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Challenges and promise of
targeting miRNA in rheumatic
diseases: a computational
approach to identify miRNA
association with cell types,
cytokines, and
disease mechanisms
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1Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and
Pharmaceutical Sciences, Spokane, WA, United States, 2Department of Computer and Information
Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville,
FL, United States, 3Department of Medicine, Division of Rheumatology and Clinical Autoimmunity
Center of Excellence, University of Michigan Medical System, Ann Arbor, MI, United States, 4Division
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MicroRNAs (miRNAs) are small non-coding RNAs that alter the expression of

target genes at the post-transcriptional level, influencing diverse outcomes in

metabolism, cell differentiation, proliferation, cell survival, and cell death.

Dysregulated miRNA expression is implicated in various rheumatic conditions,

including ankylosing spondylitis (AS), gout, juvenile idiopathic arthritis (JIA),

osteoarthritis (OA), psoriatic arthritis, rheumatoid arthritis (RA), Sjogren’s

syndrome, systemic lupus erythematosus (SLE) and systemic sclerosis. For this

review, we used an open-source programming language- PowerShell, to scan

the massive number of existing primary research publications on PubMed on

miRNAs in these nine diseases to identify and count unique co-occurrences of

individual miRNAs and the disease name. These counts were used to rank the top

seven most relevant immuno-miRs based on their research volume in each

rheumatic disease. Individual miRNAs were also screened for publication with the

names of immune cells, cytokines, and pathological processes involved in

rheumatic diseases. These occurrences were tabulated into matrices to

identify hotspots for research relevance. Based on this information, we

summarize the basic and clinical findings for the top three miRNAs — miR-146,

miR-155, and miR-21 — whose relevance spans across multiple rheumatic

diseases. Furthermore, we highlight some unique miRNAs for each disease and

why some rheumatic conditions lack research in this emerging epigenetics field.

With the overwhelming number of publications on miRNAs in rheumatic
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diseases, this review serves as a ‘relevance finder’ to guide researchers in

selecting miRNAs based on the compiled existing knowledge of their

involvement in disease pathogenesis. This approach applies to other disease

contexts with the end goal of developing miRNA-based therapeutics.
KEYWORDS
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miRNA: emerging importance and
potential target in
epigenetic regulation

Micro-RNAs (miRNA)s were an accidental discovery in

Caenorhabditis elegans in 1993 in the Victor R. Ambros

laboratory. The group observed that the altered expression of the

gene lin-4 could influence the LIN-14 protein levels despite steady

lin-14 transcription. The authors wondered why the lin4 gene did

not encode any protein and why the RNA products of lin-4 had

antisense complementarity to multiple sites in the 3’ untranslated

region (UTR) of the lin14 mRNA (1). This interesting observation

led to the understanding that lin4 regulated the expression of lin-14

at the post-transcriptional level through an anti-sense RNA-RNA

interaction. Further studies behind that interaction and regulation

opened research avenues, ushering in a new era of ‘regulatory RNA’.

As a result, what was initially discovered as “small temporal RNA”

was later established and termed “microRNA” in 2011.

miRNAs are small single-stranded non-coding RNAs (~19-23-

nucleotide length) that interfere with target protein expression.

Since their discovery, hundreds of miRNAs have been identified

and further classified on the basis of their impact on development,

physiological processes, and diseases (2, 3). Since miRNA amounts

in a cell can change rapidly, their altered expression is indicative of

an early response and resulting cellular events initiated by external

stimuli (4). miRNAs regulate cellular homeostasis by serving as

nodes of signaling networks (5). Culminating evidence from

research illustrated that even a single miRNA can regulate

multiple (>200) genes, and conversely, multiple miRNAs can

regulate a single gene (6, 7). This dynamic yet highly complex

interaction of miRNAs and their target genes and how it is impacted

by the abundance of miRNAs and the affinity and access to target

mRNAs make miRNA a hot topic in biomedical research.

Concomitant to genetic polymorphism, epigenetic regulation

plays an important role in the onset and progression of chronic

inflammatory diseases, including rheumatic conditions. In addition

to the well-established role of DNA methylation and histone

acetylation, miRNAs and other non-coding RNAs have joined the

league of known epigenetic regulators. These epigenetic

mechanisms silence or promote gene expression and allow cells to

fine-tune their responses to physiological stimuli (8). While
02
research in the past few decades focused on DNA methylation

and histone modifications (9, 10), the focus shifted more recently

toward understanding the role of miRNAs in regulating cellular

machinery, extracellular remodeling, and cytokine synthesis (11).

Initially assumed to regulate only the functions of their cell of

origin, miRNAs were later found to be secreted into the extracellular

fluid and regulate other target cells, thereby suggesting their role in

intercellular communication (12). Like protein-coding genes, the

genes encoding miRNA are located throughout the genome and

commonly exhibit sequence conservation among vertebrates. They

can be classified into several categories as described by Liu et al. (13);

however, the two major categories (intergenic and intragenic) are well

described in the literature. Intergenic miRNA genes are independent

genes with their promoters, while intragenic genes are processed from

introns and exons of protein-coding genes (14). Most intragenic

miRNAs share common regulatory mechanisms and expression

patterns with the host gene (15, 16). This implies that miRNA

biogenesis is a multistep synthesis process, with each step localized

in different subcellular compartments making it a tightly regulated

mechanism (17).

miRNAs regulate protein translation from target mRNA in a cis

or trans manner. In cis-regulation, miRNAs partner with Argonaute

(Ago) proteins to form a miRNA-induced silencing complex

(miRISC) that either blocks translation or induces mRNA cleavage

upon binding with miRNA recognition element (MRE) within the 3’

untranslated regions (UTRs) of target mRNA (2). In trans regulation,

a miRNA represses protein translation by coordinating with key

transcription factors, initiation factors, RNA-binding proteins, or

enzymes to disrupt the 43S preinitiation complex or post-

translational modifiers (Figure 1) (18–21).

miRNA in rheumatic diseases: what
we know and what we don’t

The number of primary research publications on miRNAs and

their role in rheumatic disease conditions has increased

dramatically in recent decades, as shown in Figure 2A. While the

numbers are growing, published studies in rheumatic diseases have

primarily focused on either the functions of a miRNA regulating

several genes in the pathogenesis of a disease or broad identification

of miRNAs dysregulated in a specific rheumatic disease or related
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cell types. As a result, despite marked progress in understanding key

miRNA in cancer biology and cardiovascular diseases that has led to

the development of miRNA-targeted therapies, our understanding

of potential therapeutic target miRNA(s) in common rheumatic

diseases remains elusive (Figure 2B). Therefore, it is imperative to

give meaningful direction to future studies on miRNA in rheumatic

diseases to narrow the widening gap compared to the progress in

other chronic diseases. With that objective in mind, we performed

this computational algorithm-based literature search on miRNAs in

rheumatic diseases to help identify key common miRNAs that are a

driving force in disease processes to facilitate targeted therapeutic

approaches initiated as treatment options. This method of current

literature analysis also identified miRNA(s) that are uniquely

implicated in specific rheumatic diseases.

