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Allo Beta Cell transplantation:
specific features,
unanswered questions, and
immunological challenge
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Type 1 diabetes (T1D) presents a persistent medical challenge, demanding

innovative strategies for sustained glycemic control and enhanced patient

well-being. Beta cells are specialized cells in the pancreas that produce insulin,

a hormone that regulates blood sugar levels. When beta cells are damaged or

destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell

Transplantation has emerged as a promising therapeutic avenue, with the goal

of reinstating glucose regulation and insulin production in T1D patients.

However, the path to success in this approach is fraught with complex

immunological hurdles that demand rigorous exploration and resolution for

enduring therapeutic efficacy. This exploration focuses on the distinct

immunological characteristics inherent to Allo Beta Cell Transplantation. An

understanding of these unique challenges is pivotal for the development of

effective therapeutic interventions. The critical role of glucose regulation and

insulin in immune activation is emphasized, with an emphasis on the intricate

interplay between beta cells and immune cells. The transplantation site,

particularly the liver, is examined in depth, highlighting its relevance in the

context of complex immunological issues. Scrutiny extends to recipient and

donor matching, including the utilization of multiple islet donors, while also

considering the potential risk of autoimmune recurrence. Moreover, unanswered

questions and persistent gaps in knowledge within the field are identified. These

include the absence of robust evidence supporting immunosuppression

treatments, the need for reliable methods to assess rejection and treatment

protocols, the lack of validated biomarkers for monitoring beta cell loss, and the

imperative need for improved beta cell imaging techniques. In addition, attention

is drawn to emerging directions and transformative strategies in the field. This

encompasses alternative immunosuppressive regimens and calcineurin-free

immunoprotocols, as well as a reevaluation of induction therapy and recipient

preconditioning methods. Innovative approaches targeting autoimmune

recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the

potential of stem stealth cells, tissue engineering, and encapsulation to
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overcome the risk of graft rejection. In summary, this review provides a

comprehensive overview of the inherent immunological obstacles associated

with Allo Beta Cell Transplantation. It offers valuable insights into emerging

strategies and directions that hold great promise for advancing the field and

ultimately improving outcomes for individuals living with diabetes.
KEYWORDS

islet transplant, immunosuppression, type 1 diabetes, autoimmunity, beta cell
replacement, immunomodulation
1 Introduction: “Beta is better.”

1.1 Despite the availability of insulin
therapy, T1D patients face challenges
in achieving optimal blood sugar
control, chronic complications, and
mental health burden

In 2022, around 8.75 million people with T1D were living with

the condition, with 1.52 million under 20 (IDF Diabetes Atlas 10th

edition, https://diabetesatlas.org/). In the early 20th century, T1D

was often fatal, with children dying within a short time after

diagnosis (1). The discovery of insulin by Banting, Best, Collip,

and Macleod in 1921 revolutionized diabetes care, offering hope to

countless individuals (2). Leonard Thompson became the first T1D

patient to receive insulin, marking the beginning of a century of

innovations in diabetes treatment. Over time, the treatment goal for

T1D has shifted from merely keeping patients alive to achieving

nearly normal blood sugar levels. While insulin was once seen as a

highly effective treatment, it is now recognized as insufficient, as it

transforms a fatal condition into a chronic and degenerative disease

(3). Healthy individuals maintain blood glucose levels close to 99

mg/dL on average, with minimal variability (4). Even with advanced

technologies like closed-loop systems (5) and adjunctive therapies

(i.e., SGLT-2 inhibitor, low-carb diet), T1D patients struggle to

achieve these levels (6–8). Current consensus guidelines define a

target range of 70-180 mg/dL (9, 10), which still falls far from

healthy norms (11). Maintaining blood sugar levels as close to

normal as possible is essential (12–19). Lowering blood sugar levels

is associated with reduced risks of complications and mortality in

T1D (20–22). A 1% reduction in HbA1c has been linked to

decreased risks of myocardial infarction, stroke, microvascular

complications, and more (23). Despite the availability of advanced

treatments, a substantial proportion of T1D patients fail to meet

glycemic targets (24). Registries and clinics report that many

children, adolescents, and adults do not achieve HbA1c goals

(25–28). Even with the use of technology (5), blood sugar control

remains elusive (6–8). Patients with T1D face acute complications

related to insulin therapy, including hypoglycemia (29–33).

Hypoglycemia rates remain significant, impacting patients’

cognitive function (34–38), cardiovascular health (39–42), and
02
quality (43, 44) and quantity of life. Chronic complications

continue to develop, despite advances in insulin and devices,

affecting kidney function, retinopathy, and more. Insulin therapy

can also have a significant negative impact on mental health,

contributing to diabetes distress (45). Approximately 20-30% of

T1D individuals experience this burden, which persists even with

new technologies (46, 47). While there has been a decline in T1D-

related mortality (48, 49), it still presents a significant risk. Patients

with T1D face a relative risk of mortality 3.1 to 5.8 times higher than

those without diabetes (North America (50, 51), Europe (52–54)

and Australia (55)). This results in an estimated loss of 10 to 13

years of life (54–57). In conclusion, insulin therapy has undeniably

been a life-saving treatment for individuals with T1D. However, it

falls short of providing a normal and healthy life. Achieving optimal

blood sugar control remains a significant challenge, and chronic

complications continue to be a concern. Moreover, the

psychological toll of managing T1D cannot be overlooked.
1.2 Pancreas and islet transplantation are
effective treatments for T1D, improving
glycemic control and life expectancy

