Thompson CB.
Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-
independent endocytosis that limits cell surface expression. J Immunol (1997) 159
(1):144–51. doi: 10.4049/jimmunol.159.1.144

75. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, et al. B7/
CD28 costimulation is essential for the homeostasis of the CD4+CD25+
immunoregulatory T cells that control autoimmune diabetes. Immunity (2000) 12
(4):431–40. doi: 10.1016/S1074-7613(00)80195-8

76. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al.
Immunologic self-tolerance maintained by cd25+Cd4+Regulatory T cells constitutively
expressing cytotoxic T lymphocyte–associated antigen 4. J Exp Med (2000) 192(2):303–
10. doi: 10.1084/jem.192.2.303

77. Read S, Malmström V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4
plays an essential role in the function of CD25(+)CD4(+) regulatory cells that
control intestinal inflammation. J Exp Med (2000) 192(2):295–302. doi: 10.1084/
jem.192.2.295

78. Birebent B, Lorho R, Lechartier H, de Guibert S, Alizadeh M, Vu N, et al.
Suppressive properties of human CD4+CD25+ regulatory T cells are dependent on
CTLA-4 expression. Eur J Immunol (2004) 34(12):3485–96. doi: 10.1002/eji.200324632

79. Manzotti CN, Tipping H, Perry LCA, Mead KI, Blair PJ, Zheng Y, et al.
Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires
CD25+ regulatory T cells. Eur J Immunol (2002) 32(10):2888–96. doi: 10.1002/1521-
4141(2002010)32:10<2888::AID-IMMU2888>3.0.CO;2-F

80. Tang Q, Boden EK, Henriksen KJ, Bour-Jordan H, Bi M, Bluestone JA. Distinct
roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur J
Immunol (2004) 34(11):2996–3005. doi: 10.1002/eji.200425143

81. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10–
producing, nonproliferating cd4+ T cells with regulatory properties by repetitive
stimulation with allogeneic immature human dendritic cells. J Exp Med (2000) 192
(9):1213–22. doi: 10.1084/jem.192.9.1213

82. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25+ regulatory
cells from human peripheral blood express very high levels of CD25 ex vivo. Novartis
Found Symp (2003) 252:67–88; discussion 88-91, 106–14. doi: 10.1002/0470871628.ch6

83. Schmidt EM,Wang CJ, Ryan GA, Clough LE, Qureshi OS, Goodall M, et al. Ctla-
4 controls regulatory T cell peripheral homeostasis and is required for suppression of
pancreatic islet autoimmunity. J Immunol (2009) 182(1):274–82. doi: 10.4049/
jimmunol.182.1.274

84. Tang AL, Teijaro JR, Njau MN, Chandran SS, Azimzadeh A, Nadler SG, et al.
CTLA4 expression is an indicator and regulator of steady-state CD4+ FoxP3+ T cell
homeostasis. J Immunol (2008) 181(3):1806–13. doi: 10.4049/jimmunol.181.3.1806

85. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory
T cell-derived interleukin-10 limits inflammation at environmental interfaces.
Immunity (2008) 28(4):546–58. doi: 10.1016/j.immuni.2008.02.017

86. Holt MP, Punkosdy GA, Glass DD, Shevach EM, Signaling TCR. and CD28/
CTLA-4 signaling cooperatively modulate T regulatory cell homeostasis. J Immunol
(2017) 198(4):1503–11. doi: 10.4049/jimmunol.1601670

87. Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple
sclerosis and myasthenia gravis. J Neuroinflammation (2017) 14(1):117. doi: 10.1186/
s12974-017-0892-8

88. Kim GR, Kim WJ, Lim S, Lee HG, Koo JH, Nam KH, et al. In vivo induction of
regulatory T cells via CTLA-4 signaling peptide to control autoimmune
encephalomyelitis and prevent disease relapse. Adv Sci (Weinh). (2021) 8
(14):2004973. doi: 10.1002/advs.202004973

89. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing JB, et al.
Differential control of human Treg and effector T cells in tumor immunity by Fc-
engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A. (2019) 116(2):609–18.
doi: 10.1073/pnas.1812186116