More than 100 rheumatic diseases afflict humankind, andmillions

of US citizens are affected. Rheumatic diseases usually affect joints,

tendons, ligaments, bones, and muscles. Importantly, some are

autoimmune inflammatory conditions, while others (e.g., OA and

gout) have different etiology. Rheumatic diseases are considerable

health and socioeconomic concerns as they progress over time,

causing disability, severe co-morbidities, or early mortality. Studies

have shown that genetic predisposition, environmental stimuli, and

epigenetic factors contribute to the onset and progress of rheumatic
Frontiers in Immunology 03
diseases, with increasing evidence suggesting that miRNAs have a

substantial functional impact on disease progression (22, 23).

Dysregulated expression of miRNAs has been reported in rheumatic

diseases like rheumatoid arthritis (RA), systemic erythematosus lupus

(SLE), gout, juvenile idiopathic arthritis (JIA), Sjogren’s syndrome,

osteoarthritis (OA), scleroderma, psoriasis, and others. The regulation

of miRNAs is affected by various proteins, often involving protein-

protein and protein-RNA interactions (24). Knowledge of these

processes has provided insights into the disease-specific

dysregulation of miRNAs and the subsequent impact on disease

pathogenesis. In this review, we utilized a systematic approach of

combing the available literature to shortlist the topmost influential

miRNAs in rheumatic diseases to decipher their role in disease

pathogenesis. Furthermore, we discuss factors in favor of or against

targeting them for therapeutic interventions.
Computer application-guided
literature review strategy

Our review covers miRNA involvement in nine prevalent

rheumatic diseases, some auto-immune inflammatory conditions,
BA

FIGURE 2

Trends in miRNA publications on PubMed. (A) Line graph illustrates the rise in miRNA publications on rheumatic diseases (total; 1994 to 2022). The
data reveals a marked increase in publication numbers annually since 2005. (B) Line graph shows trends in miRNA publications across nine
rheumatic diseases under study (1994-2022). The highest increase is shown for OA, RA and SLE, highlighting a research opportunity to further
investigate the potential role of miRNA in the other six diseases.
FIGURE 1

miRNA-mediated regulation of protein expression. The flow chart represents the mechanisms of gene expression modulation by miRNAs, both cis-
and trans-regulatory pathways.
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and some with other disease etiology: ankylosing spondylitis, gout,

JIA, OA, RA, psoriatic arthritis, Sjogren’s syndrome, SLE, and

systemic sclerosis. To create a comprehensive list of miRNAs

associated with rheumatic diseases, we searched PubMed for

primary research publications through August 29th, 2023, that

included the terms “microRNA” or “miRNA” or “miR” and one

rheumatic disease at a time, e.g., ((((miR[Title/Abstract]) OR

(miRNA[Title/Abstract])) OR (microRNA[Title/Abstract])) AND

(Disease name [Title/Abstract])) NOT (Review[Publication Type]).

Using the save citations to file menu option, we saved all results in

PubMed format. This search captured the following number of

primary publications per disease: ankylosing spondylitis (113), gout

(32), JIA (21), OA (1277), psoriatic arthritis (24), RA (822),

Sjogren’s syndrome (74), SLE (417), and systemic sclerosis (103).

A total of 2,883 articles divided into nine files (one per disease) were

sorted for their relevance to a specific rheumatic disease based on

their currently published primary articles using Windows

PowerShell scripting language. The Windows PowerShell

Integrated Scripting Environment (ISE) is an in-built application

of Windows also supported by Linux and macOS products at no

additional cost. It can be learned conveniently through manuals and

online resources. All nine search files downloaded from PubMed

were read in PowerShell to locate the term “miR” followed by a

number in the title or abstract of all the articles. Appropriate coding

ensured that none of the unique miRNAs were counted more than

once per article. The resulting output file for each rheumatic disease

contained a comprehensive list of all the miRNAs found in primary

research publications for that disease, with a total for each miRNA.

Individual miRNAs can positively or negatively affect disease

pathogenesis through their dysregulated expression in certain cell

types, effect on specific biological processes, or regulation of
Frontiers in Immunology 04
cytokines. For example, our laboratory has reported that miR-17

negatively regulates TNF-a inflammatory signaling but that its

expression is unusually low in rheumatoid arthritis synovial

fibroblasts (RASFs) (20). To understand the significance of

miRNAs to each disease, we compiled a list of pathological

processes (angiogenesis, apoptosis, autoantibody, biomarker,

degeneration, diagnosis, fatigue, fibrosis, inflammation, invasion,

metabolism, migration, pain, proliferation, and therapy), cytokines

(GM-CSF, IL-1, IL-2, IL-6, IL-8, IL-18, IL-17, IL-10, TNF, RANKL

and interleukin), and cell-types (macrophage, dendritic cells,

monocyte, T-cell, T-reg, B-Cell, fibroblast, osteoclast, osteoblast,

endothelial, epithelial, chondrocyte, nerve and neuron). The

abstract and the title of all the articles were further mined for the

co-occurrences of a unique miRNA and each of the mentioned

processes, cytokines, or cell types to count (once per article) the

unique co-occurrence of each combination. See the flow chart in

Figure 3 for the graphic depiction of the coding steps.

Three most published miRNAs in
rheumatic diseases: miR-146, miR-155
and miR-21

The total number of primary research articles in PubMed

referring to individual miRNA and nine common rheumatic

diseases are depicted in Figure 4. The top three miRNAs based on

overall count were miR-146, miR-155, and miR-21. Interestingly,

these were also the top 3 miRNAs based on the number of

rheumatic diseases in which they were in the top seven

(Figure 5). These top three most-published miRNAs are described

in the following sections.
FIGURE 3

Literature review strategy employing PowerShell algorithm. The flow chart outlines the coding process for systematically screening primary research
publications on PubMed.
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miR-146

miR-146 is the most-published miRNA in rheumatic diseases

except gout and systemic sclerosis. Mention of miR-146 frequently

co-occurred with the cell types of fibroblasts or monocyte/

macrophages. The title or abstracts mentioning miR-146 most

frequently referenced inflammation as well as inflammatory

cytokines IL-1, TNF, IL-6, and IL-17. The research focus on miR-

146 was unique in OA, where it was associated with chondrocytes

and their functions, including proliferation and apoptosis.
Frontiers in Immunology 05
miR-146 family includes miR-146a and miR-146b, which are

encoded on chromosomes 5 and 10, respectively. Following a

groundbreaking publication in 2006 by Taganov et al., miR-146a

and miR-146b have been highly studied in the context of innate

immunity and inflammation (25). The authors demonstrated that

miR-146a and miR-146b are induced in human THP-1-derived

macrophages by inflammatory stimuli, including bacterial

lipopolysaccharide, TNF-a, and IL-1b through the NF-kB
signaling pathway. They were also the first to propose that miR-