As we commemorate a century of insulin discovery two years

ago, it is imperative to renew our commitment to finding more

effective treatments and ultimately striving for a world where

individuals with T1D can live without the constraints of insulin

therapy (3). Over the past three decades, clinical trials have

demonstrated that restoring beta-cell function through islet or

pancreas transplantation can lead to more physiologic regulation

of blood sugar levels compared to exogenous insulin in diabetes

patients (58). Clinical trials are essential for evaluating the safety

and efficacy of new treatments, and they have played a vital role in

the development of islet transplantation for T1D. Four successful

large-scale Phase 3 clinical trials in islet transplantation have been

published recently: CIT-07 (multicenter, single-arm) (59), CIT06

(pivotal trial) (60), TRIMECO (multicenter, open-label,

randomized) (61) and REP0211 (multicenter, Double blind,

randomized) (62). All these studies have provided compelling

evidence that the transplantation of human islets into patients

with T1D who experience impaired awareness of hypoglycemia
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and severe hypoglycemic events is not only safe but also highly

effective in maintaining optimal glycemic control (3). Attaining

freedom from the need for insulin can be realized by transplanting a

sufficient quantity of islets (63). Following islet transplantation, the

likelihood of sustaining insulin independence for up to five years

may reach as high as 50%. Furthermore, a substantial proportion of

patients, approximately one in four, may continue to be insulin

independent, maintaining HbA1c levels at or below 6.5%, for a

period spanning at least a decade. This favorable outcome can be

achieved through either islet transplantation as a standalone

procedure or in conjunction with a kidney transplant (64, 65).

The glucose control achieved with excellent islet graft function

closely resembles glucose values observed in healthy adults, with

median glucose levels at 103 mg/dl, a standard deviation around the

mean value of 14, and no time spent above 180 mg/dl or below 54

mg/dl. HbA1c levels typically fall within the range of 5.6 to 5.8 (66).

Moreover, standardized psychometric instruments and

psychologist-conducted interviews have confirmed a significant

improvement in the quality of life following islet transplantation

(67–75). Additionally, there is evidence of positive effects on the

microvascular complications of T1D, including the stabilization or

slower progression of retinopathy (76–79) and neuropathy (77, 80–

82), as well as improvements in micro- and macroangiopathy (74,

76, 83–91). Pancreatic transplantation, in conjunction with islet

transplantation, stands as the other effective treatment option for

reinstating normal glycemic control in individuals with T1D (92).

Simultaneous pancreas-kidney (SPK) transplantation is the most

commonly performed type of pancreas transplantation (93),

primarily T1D patients with end-stage renal failure. After more

than five decades of worldwide experience and over 80,000 reported

cases to the International Pancreas Transplant Registry, there is

substantial evidence demonstrating that SPK transplantation

enhances life expectancy (94–96) and mitigates the progression of

diabetic complications (97–99). Similarly, sequential pancreas after

kidney (PAK) transplantation, whether following a living or

deceased donor kidney transplant, has shown improvements in

long-term patient and kidney graft survival rates (100). Pancreas

transplantation alone (PTA) is also considered a rational therapy

for appropriately selected T1D patients experiencing life-

threatening metabolic complications (101–104).
1.3 Clinical trials using stem cell-derived
islet cells for the treatment of T1D are
ongoing, with promising preliminary results

The field of cellular therapies for the treatment of T1D is rapidly

evolving and a new exciting era has already begun. Human

pluripotent stem cells, including both embryonic stem (ES) and

induced pluripotent stem (iPS) cells, are considered the most

promising candidates for generating b cells due to their capacity

for unlimited growth and differentiation. Multiple laboratories have

developed effective protocols for differentiating these pluripotent

cells into b cells, focusing on producing cellular products that are

consistently potent and safe for clinical use (105–113). Currently,

there are nine clinical trials registered in ClinicalTrial.gov utilizing
Frontiers in Immunology 03
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(NCT04678557, NCT02939118, NCT03162926 NCT02239354,

NCT03163511 NCT05210530, NCT05565248, NCT04786262,

NCT05791201). Three of these trials are active and recruiting

patients, two have been completed, one was terminated, and three

are active but not recruiting. Seven trial are using pancreatic

precursor cells (PEC-01) derived from pluripotent stem cells

(genetically modified in two trials, PEC211) in combination with

durable, removable, close or perforated devices (114). These cells

are a mixed population of pancreatic precursor cells (73%–80%

NKX6.1+/PDX1+ pancreatic precursor) fully committed to further

differentiating into mature endocrine pancreatic cells (115) once

implanted within an encapsulation device in a subcutaneous space.

Interim results from some of these clinical trials, reported in

December 2021, were promising but not yet clinically meaningful.

Over a follow-up period of up to 1 year, patients experienced a 20%

reduction in insulin requirements, spent 13% more time within the

target blood glucose range, maintained stable average HbA1c levels

below 7.0%, and improved hypoglycemic awareness. Additionally,

C-peptide levels, a marker of insulin production, were detected at

approximately 1/100th of normal levels within explanted grafts,

which included various types of pancreatic cells, including cells with

a mature b cell phenotype. The immunosuppressive treatment

appeared effective in preventing graft rejection, and the cell

product demonstrated safety and tolerability, with no teratoma

formation observed (116, 117). In 2021, VX-880, an investigational

cell therapy for T1D, was approved as a second cell product. VX-

880 comprises fully differentiated insulin-producing pancreatic islet

cells derived from pluripotent stem cells. A Phase 1/2 clinical trial

was approved for patients with T1D who have impaired

hypoglycemic awareness and severe hypoglycemia. VX-880 is

administered through infusion into the portal vein, and

concomitant immunosuppressive therapy is necessary to protect

the islet cells from immune rejection. Preliminary results suggest

that b cells derived from stem cells and transplanted into the liver

can engraft and begin secreting insulin shortly after infusion and

provide insulin independence in patients with T1D (118). In

addition to the ongoing clinical efforts, several commercial and

academic organizations have announced their plans to conduct

clinical trials using functional stem cell-derived islets.
1.4 Allo Beta Cell transplantation offers
hope for a cure for T1D, but further
research is needed to address the
challenges of long-term
immunosuppression and graft rejection

Allo Beta Cell transplantation is a promising cure for T1D, but

it is not yet a widely available option because it requires patients to

take lifelong immunosuppressive drugs. These drugs have serious

side effects, including an increased risk of infection and cancer.