90. Raimondi G, Shufesky WJ, Tokita D, Morelli AE, Thomson AW. Regulated
compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting
regulatory T cells from activated T cells. J Immunol (2006) 176(5):2808–16.
doi: 10.4049/jimmunol.176.5.2808

91. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK,
et al. PD-L1 regulates the development, maintenance, and function of induced
regulatory T cells. J Exp Med (2009) 206(13):3015–29. doi: 10.1084/jem.20090847

92. Lin C, Huang H, Hsieh C, Fan C, Lee Y. Jagged1-expressing adenovirus-infected
dendritic cells induce expansion of Foxp3+ regulatory T cells and alleviate T helper type
frontiersin.org

https://doi.org/10.1093/intimm/dxl060
https://doi.org/10.1016/j.immuni.2007.09.010
https://doi.org/10.1016/j.immuni.2007.09.010
https://doi.org/10.4049/jimmunol.0904028
https://doi.org/10.4049/jimmunol.1390019
https://doi.org/10.4049/jimmunol.1390019
https://doi.org/10.4049/jimmunol.1003099
https://doi.org/10.1182/blood-2011-09-377895
https://doi.org/10.1182/blood-2011-09-377895
https://doi.org/10.1111/imm.13115
https://doi.org/10.1111/imr.12160
https://doi.org/10.4049/jimmunol.1102964
https://doi.org/10.4049/jimmunol.1102964
https://doi.org/10.1371/journal.pone.0024226
https://doi.org/10.4049/jimmunol.1201379
https://doi.org/10.1371/journal.pone.0141161
https://doi.org/10.3389/fimmu.2016.00276
https://doi.org/10.3389/fimmu.2016.00276
https://doi.org/10.4049/jimmunol.179.2.1322
https://doi.org/10.4049/jimmunol.0903781
https://doi.org/10.1038/nri2785
https://doi.org/10.1038/nri2785
https://doi.org/10.1084/jem.20120822
https://doi.org/10.1084/jem.20120914
https://doi.org/10.1111/j.1365-2567.2007.02737.x
https://doi.org/10.1002/eji.200839040
https://doi.org/10.1089/cbr.2007.0407
https://doi.org/10.4049/jimmunol.1901250
https://doi.org/10.4049/jimmunol.2100506
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1186/s13045-021-01056-8
https://doi.org/10.1186/s13045-021-01056-8
https://doi.org/10.1016/1074-7613(94)90071-X
https://doi.org/10.4049/jimmunol.159.1.144
https://doi.org/10.1016/S1074-7613(00)80195-8
https://doi.org/10.1084/jem.192.2.303
https://doi.org/10.1084/jem.192.2.295
https://doi.org/10.1084/jem.192.2.295
https://doi.org/10.1002/eji.200324632
https://doi.org/10.1002/1521-4141(2002010)32:10%3C2888::AID-IMMU2888%3E3.0.CO;2-F
https://doi.org/10.1002/1521-4141(2002010)32:10%3C2888::AID-IMMU2888%3E3.0.CO;2-F
https://doi.org/10.1002/eji.200425143
https://doi.org/10.1084/jem.192.9.1213
https://doi.org/10.1002/0470871628.ch6
https://doi.org/10.4049/jimmunol.182.1.274
https://doi.org/10.4049/jimmunol.182.1.274
https://doi.org/10.4049/jimmunol.181.3.1806
https://doi.org/10.1016/j.immuni.2008.02.017
https://doi.org/10.4049/jimmunol.1601670
https://doi.org/10.1186/s12974-017-0892-8
https://doi.org/10.1186/s12974-017-0892-8
https://doi.org/10.1002/advs.202004973
https://doi.org/10.1073/pnas.1812186116
https://doi.org/10.4049/jimmunol.176.5.2808
https://doi.org/10.1084/jem.20090847
https://doi.org/10.3389/fimmu.2023.1321228
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Santosh Nirmala et al. 10.3389/fimmu.2023.1321228
2-mediated allergic asthma in mice. Immunology (2019) 156(2):199–212. doi: 10.1111/
imm.13021
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