146a and miR-146b function as negative-feedback regulators of
FIGURE 5

Breadth of publications across diverse rheumatic diseases. The chart displays the count of rheumatic diseases for which miRNAs ranked in the top
seven among the most frequently mentioned miRNAs, showcasing the widespread relevance of these miRNAs across various rheumatic conditions.
FIGURE 4

Primary research publications in rheumatic diseases. The bar graph illustrates the number of publications for the top 25 most-published miRNAs
across nine rheumatic diseases under study.
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cytokine and toll-like receptor 4 (TLR-4) pathways by targeting the

transcripts of key cytokine signaling intermediates such as IL-1

receptor-associated kinase 1 (IRAK1) and TNF receptor-associated

factor 6 (TRAF6). Although miR-146a and miR-146b share the

same seed sequence, the influence of shared and unique

transcription factors they engage leads to their different temporal

and tissue-specific expression (26). For example, comparing the

effects of various inflammatory cytokines on human retinal

epithelial cells, Kutty et al. reported maximal upregulation of

miR-146a with IL-1b stimulation, while maximal miR-146b

expression was observed with IFN-g (27).
In both healthy individuals and RA patients, the expression of

miR-146 and miR-155 exhibits a high degree of correlation, yet

their biological effects are opposite. Increased expression of miR-

155 and miR-146a has been reported in synovial tissues,

lymphocytes, peripheral blood-derived mononuclear cells

(PBMC), and whole blood samples of RA patients compared to

healthy individuals (28, 29). While the upregulation of miR-146a

has protective roles, miR-155 is implicated in the pathogenesis of

rheumatic diseases. A study by Mann et al. demonstrated cross-

regulation of miR-146 and miR-155, where unchecked expression

of miR-155 led to chronic inflammation in miR-146-deficient mice.

Their results suggest that miR-146a and miR-155 fine-tune NF-kB
activity to regulate macrophage inflammatory responses (30–32).

miR-146a is a negative regulator of inflammatory signaling in

RA, gout, and SLE. It targets several autoantibody-induced TLR

signaling components through IRAK-1 and TRAF6 and reduces the

uncontrolled production of type I IFN (33). Individuals with

autoimmune diseases such as RA or SLE are at greater risk for

comorbidities such as cardiovascular disease and renal damage due

to the chronic burden of systemic inflammation (34–36).

The highly conserved Notch signaling pathway plays a pivotal

role in the polarization of macrophages toward the pro-

inflammatory M1 phenotype. Huang et al. demonstrated that

miR-146a targets and suppresses Notch1 activity, reducing M1

macrophage differentiation and facilitating polarization toward

the anti-inflammatory M2 phenotype. Peroxisome proliferator-

activated receptor g (PPARg), induced in IL-4-stimulated

macrophages, is a marker and promoter of M2 macrophage

activation with known anti-inflammatory effects. Through the use

of an inhibitor and mimic of miR-146a, Huang et al. showed that, in

addition to its inhibitory impact on Notch1, miR-146a contributes

to the M2 macrophage phenotype by activating PPARg,
emphasizing its involvement in macrophage polarization (37).

The miR-146 family is crucial in preventing dysregulated

humoral immune responses and production of autoantibodies.

Cho et al. demonstrated that miR-146a and 146b function in a

cell-specific manner to regulate the germinal center (GC) reaction

between GC B cells and follicular T helper cells, acting as molecular

brakes during this critical precursor step to antibody production

(38). The authors found that a mouse model with B cell knockout of

miR-146a showed increased amounts of IKKa and c-Rel proteins in

GC B cells, and a luciferase reporter study confirmed that miR-146a

can directly repress these two targets in the CD40 signaling pathway

that leads to GC B cell differentiation. In that same study, a mouse

model with T cell knockout of both miR-146a and its paralog miR-
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146b showed spontaneous accumulation of follicular T helper cells

and GC B cells, with higher levels of experimentally induced

antibody production.

Overall, miR-146 plays an important role in the downregulation

of inflammation and tissue injury in common rheumatic diseases

with inflammatory pathogenesis. Whether the preventative

approaches designed in the early stages of disease pathogenesis

through exogenous delivery of miR-146 can retard disease

progression remains to be tested.
miR-155

miR-155 is the second most studied miRNA in rheumatic

conditions, based on the number of primary research publications

in our PubMed search. Its breadth of importance is notable by its

appearance in the top seven miRNAs for all the nine diseases

selected here for review. As mentioned earlier, miR-155 and miR-

146 demonstrate co-expression. This was reflected in their similar

publication pattern, with frequent co-occurrence in abstracts

describing fibroblasts, monocyte/macrophages, inflammatory

cytokines IL-1, IL-6, IL-17, TNF, and the process of

inflammation. Like miR-146 and other miRNAs, miR-155 was

most often referenced with the cell-type chondrocytes in OA.

Independently, miR-155 in some studies was linked with

processes involved in cellular fate, such as apoptosis and

proliferation, fibrosis in systemic sclerosis, and autoantibody

in SLE.

This miRNA is widely studied for its pro-inflammatory

activities and its upregulation in autoimmune diseases. miR-155

has been shown to have indispensable roles in the regulation of

immune cells like T-cells, B-cells, and dendritic cells (39). miR-155

has been shown to directly target and suppress the negative

regulator of T cell activation, cytotoxic T lymphocyte-associated

antigen (CTLA-4), with overexpression of miR-155 resulting in

proliferative responses of helper T cells (40). Notably, CTLA-4 has

lower expression in regulatory T cells (Tregs) from RA patients

compared to healthy individuals (41). With their anti-inflammatory

roles, Tregs are widely studied to be potentially therapeutic in

autoimmune diseases. It has been shown that Tregs require the cell

surface antigen CTLA-4 for their suppressive action in

inflammation (41).

In the context of autoimmunity, upregulation of miR-155 is

deleterious as it can amplify inflammation by promoting Th17

helper T cell differentiation, B cell maturation and autoantibody

production, T cell-dependent inflammation, and dendritic cell

production of TNF-a, IL-6, and IL-17 (42). Kurowska-Stolarska

et al. discovered that miR-155 also promotes inflammation by

targeting an inhibitor of inflammation, Src homology 2-

containing inositol phosphatase-1 (SHIP-1), in RASFs (43). They

found that miR-155-deficient mice failed to develop collagen-

induced arthritis (CIA), attributing this to the indispensable role

of miR-155 in the development of cytokine-producing Th17 cells

and the activation of B cells necessary for autoantibody production.

To date, most studies have established miR-155 as a positive

regulator of inflammation in RA and other rheumatic diseases.
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Stypinskac et al. reported an 8.6- and 3-fold increase in circulating

miR-155 in SLE and systemic sclerosis, respectively (44).