Therefore, it is important to carefully weigh the risks and benefits of

Allo Beta Cell transplantation for each individual patient. Factors to

consider include the severity of T1D, the risk of complications from

chronic immunosuppression, the patient’s willingness to comply
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with treatment, and their life expectancy. Allo Beta Cell

transplantation may be a good option for people with severe T1D

or a high risk of complications, or for people who have tried other

treatments without success. Researchers are working on ways to

protect transplanted beta cells from immune rejection without the

need for chronic immunosuppression. This would make Allo Beta

Cell transplantation a more viable option for a wider range of

people with T1D. One promising approach is to use encapsulation

devices. Encapsulation devices protect transplanted beta cells from

the immune system by enclosing them in a semipermeable

membrane. This allows the beta cells to secrete insulin into the

bloodstream, but it prevents the immune system from attacking

them. Another promising approach is to use gene editing to modify

the beta cells before transplantation. This could make them less

susceptible to attack by the immune system. Researchers are also

working to develop new immunosuppressive drugs that are more

effective and have fewer side effects. These advances could make

Allo Beta Cell transplantation a safe and effective cure for T1D in

the near future.
2 Immunological specific hallmark in
Allo Beta Cell transplantation

Allo Beta Cell Transplantation presents distinct immunological

hurdles when compared to the transplantation of other organs or

tissues. These challenges are primarily associated with the unique

functions and biology of beta cells, the site of infusion, and the

individual characteristics of the recipient.
2.1 The importance of glucose regulation
and insulin in immune activation

The regulation of glucose levels and the presence of insulin are

pivotal factors in immune activation (119). A significant association

between post-transplant glycemic control and the development of

subsequent rejection was reported for solid organ transplantation

(120–122). In contrast to other transplanted organs, beta cells are

responsible for producing insulin andmaintaining glucose equilibrium.

Consequently, in Allo Beta Cell Transplantation, the effectiveness of the

graft is also crucial for the immunological response.

2.1.1 Insulin and immunity
Insulin, a key hormone in glucose metabolism, also has

immunomodulatory effects, promoting both pro- and anti-

inflammatory responses in a variety of immune cells (122, 123).

In macrophages and neutrophils, insulin activates insulin receptors

(InsR) and insulin-like growth factor 1 receptors (IGF1R), which

triggers signaling pathways that lead to the production of pro-

inflammatory cytokines, chemokines, and adhesion molecules (123,

124). Insulin increases the production of reactive oxygen species

(ROS), which can activate pro-inflammatory signaling pathways
Frontiers in Immunology 04
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promotes the activation and survival of eosinophils (127), the

maturation and scavenger receptor expression of dendritic cells

(128), and the activation, cytokine production, and differentiation

of natural killer (NK) cells and innate lymphoid cells (ILCs) (129).

In adaptive immunity, insulin predominantly assumes a pro-

inflammatory role by optimizing T cell activation, enhancing their

responsiveness to key cytokines, and facilitating migration to sites

of infection or inflammation (130–134). T cells without InsR have

metabolic and functional problems, resulting in less production of

important immune molecules, such as IFNg, and impaired

expansion in response to specific antigens (135). In addition, InsR

signaling seems to affect the balance of regulatory T cells (Tregs) in

the immune system, which could have implications for conditions

where insulin signaling weakens the suppressive function of Tregs

(136). T cells also express the IGF1R, which plays a role in

regulating the differentiation of T helper 17 (Th17) cells and

Tregs (137). The precise influence of IGF1R signaling on these

processes depends on contextual factors, such as the differentiation

stage of the T cells and the presence of specific ligands. In B cells,

while the exact role of InsR signaling remains less clear, it is known

that B cells express InsR (138). Elevated local and systemic insulin

levels are common in patients who have received islet transplants,

due to the production of insulin by the transplanted islets and the

need for supplemental insulin therapy. Elevated insulin levels may

contribute to the risk of inflammation and rejection, as shown in

one study that found a higher risk of islet graft dysfunction in

patients with higher insulin levels (139) and further sustained by

our recent study reporting that progression to Stages 2 and 3 of T1D

increases with HOMA-IR and decreases with the Matsuda

Index (140).
2.1.2 Glucose and immunity
Glucose metabolism plays a central role in supporting the

functions of innate immune cells (141). High glucose levels can

induce the production of ROS (142), which can serve as potent

weapons against invading pathogens but can also lead to oxidative

stress and inflammation (143). Additionally, high glucose levels can

upregulate inflammatory cytokines and chemokines, activate NF-

kB, PKC, and p38 MAPK pathways, and alter T-cell activation,

differentiation, and functions (144, 145). While existing evidence

suggests that persistent high blood glucose levels can induce notable

molecular and functional alterations in T cells, resulting from shifts

in their proteomic and metabolic profiles (146), it’s worth noting

that short term elevated blood glucose levels may actually enhance

immune responses (147). Additionally, hyperglycemia prompts

CD4 T cells to adopt an activated immunophenotype (148). In

line with these findings, high blood glucose levels during and after

kidney and liver transplantation are associated with higher rates of

organ rejection (119). In a study of mice, the timing of islet allograft

loss was dependent on the degree of hyperglycemia in the recipient

(149). Hyperglycemia is common in islet transplant patients for s

reasons, including the underlying diabetic condition, difficulty
frontiersin.or
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controlling blood sugar levels before transplantation, and

medications and infections that can occur after transplantation.

Hyperglycemia can increase the risk of rejection, so it is important

to carefully manage blood glucose levels in these patients.
2.2 The importance of beta cell in the
interaction with immune cells

In recent years, significant advancements have emerged in our

ability to comprehensively study the interaction between beta cells

and immune cells (150). Notably, recent research has reshaped our

understanding, highlighting that pancreatic beta cells play an active

role rather than remaining passive during the progression of

immune recognition (151). It was previously believed that T1D

resulted in the complete depletion of beta cells. However, recent

studies have uncovered a distinct subset of beta cells that manage to

survive, although their functionality is limited (152–154). This

revelation suggests that not all beta cells are equally susceptible to

immune responses, potentially due to inherent protective

mechanisms. As scientific inquiries have revealed a wide

spectrum of variations among beta cells (155–158), encompassing

genetic expression, physical characteristics, functionality, and

communication with neighboring cells, this diversity implies that

the unique traits of beta cells themselves could influence their

capacity to withstand immune attacks (159). Another intriguing

development gaining recent attention proposes that specific stress

events affecting beta cells can trigger immune cell activation (160).

These pathways include inflammatory stress originating from both

innate and adaptive immune responses, as well as endoplasmic

reticulum (ER) stress that persists due to the demands of insulin

production and intensifies as beta cell mass declines (161, 162).

Both pathways are significantly represented in all allogenic beta cell

transplantation strategies. The downstream consequences of

intrinsic (e.g., ER stress) and extrinsic stressors (e.g., cytokine

exposure) on beta cells encompass broad changes in their

transcriptomes and proteomes, which can affect the interaction

between beta cells and immune cells in a number of ways, including

altered expression of surface proteins, secretion of cytokines and

chemokines, and changes in metabolic pathways. These changes

can alter how they engage with and are perceived by immune cells.

For example, a stressed microenvironment plays a crucial role in

triggering the overexpression of HLA class I molecules on insulin-

producing beta cells (163) and in producing new epitopes (164)

formed through various processes, including transpeptidation,

disulfide bond formation, deamidation, and citrullination

formation of epitopes such as hybrid insulin peptides, alternative

splicing, splice variant peptides, and defective ribosomal insulin

products (165, 166). Immune recognition of these neoepitopes may

be enhanced compared to their native counterparts due to altered

HLA binding or increased TCR recognition (167). Adding further

complexity to the story, it is now evident that certain gene variants

modulate beta cell stress responses, increasing the interindividual

variability in how they respond (168–172). Collectively, this

evidence suggest that beta cell can be presented to the immune

system in a highly individualized and heterogeneous manner,
Frontiers in Immunology 05
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response to the transplanted beta cells.
2.3 The influence of liver site and its
significance in the context of
immunological challenges

Currently, the liver is the preferred location for clinical Allo

Beta Cell Transplantation, despite recent suggestions of alternative

implantation sites that might be more advantageous for graft

survival (173–181). The intrahepatic site offers benefits: it is a

well-established procedure accepted by regulatory agencies and

associated with minimal morbidity and a negligible risk of

adverse events, such as bleeding and portal thrombosis.

Moreover, it allows for the infusion of a substantial tissue volume,

up to 20 ml. This site scatters the cells throughout hepatic sinusoids,

preventing the formation of clusters that can impede the initial

diffusion of oxygen and nutrients. Additionally, it appears to have

some immunoprivileged characteristics compared to other sites like

the bone marrow and kidney capsule (177, 182, 183). Since the liver

is the primary target organ for insulin, intrahepatic islets can mimic

physiological pancreatic insulin secretion rather than causing

systemic insulin release (184, 185) although there have been

suggestions of potential dysfunctional alpha cell function (186).

However, the liver presents specific immunological challenges.

Monitoring through imaging techniques is not feasible, and

routine biopsies are impossible to obtain (187), making it

impossible to diagnose rejection promptly. Being an intravascular

transplantation, it is prone to the instant blood-mediated

inflammatory reaction (IBMIR), an innate immune response that

occurs when pancreatic cells encounter ABO-compatible blood.

This reaction leads to the release of tissue factor, which activates the

coagulation and complement cascades, resulting in leukocyte and

macrophage-mediated islet cell death (188–191). Moreover,

compared to the native tissue oxygen tension of islets (40 mmHg)

and the parenchymal oxygen tension (30 mmHg), the liver provides

significantly lower tensions, less than 10 mmHg for both (192)

inducing beta cell stress. Amyloid formation (193), associated with

type 2 diabetes, has been observed in intraportal islet grafts, and

glucolipotoxicity from surrounding hepatocytes has been shown to

harm transplanted beta cell (194). Lastly, the liver’s endogenous

immune system, including Kupffer cells, Liver sinusoidal

endothelial cells, Hepatic stellate cells, Resident liver lymphocytes

NK, NKT, and CD8+ T cells, and to a lesser extent, CD4+ T cells),

and liver dendritic cells, has also been shown to potentially harm

allograft survival at this site (195). As an alternative to liver

transplantation, subcutaneous transplantation has emerged as an

attractive option for Allo Beta Cell Transplantation. This approach

offers advantages, including a straightforward surgical procedure,

minimal surgical risks, ease of monitoring, and the potential for

graft retrieval. However, its efficacy is hampered by the limited

blood supply in the subcutaneous space, which leads to insufficient

oxygen and nutrient availability. To overcome these challenges and

achieve successful subcutaneous transplantation, a comprehensive

approach is essential. This approach involves the integration of
frontiersin.org
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bioengineering devices, specialized biomaterials, drug delivery

systems, and strategies aimed at promoting early angiogenesis.

These components play a crucial role not only in facilitating the

incorporation of transplanted insulin-producing cells but also in

attaining normoglycemia in recipients. A pivotal aspect of the

subcutaneous transplantation’s success lies in the development of

biomaterials, including hydrogels derived from both natural

polymers (such as collagen, fibrin, and alginate) and synthetic

polymers (such as polyethylene glycol and polyvinyl alcohol).