The association of high levels of miR-155 with reduced levels of

the suppressor of cytokine signaling, SOCS1, has been reported in

inflammatory conditions such as severe acute pancreatitis,

ulcerative colitis, and breast cancer (45–47). In the context of RA,

Li et al. discovered that miR-155 targets the 3’UTR of the SOCS 1

mRNA and suppresses its expression in RA peripheral blood and

peripheral blood macrophages. In addition, the authors also

highlighted the role of miR-155 in higher expression of TNF-a
and IL-1b, where the inhibition of miR-155 significantly reduced

the production of these cytokines in the supernatant of PBMCs after

24 hours of LPS treatment (48). In another study, Kmiolek et al.

looked at transcription factors critical in maintaining Th17 and

Treg balance: SOCS1, SMAD3, SMAD4, STAT3, STAT5, to study

their correlation with miR-155 and other select miRNAs in RA, OA,

and healthy subjects. Their findings show correlations between

miR-155 and STAT3 in Th17 cells in RA and between miR-155

and SMAD3 and SMAD 4 in Treg cells in RA. Notably, they also

observed a strong positive correlation between miR-155 and SOCS1

in the Tregs of OA patients (49). The role of miRNA in regulating

Th17/Treg balance by directly targeting transcription factors is an

example of trans regulation of gene expression, as illustrated in

Figure 1. Alone or in conjunction with miR-21, miR-155 promotes

vasculopathy and tissue fibrosis. These processes are central to the

pathology of systemic sclerosis (50). It has been shown that miR-

155 mediates TGF-b1 signaling, which drives collagen synthesis in

fibrosis (51). Experimental inhibition of miR-155-5p in mice

reduced macrophage and fibroblast activation and attenuated

silica-induced lung fibrosis (52) and valve damage in rheumatic

heart disease (53). miR-155 may represent a therapeutic target to

safely control fibrosis in systemic sclerosis. This is clinically relevant

as the initial human trial of an anti-TGF-b drug had to be halted

due to unexpected morbidity and mortality in the treatment groups

(54), and despite subsequent trials of new candidates, there are still

no approved TGF-b inhibitors.
miR-21

The pattern of publications for miR-21 revealed by our text

mining search is in line with a recent systematic review and meta-

analysis of miRNAs in autoimmunity, which highlighted miR-21

among top miRNAs with significant differential expression across

multiple autoimmune diseases (55). We found miR-21 to be the

third most studied miRNA, with 119 mentions in primary research

abstracts related to rheumatic conditions. It was in the top seven

miRNA for all our selected diseases except ankylosing spondylitis,

gout, and OA. Compared to other miRNAs, miR-21 appeared in the

second-highest number of research publications in psoriatic

arthritis and systemic sclerosis. In RA, miR-21 was studied in

conjunction with fibroblasts, T cells, osteoblasts, and osteoclasts,

with a focus on the cytokine IL-6. In systemic sclerosis, miR-21 was

found in publications on fibroblasts, endothelial cells, and the
Frontiers in Immunology 07
process of fibrosis . In SLE, miR-21 was studied with

autoantibody production.

As mentioned in the miR-155 section, miR-21 is strongly pro-

fibrotic. A current PubMed search not related to rheumatic diseases

reveals hundreds of publications focused on miR-21 in cardiac, renal,

hepatic, or pulmonary fibrosis. miR-21 is upregulated, andmiR-29a is

downregulated in dermal fibroblasts from systemic sclerosis patients

compared to non-diseased controls; furthermore, miR-21 is

upregulated when dermal fibroblasts are treated with TGF-b, and
TGF-b and miR-21 synergistically induce collagen production (56).

Two separate reports have linked elevated levels of miR-21 in plasma

and urine exosomes of SLE patients with renal fibrosis due to lupus

nephritis (57, 58). A key collaborative study revealed that in addition

to its known pro-fibrotic effects on cardiac fibroblasts, miR-21

contributes to fibrogenesis through effects on megakaryocytes,

platelets, and their soluble products (59). In plasma samples from

the community-based Bruneck Study (n=660), they found a strong

correlation between miR-21 and the latency-associated peptide of

TGF-b1, platelet-derived growth factor (PDGF), proplatelet basic

protein (PPBP), and platelet factor 4 (PF4). The authors showed that

miR-21 null mice have significantly reduced numbers of circulating

platelets. Their results demonstrated that miR-21 targets Wiscott-

Aldrich syndrome protein (WASp), a negative regulator of platelet

activation and TGF-b production. Pharmacologic inhibition of miR-

21 de-repressed WASp and significantly decreased platelet release of

TGF-b, generally regarded as the “master switch” of fibrosis.

Wu et al. treated MH7A immortalized RASFs with LPS, an in

vitro model of RA, and demonstrated the upregulation of miR-21

and cytokines IL-6 and IL-1b. LPS-induced levels of miR-21 target

proteins NF-kB p65, IkB-a, PTEN, PI3K, and Akt and affected the

NF-kB, PTEN, and PI3K/AKT pathways. miR-21 exerts its role by

negatively regulating a cell proliferation protein suppressor, SNF5.

Exogenous addition of SNF5, a transcription regulatory protein,

reduced p-NF-kBp65, p-IkB-a, p-PI3K, and p-Akt proteins,

thereby suppressing the inflammatory response (60).

Existing studies confirm that miR-21 plays pathogenic and

protective roles in an array of conditions related to bone health.

In a pivotal 2011 publication by Sugatani et al., miR-21 was shown

to mediate receptor activator of nuclear factor kB ligand (RANKL)-

induced osteoclastogenesis in mouse bone marrow-derived

monocyte/macrophage precursors (61). In a separate study, miR-

21 was identified among seven miRNAs significantly upregulated in

the serum of postmenopausal women with low bone mineral

density and vertebral fractures (62).

While there are currently no clinical trials for miR-21

antagonists in rheumatic diseases, the safety, pharmacodynamics,

and pharmacokinetics of RG-012 miR-21 inhibitor were recently

tested for the prevention of kidney fibrosis in Alport’s syndrome

(NCT03373786). Of note, RA patients are being recruited for a

clinical trial to track the potential effects of the Jak inhibitor

tofacitinib on pain sensitization, and as a secondary outcome,

investigators will be monitoring plasma levels of four miRNAs

implicated in Jak/STAT signaling and RA pathogenesis, including

miR-21 (NCT03815578).
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Disease-specific role of identified
miRs: impact on cell types
and functions

In summary of the role of top miRNA in most common

rheumatic diseases, the top seven most frequently studied

miRNAs for each disease are represented in Figure 6.

Additionally, disease-specific heat maps depicting the top seven

miRNAs specific to individual rheumatic conditions are shown in

Figure 7, with color coding to indicate the frequency of publication

with certain pathogenic processes, cell types, and cytokines.
Ankylosing spondylitis

In ankylosing spondylitis (AS), miR-146, miR-29, and miR-155

were identified as key miRNAs based on our computer-guided

literature mining. miR-146 was frequently mentioned in the context

of cytokines like IL-1b, IL-6, and TNF-a and the process of

inflammation. miR-29 appeared in four primary research articles

referring to osteoblasts, whereas miR-155 appeared in three,

referring to IL-1b and IL-17 cytokines. The subject of miRNAs in

ankylosing spondylitis was systematically reviewed by Li et al. in

2016, and miR-146 and miR-29 were among those discussed in that

review (63). miR-146a has been shown to repress the expression of

the target genes of NF-kB like IL-1b, IL-6, TNF-a, and IL-8 in AS

(64). In recent work, significantly reduced miR-146 expression was

found in the subset of ankylosing spondylitis patients with

metabolic syndrome, which was further associated with increased

mRNA levels of transcription factors NF-kB and AP-1 and secreted

cytokines (MCP-1/CCL2, MIP-1a/CCL3, IL-8/CXCL8 and IL-1b)
(64). Polymorphisms in the miR-146 gene and the 3’UTR of miR-

146 inflammatory target genes like IRAK-1 are highly studied and

found to be significant in AS (65–67). miR-29 was identified as the

second-most published miRNA in AS. miR-29 levels are elevated in

PBMCs and osteoblasts in AS and have been shown to promote the

proliferation, invasion, and migration of osteoblasts (68, 69).
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miR-155 and miR-146a together demonstrate significant

upregulation in AS patients, with increased miR-155 levels

positively correlating with disease activity (70). Chen et al.

reported that miR-155 was one of the key miRNAs upregulated

in Th17 cells of AS patients (71). Th17 cell frequency is higher in AS

patients, and multiple lines of evidence implicate these cells in AS

pathogenesis (72, 73). Interestingly, treatment with nano-curcumin

decreased miR-155 expression levels and improved clinical

symptoms in AS patients (74).
Osteoarthritis

Osteoarthritis (OA) is by far the most studied rheumatic

condition with regard to the role of miRNAs, with a total of 1277

articles revealed in our PubMed search. Chondrocytes were the

most extensively studied cell type in OA, with 43 abstracts

mentioning chondrocytes and miR-146 and 59 abstracts

mentioning chondrocytes with miR-140. IL-1, IL-6, and TNF-a
were the most frequently studied cytokines in the context of OA and

miRNAs: miR-146 co-occurred with IL-1, IL-6, and TNF-a in 31,

17, and 16 abstracts, respectively. miR-140 had the second-highest

number of publications in OA and co-occurred with IL-1b in 28

abstracts and TNF-a in 10 abstracts.

The most frequently studied processes in OA were apoptosis,

proliferation, inflammation, and degeneration. Apoptosis was

mentioned in 105 abstracts with the top seven miRNAs,

specifically with miR-146 in 25 abstracts and miR-34 in 22

abstracts. Proliferation and inflammation co-occurred 73 and 75

times, respectively, with the top seven miRNAs. Uniquely, the top

seven miRNAs studied in OA also co-occurred more frequently

with the term “degeneration” in OA than in other rheumatic

diseases, often referring to degeneration of articular cartilage.

The prominence of miR-140 in OA research is not surprising,

given that the expression of this anti-arthritic miRNA is almost

exclusive to chondrocytes (75). It is encoded in an intron within the

WW domain-containing protein 2 (Wwp2) gene locus (76). miR-

140 plays key roles in bone growth and cartilage homeostasis. miR-
FIGURE 6

Key miRNAs studied in various rheumatic diseases. Donut charts depict the top seven miRNAs researched in each of the nine rheumatic diseases,
providing an overview of the predominant miRNA research focus within each disease.
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140 (-/-) mice show skeletal growth retardation and cartilage

fibrillation, while transgenic mice with cartilage-specific miR-140

overexpression have higher proteoglycan and collagen levels and

show resistance to antigen-induced arthritis (77). These effects are

attributed in part to miR-140 targeting and suppressing the mRNA

of ADAMTS5, a proteolytic enzyme implicated in articular cartilage

degradation (77). miR-140 has also been shown to target DNPEP,
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an antagonist of bone morphogenic protein signaling, which is

critical for endochondral bone formation (75).

Levels of miR-140 are tuned through interactions with other

non-coding RNA. Circular RNA S-phase cyclin A associated

protein in the endoplasmic reticulum (circSCAPER) is highly

expressed in IL-1b-treated chondrocytes and OA cartilage and

has been reported to act as a “sponge” of miR-140-3p (78). miR-
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FIGURE 7

Bibliographic Heatmaps (A–I): In-depth analysis of top seven miRNAs in nine rheumatic diseases. The heatmaps provide insights into the top seven
miRNAs studied in the context of nine rheumatic diseases by illustrating the frequency of co-occurrences of key cell types, cytokines, and
pathological processes with miRNA in the available primary publications on PubMed.
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140 was also shown to be the target of long non-coding RNAs

LINC01385 (79) and plasmacytoma variant translocation 1 (PVT1)

(80). Restoration of miR-140 is being tested as a therapeutic

approach in preclinical models of OA. Exosomes from synovial

mesenchymal stem cells overexpressing miR-140-5p (SMSC-140-

Exos) have been shown to stimulate the proliferation and migration

of articular chondrocytes in vitro (81). The same authors reported

that SMSC-140-Exos successfully prevented OA in a pre-clinical

rat model.

Several studies have reported increased expression of miR-146

in the clinical samples of OA patients (82–84). Shao et al. reported

miR-146 as one of the top differentially expressed miRNAs between

healthy control cartilage and OA cartilage. Furthermore, their

results suggested that miR-146 modulates IL-1b-induced
chondrocyte apoptosis via the TRAF-6/NFkB pathway (83).

Paradowska-Gorycka et al, reported a positive correlation

between circulating miR-146 in serum and RORc transcription

factor mRNA in the whole blood of OA patients (85). RORc is the

primary transcription factor that regulates Th17 cell development

and makes them resistant to apoptosis, and its elevated expression is

reported in several arthritic diseases (86).

miR-34 was frequently described in OA research compared to

other rheumatic diseases in our review. miR-34a-5p has reported

involvement in cellular processes that are central to the

pathogenesis of OA, such as IL-1b-mediated inflammation and

chondrocyte apoptosis (87). Abouheif et al. showed that silencing

miR-34a markedly inhibited IL-1b-induced apoptosis of rat

chondrocytes in vitro (88). The findings of Zhang et al. suggested

that miR-34a contributes to OA progression by promoting

chondrocyte apoptosis by targeting DLL1 and modulating the

PI3K/AKT pathway (89). Tian et al. found miR-34a-5p to be up-

regulated in OA tissues and IL-1b-treated primary human

chondrocytes compared with non-diseased tissues and untreated

chondrocytes (90). Their results suggested that long non-coding

RNA small nucleolar RNA host gene 7 (SNHG7) acts to sponge

miR-34a-5p, while miR-34a-5p targets the mRNA of synoviolin 1

(SYVN1) (90). Overexpression of SNHG7 or transfection of

chondrocytes with a miR-34a-5p inhibitor promoted

chondrocyte proliferation.
Rheumatoid arthritis

Our search revealed a total of 822 primary publications in

PubMed for miRNAs and rheumatoid arthritis. The top seven

most-published miRNAs were miR-146, miR-155, miR-223, miR-

21, miR-125, miR-124 and miR-26. Notably, miR-146 and miR-155

were the top candidates, with 94 and 77 publications, respectively.