These biomaterials can be precisely tailored to possess specific

mechanical, biological, and biochemical properties. Importantly,

they should exhibit pro-angiogenic properties, fostering the

formation of blood vessels within the subcutaneous tissue. These

biomaterials can be employed in many ways, serving as coatings for

islets or forming the basis for implantable bulk scaffolds. Despite

promising advancements in subcutaneous transplantation,

challenges persist, particularly when using macro and micro

devices for Allo Beta Cell encapsulation. Immune and fibrotic

responses can encapsulate these devices, limiting the supply of

oxygen and nutrients to the transplanted tissue. Clinical studies

employing such strategies have not definitively demonstrated

superior long-term outcomes compared to intraportal

transplantation. The subcutaneous immune response can often

lead to fibrotic overgrowth, adversely affecting islet function.

Furthermore, immune-protective devices that physically separate

islets from immune cells may underestimate the impact of diffusible

immune factors on islet functionality (196). When considering

other potential transplantation sites, it is worth noting that the

testis, thymus, and the anterior chamber of the eye are regarded as

immunoprivileged sites and have been explored as locations for

allografts or xenografts. However, they typically cannot

accommodate a sufficient number of islets to achieve

euglycemia (197).
2.4 Recipient and donor matching
and their significance in the context
of immunological challenges: multiple
islet donor preparations and recurrence
of autoimmunity

The transplantation of allogeneic beta cells presents specific

challenges in adaptive immunology that differ from those

encountered in other types of organ or tissue transplants (198). In

addition to the innate immune response and issues related to

engraftment, transplanted allogeneic beta cells face recognition

and rejection by the recipient’s immune system, which is further

complicated by the recurrent autoimmune responses in individuals

with T1D due to preexisting adaptive immune memory. It is

challenging to separate and assess the individual impact of these

two phenomena (199). One way to gauge the significance of

allorecognition is by evaluating the effect of HLA matching on

graft outcomes, as the degree of HLA mismatches correlates with

the strength of the immune system’s response. However, the impact

of HLA matching on pancreas transplant outcomes remains a topic

of debate (200–205). Allogenic immune recognition may be more
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relevant in the context of islet transplantation, which presents a

unique paradigm in organ transplantation due to its requirement

for multiple donors to achieve complete insulin independence.

Consequently, HLA matching for islets is often minimal, except

for the avoidance of preformed anti-HLA antibodies. Some

evidence suggests that HLA-A, -B, and -DR matching (excluding

HLA-DR3 and -DR4 matching) is associated with improved islet

allograft survival (206–208). Regrettably, due to the more stringent

donor selection criteria in islet transplantation relative to other

transplant procedures and the substantial risk of manufacturing

failures, achieving HLA matching is scarcely feasible in clinical

practice. The recurrence of T1D in pancreas transplant recipients

was initially reported by Dr David Sutherland in cases where

patients received living-related pancreas grafts from twins or

HLA-identical siblings and, due to HLA identity, received little to

no immunosuppression (209). Observations of relapse of

autoimmunity as assessed by autoantibodies and occasionally T

cells have also been reported following allogeneic pancreas

transplant under immune suppression (210–216).

Although the cases of islet transplants are far fewer than

pancreas transplants, there is good evidence to indicate that

transplantation of isolated allogeneic islets can cause relapse of

autoimmunity in a small but significant portion of patients (199,

217–221). Occasional patients had dramatic rises in islet

autoantibodies from around day 5 after transplant that occurred

wi thou t any s ign o f a l l o - immuni t y (222) . Weake r

immunosuppression regimes such as MMF plus 1,25 (OH)2 Vit

D3 were more frequently associated with a sharp immediate risk in

autoantibodies with and without allo-reactivity. Others showed that

T cell responses to islet autoantigens are often increased after islet

transplants (223, 224). Although associations with reduced graft

function have been reported (221), it is not fully proven that the

relapsing autoimmune response post islet transplantation equals

autoimmune mediated destruction of islet grafts. It’s worth

mentioning that during immunosuppression and the use of

immunodepleting agents, lymphopenia can significantly

contribute to the expansion of memory autoreactive T cells (225).

This expansion is primarily driven by homeostatic proliferation,

which is strongly influenced by the IL-7/IL-7 receptor axis (226).

The existence of homeostatic proliferation among effector T cells,

including clones of autoreactive T cells, in individuals undergoing

islet transplantation (227). Furthermore, it has been demonstrated

in various cases, such as the transfer of T1D between siblings after

bone marrow transplantation (228) and the development of T1D

following islet auto transplantation within the first year after

pancreatectomy (229, 230), that autoimmune reactions alone can

lead to the destruction of newly transplanted beta cells. With the

advent of innovative techniques for producing b cells from readily

available pluripotent stem cell sources, concerns pertaining to

allorecognition, and HLA matching can be effectively addressed.

One approach involves the establishment of master cell banks

comprising stem cell-derived b cells that match the major

histocompatibility complex (MHC) class I and II alleles

commonly found in individuals with T1D. Alternatively, thanks

to the capabilities offered by CRISPR-Cas9 gene editing, it becomes

feasible to create “stealth” b cells that can evade immune
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recognition by disabling endogenous HLA molecules. Additionally,

in preparation for the potential resurgence of autoimmune

responses, an effective strategy may require the prior reduction of

autoreactive memory, along with the conditioning of repopulating

lymphocytes to promote enduring immune tolerance. These

forthcoming opportunities will be discussed in more detail above.
3 Unanswered questions and
persistent knowledge gaps in the
immunological challenge of Allo Beta
Cell transplantation