The remaining top miRNAs each appeared in 24 to 37 primary

research article abstracts.

MicroRNAs are hypothesized to mediate gene-environment

interactions underlying the development of autoantibodies in RA.

Kurowska-Stolarska et al. reported that miR-155 deficient mice

were resistant to the development of autoantibody responses in the

collagen-induced arthritis animal model of RA (43). Anaparti et al.

found altered miRNA expression profiles in the peripheral blood of
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rheumatoid arthritis patients and their asymptomatic first-degree

relatives (both groups positive for anti-citrullinated peptide

antibodies, ACPA+) when compared to healthy controls (HCs)

[(91)]. Both ACPA+ study groups showed upregulated expression

of miR-103a-3p, miR-155, miR-146a-5p, and miR-26b-3p and

downregulated expression of miR-346 in contrast to HCs. Results

of the study suggest that expression profiles of key miRNA may

associate with autoantibody development and serve as prognostic

markers of preclinical RA.

Our literature analysis showed that miR-146 has been the focus

of study in four key cell types in rheumatoid arthritis: synovial

fibroblasts, macrophages, monocytes, and osteoclasts. For example,

the results of Liu et al. suggested that miR-146a suppresses synovial

fibroblast proliferation and inflammatory mediators by inhibiting

the TLR4/NF-kB pathway (92) miR-146 frequently appeared with

the terms “biomarker”, “inflammation”, “proliferation”, and

“therapy”. Due to its anti-inflammatory and anti-proliferative

effects, miR-146 was frequently mentioned in the context of

targeted delivery approaches for therapeutic purposes in RA.

Our search indicated that miR-155 is frequently studied in the

context of fibroblasts, monocytes, and macrophages. For example,

Paoletti et al. showed that higher expression levels of miR-155 were

linked to a defect in macrophage polarization in RA, which is

differentially affected by distinct TNF inhibitors (93). Only

monocytes from the blood of RA patients, in contrast to

monocytes from healthy donors, were resistant to experimentally

induced polarization to anti-inflammatory M2-like macrophages,

and this correlated with levels of miR-155 (93). Like miR-146, over a

third of publications mentioned miR-155 with the terms

“biomarker” and “therapy” in RA.

miR-223 and miR-21 were also frequently studied in RA, with

37 and 29 primary research articles, respectively. The role of miR-

223 in immune cell differentiation and inflammation was recently

reviewed by Jiao et al. (94). The effects of miR-21 are cell-type

specific. For example, through miR-21 mimic and inhibitor

transfection studies, Wu et al. found that miR-21 promoted LPS-

induced inflammatory responses in the MH7A cell line by

activating NF-kB and PTEN/PI3K/AKT pathways via silencing

the tumor suppressor gene SNF5 (60). Geest et al. showed that

miR-21 has higher expression in the T-reg cells with a memory

phenotype from the synovial fluid of RA patients in comparison

with the conventional T-reg cells isolated from the peripheral blood

of RA patients. The authors suggest that due to the anti-apoptotic

roles of miR-21, its differential expression can render the memory

T-reg cells resistant to apoptosis, thus modulating the overall

turnover rate of T-reg cells in RA (95).

miR-26 was the sixth most published miRNA in the context of

RA. miR-26 frequently appeared in the same abstracts with the

terms “fibroblast”, “IL-17”, “IL-1”, “biomarker”, and “invasion”.

Niimoto et al. showed that miR-26 was one of the top six most

upregulated miRNAs in Th17 cells expanded from CD4+ T cells

(96). Kmiołek et al. performed a receiver operating characteristic

(ROC)–AUC (Area Under Curve) analysis to calculate the potential

value of miRNA as biomarkers in RA and OA. Their results showed

higher expression of miR-26 in T-reg cells from healthy controls

compared to T-reg cells from RA patients. The difference in miR-26
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levels in T-reg cells showed a significant relationship to disease

classification [healthy vs. RA] (AUC 0.92, p = 0.0002), as well as in

Th17 cells (AUC 0.75, p = 0.02). Furthermore, they found that miR-

26 expression in RA Th17 cells positively correlated with

transcription factors SMAD3, STAT3, and SOCS1 (49). miR-26

has been experimentally validated to target the mRNA of the anti-

hypertrophic protein- glycogen synthase kinase-3b (GSK-3b) (97),
as well as mRNA of Ezh2, a suppressor of skeletal muscle cell

differentiation (98).

As shown in the heatmap, miR-124 co-occurred with the term

“proliferation” in eight primary research abstracts (Figure 7).

Several studies have reported that miR-124 expression is reduced

in RA. For example, Lin et al. reported that miR-124-3p is

downregulated in purified CD4+ cells purified from PBMCs of

RA patients compared to that of healthy donors, and its expression

has a negative correlation with inflammatory gene Yin Yang 1

(YY1) (99). In another article, lower expression of miR-124 was

found in the synovial tissue of RA patients compared to the normal

synovial tissues and inversely correlated with the expression of

Histone deacetylase 1 (HDAC1) known to cause synovial

hyperplasia and inflammation in RA (100). In the same

publication, Meng et al. revealed that miR-124 repressed the JAK/

STAT signaling pathway in CIA and alleviated hyperplasia and

inflammation of the synovium (100). Another study showed that

miR-124 suppresses the NFATc1-mediated pathway and inhibits

RANKL-dependent and -independent osteoclast differentiation

(101). In a recent placebo-controlled phase II study, the efficacy

and safety of ABX464, an upregulator of miR-124 biogenesis, were

determined in RA patients. The authors concluded that ABX464 at

50 mg per day or less is safe and warrants further testing in the

treatment of RA (102).
Systemic Lupus Erythematosus

Our analysis showed that miR-146, miR-155, and miR-21 were

the top three most published miRNAs in the context of Systemic

Lupus Erythematosus (SLE). These miRNAs frequently co-occurred

with the terms “biomarker”, “diagnosis”, and “inflammation”.

Interestingly, the top seven miRNAs in SLE were not associated

with specific cell types in primary publication abstracts, with only a

few abstracts co-occurring with macrophages and monocytes.