Several aspects of the immunological challenge associated with

Allo Beta Cell Transplantation continue to elude our complete

understanding. These gaps in knowledge raise important questions

about the precise mechanisms and factors influencing the success

and longevity of beta cell replacement therapies. Addressing these

gaps is crucial for advancing our comprehension of the immune

response to transplanted beta cells and devising more effective

strategies to ensure the sustained function and survival of these

cells in individuals with conditions like T1D.
3.1 Lack of evidence on
immunosuppression treatment

In contrast tomost solid organ transplantations, there is currently

no available guidance or formal consensus on the optimal or standard

immunosuppressive strategy for Allo Beta Cell Transplantation. This

critical gap has led to a significant evolution in immunosuppression

approaches over the years, all without the benefit of evidence-based

practices (as illustrated in Figure 1). Numerous studies, often

conducted on limited patient cohorts, have proposed a variety of

immunosuppressive agent combinations (59, 231–233). These

encompass agents that deplete T and B cells (such as alemtuzumab,

teplizumab, antithymocyte/lymphocyte globulin, rituximab),

inhibitors of T-cell activation (like IL2R antagonists daclizumab

and basiliximab), replication inhibitors (including azathioprine and

mycophenolatemofetil/mycophenolic acid), mTor inhibitors (such as

sirolimus and everolimus), lymphocyte tracking inhibitors (like EFA),

desensitizing agents (such as intravenous immunoglobulin), co-

stimulation inhibitors (including monoclonal antiCD28 belatacept/

abatacept), CNIs (cyclosporine and tacrolimus), and anti-

inflammatory agents (including corticosteroids, IL1 receptor

antagonist, and TNF-alpha inhibitors). It is crucial to emphasize

that most of these studies have been observational, consisting of

retrospective or prospective single-center single-arm studies.

Remarkably, there is only one recently reported randomized

controlled trial study that has emerged as an exception, focusing on

CXCR1/2 inhibitors (62). Many immunosuppressive drugs used in

Allo Beta Cell Transplantation are designed to inhibit specific

pathways of alloantigen specific T cell activation, but they ignore

the memory autoimmune response, and they were quite ineffective in

controlling the IL-7 mediated homeostatic proliferation.
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3.2 Lack of reliable method to assess
rejection and treatment protocol

Unlike most solid organ transplantations, there is currently no

consensus on how to diagnose Allo Beta Cell Transplantation

rejection (234). This challenge arises because the traditional gold

standard for diagnosing rejection involves tissue biopsy (235).

While a whole organ pancreas transplant biopsy can yield

valuable insights, particularly for potentially reversible causes of

dysfunction, technical challenges limit its routine application. Given

that isolated islet transplantation is accomplished by infusing

pancreatic islets into the portal circulation, where they disperse

throughout the liver, accessing the islet graft for regular biopsies or

surveillance becomes unfeasible. Hence, there is a pressing need for

standardized clinical diagnostic criteria that can effectively identify

ongoing islet allograft rejection. Moreover, there are currently no

established treatment protocols in place for Allo Beta Cell

Transplantation rejection, which may be related to a paucity of

data on diagnostic criteria (236–238). While high-dose steroid

therapy is a potential avenue for halting ongoing cellular rejection

(234), it’s crucial to note that this therapy itself is associated with a

possible decline in the functional performance of islet grafts.

Furthermore, there have been suggestions for addressing humoral

rejection through the utilization of rituximab and IV

immunoglobulin therapy, though these recommendations are

primarily based on single case reports (237).
3.3 Lack of studies to assess the efficacy of
immunologic and metabolic testing to
detect early graft dysfunction after Allo
Beta Cell transplantation

Undoubtedly, the field of Allo Beta Cell Transplantation faces a

conspicuous absence of sensitive, non-invasive serial assays for the

early detection of rejection or autoimmune recurrence and the

ongoing loss of beta-cell functional mass (239). While a consensus

has recently been established for defining clinically successful graft

functional outcomes in beta-cell replacement therapies (240), there

is still a notable absence of standardized and systematic

immunologic and metabolic monitoring protocols following Allo

Beta Cell Transplantation. Parameters such as body weight, fasting

glucose levels, fasting and random C-peptide concentrations, fasting

insulin levels, HbA1c measurements, oral glucose tolerance tests

(OGTT), mixed meal tolerance tests (MMTT), insulin clamp

studies, continuous glucose monitoring (CGM), assessments for

anti-donor human leukocyte antigen antibodies (specifically donor-

specific antibodies, DSA), and the monitoring of autoantibodies

have been commonly employed by experienced programs

worldwide, albeit with varying time schedules and indications

(either protocol-driven or initiated “for cause”). However, their

effectiveness in detecting early graft dysfunction, particularly at a

stage when timely clinical intervention can forestall further

deterioration and preserve allograft function, remains unproven

(239). Additionally, there remains an ongoing debate regarding the
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predictive role of certain immunological parameters in graft failure.

In the broader context of solid organ transplantation, donor-

specific antibodies (DSA) are recognized as the primary culprits

behind graft failure. Preexisting DSA serves as a relative

contraindication to transplantation, and the emergence of de novo

DSA plays a pivotal role in antibody-mediated rejection, leading to

microvascular inflammation and associated with unfavorable

outcomes. In the context of islet transplantation, there have been

descriptions of the potential adverse effects of de novo DSA (199,
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241, 242), although not all studies have confirmed this association

(243–245). Furthermore, while DSA and assays for islet autoantigen

antibodies are well-established and reproducible worldwide, the

consistency of other assays and biomarkers remains variable.