Xu et al. recently reviewed the roles of miR-155 in inflammatory

autoimmune diseases. Their systematic analysis of the literature on

miR-155 in SLE suggests that miR-155 may be a potential

biomarker for predicting lupus nephritis (LN), a major

complication of SLE. They summarized the role of miR-155 in

the induction of inflammatory downstream signaling that leads to

the development of SLE (103). In a separate publication,

Khoshmirsafa et al. showed that the levels of miR-155 and miR-

21 were significantly higher in PBMCs from patients with active

nephritis than in subjects with absent or inactive nephritis or

healthy control groups. Their ROC and logistic regression

analyzes showed that these miRNAs were possible biomarkers

and high-risk factors with significant roles in LN pathogenesis.
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Studies suggest that miR-155 is central to autoantibody

development in SLE. Thai et al. demonstrated that deletion of

miR-155 in the death receptor deficient (Faslpr) lupus-prone

mouse resulted in reduced autoantibody responses, with lower

serum IgG anti-dsDNA antibodies and reduced kidney

inflammation in this animal model of SLE (104). Leiss et al.

reported significantly lower anti-dsDNA, anti-chromatin, and

anti-histone autoantibody levels in miR-155-deficient mice in the

pristane-induced lupus preclinical model of SLE (105).

miR-21 was one of the top three miRNAs studied across the

selected rheumatic diseases, which was also prevalent in primary

publications on SLE. It was mentioned in the abstracts of 39 of the

total SLE miRNA articles. miR-21 co-occurred most with the terms

“biomarker” and “autoantibody” in SLE, with 13 and 5 co-

occurrences, respectively. Significantly elevated expression of

miR-21 has been consistently reported by several researchers in

serum exosomes and plasma of SLE patients compared to healthy

controls, suggesting its potential as a key biomarker (106–108).

Interestingly, Amr et al. showed that the plasma levels of miR-21

positively correlated with the SLE disease activity index (SLEDAI)

score and proteinuria in these patients (108). Gao et al. recently

showed that antagomir-based inhibition of miR-21 ameliorated the

disease state by inhibiting T follicular helper (Tfh) cell expansion in

the MRL/lpr mouse model of SLE (109).

Like several other rheumatic diseases, miR-146 was the focus of

the highest number of publications in SLE, with a total of 62. Co-

occurrences of miR-146 and various cytokines were evenly

distributed across the different cytokines, with TNF-a (9), IL-1

(7), and IL-6 (7) being the most frequent. In a comprehensive study

by Perez-Hernandez et al., exosomal miR-146 levels were quantified

in 41 patients with SLE and 27 patients with LN, compared to 20

healthy controls. Their work shows that miR-146 has a negative

correlation with SLE activity and proteinuria that can discriminate

LN patients from SLE patients without LN. In addition, miR-146

was found to target the mRNAs for IRAK1 and TRAF6, suppressing

the inflammation mediated by these molecules (110).
Systemic sclerosis

Systemic sclerosis (SSc) showed unique patterns in miRNA

publications compared to other rheumatic diseases, with an

emphasis on the cell type fibroblasts and the process of fibrosis.

Our search revealed a current total of 103 primary research articles

on miRNA in PubMed for this disease. The top three miRNAs were

miR-29 and miR-21, with 16 and 14 articles, respectively, and miR-

155, with 9 articles. miR-29 co-occurred with fibroblasts in 9 articles

and with fibrosis in 10 articles. miR-21 co-occurred with fibroblasts

and fibrosis in 9 and 10 articles, respectively.

SSc is characterized by chronic activation of fibroblasts, which

become resistant to apoptosis, with accompanying accumulation of

extracellular matrix proteins in the skin and internal organs. The

miR-29 family has been identified as key regulators of fibrosis in

several organ types by targeting the 3’ UTR of collagen mRNAs in

fibroblasts (111). Early studies showed miRNA-29a to be under-
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expressed in SSc skin biopsy samples and fibroblasts compared to

those of non-diseased controls (112). The same study also

demonstrated the involvement of miRNA-29a in post-

transcriptional negative regulation of profibrotic type I and type

III collagen genes (112). Furthermore, miRNA-29a has been

implicated in several studies as a pro-apoptotic factor with

therapeutic potential in sclerotic disease. It was reported that

dermal fibroblasts from SSc patients and TGF-b-stimulated

fibroblasts showed increased expression of anti-apoptotic Bcl-2

family proteins, while transfection with a miRNA-29a mimic

reduced expression of Bcl-2 and Bcl-XL and restored sensitivity of

SSc dermal fibroblasts to apoptosis (113). Shimada et al. reported

lower expression of the chemokine CXCL17 in skin biopsy samples

from SSc patients compared to negative controls (114). Their results

showed that treatment of cultured fibroblasts or localized injection

of CXCL17 in a bleomycin-induced SSc mouse model increased

miR-29 and matrix metalloproteinase 1 (MMP-1) expression and

decreased type I collagen expression and skin fibrosis in the mouse

model (114).

Given its role in fibrosis, our search identified miR-21 to be

frequently studied in SSc. miR-21 and miR-29a have been shown to

act as pro-fibrotic and anti-fibrotic factors with opposing effects. In

primary human fibroblast cultures from patients with diffused

cutaneous SSc (dcSSc) and in TGF-b-treated fibroblasts, miR-21

was upregulated, and miR-29a was downregulated compared to

normal or untreated controls. Inhibition of miR-21 or

overexpression of miR-29a reduced COL1A1 gene expression and

collagen production (56). Of note, miR-21 is associated not only

with dermal fibrosis but also pulmonary fibrosis in SSc. Yan et al.

compared expression profiles of normal lung tissue vs SSc lung

tissue to construct a competing endogenous RNA (ceRNA) network

as predicted by multiple online databases (115). Their model

analyzed interactions between long non-coding RNA and

miRNA, miRNA and mRNA, and long non-coding RNA and

mRNA. Three core sub-networks were identified to be associated

with SSc, including LINC01128/miR-21-5p/PTX3 (Pentraxin 3

gene) (115). Wuttge et al. compared plasma levels of 46 selected

miRNAs in 85 female patients with anti-centromere antibody

(ACA) positive limited cutaneous SSc (lcSSc) and found miR-21-

5p to be significantly elevated in patients with the severe

complication of SSc-associated pulmonary arterial hypertension

(APAH) (116).

miR-155 was also a top-ranking miRNA associated with SSc in

our search. Artlett et al. published a study reporting miR-155

overexpression in lung fibroblasts from SSc patients and

demonstrating that miR-155 expression was requisite for NLRP3

inflammasome-mediated collagen production in cultured murine

fibroblasts (117). A gene expression profiling by Dolcino et al.

reported the elevated expression of miR-155 in the sera of SSc

patients compared to non-diseased controls and postulated a

possible link between miR-155 overexpression in SSc and

susceptibility of SSc patients to certain malignancies (118). Wajda

et al. compared serum miRNA expression levels between 45 SSc

patients and 57 healthy controls and found higher levels of miR-155

in SSc patient sera (119). Furthermore, increased miR-155

express ion was assoc ia ted with an ear ly pat tern of
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microangiopathy on nailfold video capillaroscopy as opposed to a

late pattern, suggesting that miR-155 may serve as a biomarker for

vasculopathy risk in SSc (119).
Gout

Our search revealed a moderate number of publications on

miRNA in gout compared to other rheumatic diseases, with a total

of 32 primary research articles. The topmost studied miRNAs in

gout were miR-223, miR-146, and miR-155. By order of frequency

of mention in research article abstracts, monocytes and

macrophages were the top-ranked cell types, IL-1 was the top-

ranked cytokine, and inflammation was the top process.