Emerging assays and platforms designed to assess cellular

responses to auto/alloantigens and those focused on donor-

derived cell-free deoxyribonucleic acid (dd-cfDNA) are examples

of these less established tools that have not yet achieved universal

consistency and acceptance.
FIGURE 1

Induction and maintenance immunosuppression in islet transplantation by era. Immunosuppression regimen of 1,108 individuals with T1D who
received Islet Transplant Alone (n = 992) or Islet after kidney (n = 186) between 1999 and 2022 and were followed by the CITR. Data source:
Collaborative Islet Transplant Registry Coordinating Centre: Eleventh allograft report 2022. TCD, T cell depleting agents; Inh, inhibitor; CNI,
calcineurin Inhibitor; IMPDH, Inosine-5′-monophosphate dehydrogenase; IL1RA, IL1 receptor antagonist. Reproduced from “Caldara R, Tomajer V,
Piemonti L. Enhancing Beta Cell Replacement Therapies: Exploring Calcineurin Inhibitor-Sparing Immunosuppressive Regimens. Transpl Int. 2023
Jun 8;36:11565” with permission from the authors.
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3.4 Lack of validate biomarker for
beta cell death

The current absence of real-time biomarkers for monitoring beta

cell death presents a significant challenge in Allo Beta Cell

Transplantation. Detecting the loss of islet beta cells after

transplantation relies on assessing glycemic control, the need for

external insulin supplementation, and measuring insulin secretion,

often by evaluating C-peptide levels. The introduction of more

sensitive indicators has the potential to facilitate interventions that

can prevent clinically significant islet graft loss. Such indicators could

be particularly valuable for guiding immune monitoring of humoral

and cellular alloimmune and autoimmune markers or for

interpreting the potential significance of newly detected alloantigen

or autoantigen reactivity in a transplanted islet beta cell graft before

any functional deterioration becomes apparent. Various methods

have been employed to identify impaired islets in the bloodstream

shortly after intraportal infusion, as up to 25% of the transplanted

islet mass may be lost. These methods encompass the examination of

insulin mRNA (246, 247), glutamic acid decarboxylase-65 (GAD65)

(248), miRNA375 (249, 250), and unmethylated insulin DNA (251,

252). These markers have been observed to elevate within 24 hours

after islet transplantation, with some being associated with worse islet

graft functional outcomes and modulation by anti-inflammatory

therapy during the first week post-transplantation. This suggests

their potential utility for both predicting early engraftment and

assessing interventions aimed at enhancing islet survival during the

engraftment period. However, more sensitive, and reproducible

assays are needed to detect subtler episodes of cell death that may

provide insights into graft rejection or recurrent diabetes.
3.5 Lack of beta cell imaging

Over the past two decades, research in the field of non-invasive

beta-cell imaging and beta-cell mass evaluation has witnessed

progress (253, 254). This includes the identification of target

molecules for imaging probes, the development of chemically

modified probes labelled with suitable radioisotopes, and the

establishment of analytical methods for signal interpretation

through single-photon emission computed tomography and

positron emission tomography. Notably, derivatives of exendin-4

designed for imaging show promise as candidates for non-invasive

beta-cell mass assessments. However, the non-invasive evaluation of

beta-cell mass remains elusive, and practical in vivo and clinical

techniques for b-cell-specific imaging are yet to be established (253).
4 Emerging directions and game-
changing strategies in addressing the
immunological challenge of Allo Beta
Cell transplantation

The field of Allo Beta Cell Transplantation is witnessing a

transformative shift with the emergence of innovative strategies
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aimed at overcoming the immunological challenges inherent to the

procedure. These groundbreaking approaches have the potential to

revolutionize the field and significantly enhance the success and

sustainability of beta cell replacement therapies.
4.1 Exploring alternatives to conventional
immunosuppressive regimens

Allo Beta Cell Transplantation holds great promise as a

therapeutic avenue for individuals grappling with T1D, as it offers

the potential for achieving insulin independence and markedly

improved glycemic control. Nevertheless, the success of this

approach is inextricably linked to the adept management of

immune responses, a vital factor for thwarting graft rejection and

addressing the autoimmune components of the condition. In recent

times, the field has witnessed the ascent of various novel approaches

within immunosuppression strategies, all geared towards elevating

the overall success and accessibility.

4.1.1 Exploring calcineurin inhibitor and depleting
agent sparing immunosuppression

Traditional immunosuppressive protocols, while effective in

preventing rejection of transplanted organs, often carry the burden

of long-term side effects and may not offer comprehensive protection

against both alloimmune and autoimmune responses. These

customary treatment regimens typically encompass medications

like Calcineurin Inhibitors (CNIs), such as cyclosporine and

tacrolimus, among others. While these drugs effectively suppress

the immune system, achieving their intended objectives, they are not

devoid of drawbacks. Prolonged use of CNIs can give rise to

complications and their known beta cell (255) and renal toxicities

(256) limit their efficacy for pancreas and islet transplantation. These

adverse effects can impact a patient’s overall well-being and quality of

life. Furthermore, CNIs’ involvement in the nuclear factor of

activated T cells (NFAT) signaling pathway, which is pivotal for

the differentiation, maintenance, and suppressive capabilities of

Tregs, can have significant repercussions (257). This involvement

may hinder the establishment of immune tolerance and impede the

effectiveness of potential adoptive therapies employing tolerogenic

donor specific Tregs (as discussed below). Additionally, it’s important

to note that CNIs have no impact on T cell expansion during

homeostatic proliferation since they effectively block the IL-2

pathway but are comparatively ineffective in regulating IL-7-

mediated homeostatic proliferation (225). Given these

considerations, there is a pressing need for research to investigate

the safety and feasibility of immunosuppressive regimens that reduce

the reliance on CNIs. Equally troublesome is the use of depleting

agents like ATG and alemtuzumab (anti-CD52) for induction. These

agents can significantly influence the severity of lymphocyte

depletion and potentially affect the rate of cell cycling during

reconstitution. Lymphocyte depletion therapies with alemtuzumab

or ATG can lead to the expansion of alloreactive and autoreactive T

cells, in some cases exceeding pretransplant levels (258, 259).