miR-223 has been negatively associated with gouty

inflammation. Several studies have supported the observation that

miR-223 suppresses IL-1b and TNF-a production by targeting the

NLRP3 inflammasome (120–122). Bohata et al. reported a negative

correlation between miR-223-3p and monocyte chemoattractant

protein (MCP-1) levels and a positive correlation with C-reactive

protein (CRP) levels in the plasma of gout patients (123). miR-146

is also negatively associated with gouty inflammation in preclinical

models. Zhang et al. reported exacerbated paw swelling, with

markedly higher TRAF6 and IRAK1 gene expression and

inflammatory cytokine production in bone marrow-derived

macrophages from miR-146a knockout mice compared to wild-

type control mice in a monosodium-urate (MSU)-induced gouty

arthritis model (124). Contrasting studies report the elevated levels

of miR-155 in PBMCs of gout patients compared to healthy

controls and pro-inflammatory effects via targeting SHIP-1

mRNA (125), while another study reported no significant role for

miR-155 in an MSU-induced mouse model of gout (126). Hence,

the role of miR-155 in gout remains elusive and warrants

further study.
Sjogren’s syndrome

Sjogren’s syndrome showed a relatively high number of

publications on miRNA, with 74 total. The top seven miRNAs for

Sjogren’s syndrome were miR-146, miR-155, miR-21, miR-125,

miR-1207, miR-150, and miR-34. In a recent publication by

Kamounah et al. the authors provided a systematic review of 65

publications that examined proteomics and miRNAs in patients

with Sjogren’s syndrome. In these publications, miRNA expression

analysis was performed on plasma, serum, or PMBCs. The authors

reported heterogeneity in the reviewed publications on the number

and type of differentially expressed miRNAs (127). In our search

results, miR-125 was mentioned with the term “therapy” twice. In

an interesting work by Xing et al. PBMCs from primary Sjögren

syndrome patients were cultured with exosomes derived from the

labial gland mesenchymal stem cells SCs (LGMSCs) of healthy

individuals. It was reported that high levels of miR-125 in the

LGMSCs-derived exosomes bind and inhibit the plasma cell

differentiation factor-PRDM1 (PR domain zinc finger protein 1,

also known as BLIMP1), thus preventing the excessive
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differentiation of B-cells into plasma cells, an important hallmark of

Sjogren’s syndrome (128). In our search, other than the frequently

appearing miR-146 and miR-155, most of the miRNAs appeared in

less than 3 publications. Further investigation of these unique and

understudied candidates will be needed to validate their importance

in Sjogren’s syndrome.
JIA and psoriatic arthritis

For certain diseases, our literature mining revealed a smaller

number of miRNA-related primary publications. In the case of JIA,

the number of articles was 21 and for psoriatic arthritis it was 24.

The sparse number of articles found in our search underscores the

need for more studies on the role of miRNAs in these diseases.
Conclusion and future directions

As the number of research articles on PubMed continues to

expand, our bibliometric analysis provides a tool for a data-driven

approach to identify the relevant miRNAs, cell types, cytokines, and

cellular processes in rheumatic disease pathogenesis. Currently,
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PubMed contains over 2800 primary research publications on

miRNA for just the nine diseases that were the focus of this

review. To data mine the thousands of articles, we share a unique

programming approach to text mining using the free computer

program PowerShell. This report quantifies and highlights the

published findings on miRNAs with shared effects in multiple

rheumatic diseases as well as unique disease-specific miRNAs.

Our analysis reveals that miR-146, miR-155, and miR-21 are the

most studied miRNAs across the rheumatic diseases under

consideration. In contrast, miRNAs such as miR-145, miR-196,

miR-140, and miR-20 were uniquely studied in the pathogenesis of

specific rheumatic diseases. Similarly, miR-34 was in the top seven

for only osteoarthritis and Sjogren’s syndrome, while miR-146 and

miR-155 were in the top seven for all nine rheumatic diseases.

Our computational literature analysis revealed a disparity

among rheumatic diseases regarding the number of miRNA-

focused primary research publications in PubMed. The number of

publications on miRNA in OA, RA, and SLE exceeded other

diseases under study. JIA and psoriatic arthritis showed

particularly low counts, totaling under 25 to date. Potential

challenges to miRNA research in these diseases may include a

shortage of patient samples for study or a lack of an established role

of epigenetics or miRNAs in pathogenesis. Based on our literature
FIGURE 8

Considerations in the design of miRNA-targeted therapeutics for rheumatic diseases. The diagram illustrates considerations and challenges relevant
to the development of miRNA-targeted therapies.
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review as a relevance finder, existing publications suggest that miR-

146, miR-155, and miR-21 are key regulating miRNAs in common

rheumatic diseases, which provides a rationale for investigating

their roles in these understudied diseases. Unique miRNAs such as

miR-151 and miR-92 that appeared in the top seven published

miRNAs only for psoriatic arthritis also warrant further study.

Finally, investigators could consider similarities of involved cell

types, cytokines, and disease processes highlighted in the heatmaps

of other diseases to identify possible miRNA candidates.

The authors believe that the information summarized in this

review sheds light on two major categories of challenges to miRNA-

based diagnostics and therapeutics (Figure 8). The first one includes

the mechanisms of endogenous regulation, tissue-specific

distribution, and the potential drug-drug interactions in miRNA-

targeted therapies. The second one could be independent of miRNA

status, including the epigenetic or genetic variation, disease stage or

activity, associated co-morbidities, and the role of lncRNAs in

rheumatic diseases (as summarized in Figure 8). Understanding

such challenges allows researchers to consider these factors in their

efforts to develop effective and safer therapies targeting miRNA in

rheumatic diseases. While this review summarizes the most recent

and comprehensive information on the discoveries related to the

role of miRNAs in rheumatic diseases, the use of a computational

approach with open-access software to serve as a relevance guide for

the diverse research interests also allows precise identification of the

most common and some unique disease-associated miRNAs

concomitantly. Our review features preliminary evidence of the

role of less explored miRNAs, reinforces the importance and

interconnectedness of the topmost-studied miRNAs, and presents

research opportunities in under-studied rheumatic diseases.

Our comprehensive review found no definitive information

about alterations in miRNA signatures during the early versus

late stages of rheumatoid arthritis (RA) and their correlation of

miRNA signatures with therapeutic responses. Given the potential

of certain miRNAs to emerge as biomarkers, a deeper examination

of variations in these miRNAs during the disease’s early and late

phases is valuable. Furthermore, there exists an opportunity to

investigate whether miRNAs can predict or influence the efficacy of
Frontiers in Immunology 14
current therapies, emphasizing the necessity for additional research

in these areas.
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