Alemtuzumab treatment has been demonstrated to preferentially

expand effector-memory T cells in renal transplant recipients, while
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induction with ATG expands both effector-memory and central-

memory T cell subsets. Furthermore, these agents can pose challenges

for the development of adoptive therapy with tolerogenic T

regulatory cells, which could be equally recognized and depleted,

like conventional T cells. Notably, even non-depleting anti-CD25

monoclonal antibodies could present issues in terms of homeostatic

proliferation, as they were specifically designed to prevent the

formation of the high-affinity IL-2R complex and block IL-2

signaling. The limited availability of the common gamma chain

shared by IL-2 and IL-7 receptors represents a constraint on

cytokine signaling. When the formation of the IL-2 receptor is

inhibited by non-depleting anti-CD25 monoclonal antibodies, more

common gamma chain becomes available for complexing with IL-7R

alpha, resulting in increased T cell sensitivity to IL-7 and favoring

homeostatic proliferation (260). Considering these considerations,

conducting research on immunosuppressive regimens that minimize

the use of CNIs and avoid induction with depleting agents will

significantly advance beta cell replacement therapies. Some prior

small-scale clinical experiences have already demonstrated the value

and feasibility of these approaches. Feasibility, safety, and efficacy of

CNIs-free and anti-IL-2Ra-free treatments for islet transplantation,

which also exclude anti-thymocyte globulin induction during second

or third infusions, have been successfully demonstrated (261). More

recently, reports have surfaced of 40% insulin independence at 10

years following a single islet infusion with CNI-sparing

immunosuppressive regimens, including either belatacept (BELA)

or efalizumab (EFA). These regimens have showcased remarkable

cases of operational tolerance and substantial expansions of Tregs

following islet transplantation (262). Furthermore, the identification

of biological and pharmacological controllers of the IL-7/IL-7R axis,

which hold promise for potential clinical applications, could be

pertinent to the development of advanced immunosuppressive

protocols for Allo Beta Cell Transplantation (226).

4.1.2 Rethinking induction therapy and exploring
recipient preconditioning

Induction therapy has proven to be an effective strategy for

achieving low rates of acute rejection in most allograft situations

(263). he necessity for induction immunosuppression arises from

the heightened immunogenicity of the allograft during the

immediate post-transplant period. Specifically, this vulnerability is

attributed to the combined factors of a high frequency of donor-

specific T-cell precursors present in most recipients and the

activation of the innate immune system during organ

transplantation (264). This established approach was developed in

a clinical context where organ availability is unpredictable, and the

time between organ donation and transplantation falls within a

matter of hours. This limitation made it impractical to consider

recipient pretreatment longer than 1-2 days or any donor-specific

preconditioning strategies. As a result, induction therapy primarily

aimed at achieving short-term profound immunosuppression

without a focus on long-term sustainability. However, this

paradigm could be revolutionized in the realm of Allo Beta Cell

Transplantation. The availability of insulin-producing cells derived
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from replenishable sources like stem cells introduces the possibility

of scheduled transplants with known and defined timeframes, along

with prior characterization of the donor’s MHC profile. This

scenario opens new avenues in induction immunosuppression,

encompassing approaches such as costimulation-based therapy,

mixed chimerism, and adoptive cellular transfer. These innovative

strategies aim to restore immunological balance in the context of

organ transplantation rather than relying on non-specific

immunosuppress ion . Some exper iences have al ready

demonstrated the value and feasibility of these approaches. Some

experiences have already demonstrated the value and feasibility of

these approaches. For instance, administering apoptotic donor

leukocytes around the time of transplant, in conjunction with

short-term immunotherapy involving antagonistic anti-CD40

antibody 2C10R4, rapamycin, soluble tumor necrosis factor

receptor, and anti-interleukin 6 receptor antibody, has been

shown to induce long-term (≥1 year) tolerance to islet allografts

in rhesus macaques (265). Similarly, recipient preconditioning with

GLP-1 agonists or rapamycin has been proposed as an effective

strategy for enhancing graft function in both preclinical and clinical

models (266–268). Indeed, this shift in perspective toward

induction and recipient preconditioning invites us to reconsider

conventional approaches and fosters the exploration of innovative

strategies to enhance the field of Allo Beta Cell Transplantation.

4.1.3 Targeting autoimmunity recurrence and
beta cell survival

The diabetes community has long anticipated the use of

immunosuppressive treatments in individuals with recent-onset

T1D and those at risk of developing the disease (269). Currently,

aside from the FDA-approved anti-CD3 antibody teplizumab (270),

no such treatment is in clinical use. However, recent publications

suggest promising strategies in this regard. For instance, low-dose

ATG has demonstrated its effectiveness in maintaining C-peptide

levels compared to a placebo (271). Teplizumab, in trials involving

individuals at high risk of T1D, doubled the time to disease onset

compared to a placebo (270). On the other hand, anti-CD3

Otelixizumab failed in its phase III trial. Alefacept, which targets

CD2 primarily expressed on CD4+ and CD8+ effector memory T

cells, has been tested in recent-onset T1D and displayed C-peptide

preservation along with reduced use of exogenous insulin compared to

a placebo group (272, 273). Other trials have explored various

approaches to combat islet autoimmunity. These include CTLA-4Ig

(abatacept) (274), anti-CD20 therapy (rituximab) (275), anti-TNF-a
therapies (recombinant TNF-a receptor-IgG fusion protein etanercept

and IgG1-kmonoclonal anti-TNF-a antibody golimumab) (276, 277),

anti-CD40 therapy (Iscalimab) (278), low-dose IL-2 (279), IL-1

blocker (Anakirna) (280), combination immunomodulatory and

beta-cell therapy like anti-IL-21 antibody and liraglutide (281), and

Tyrosine Kinase Inhibitors (Imatinib mesylate) (282). While these

immunosuppressive regimens have been evaluated to varying degrees

of success in recent-onset T1D, exploring these candidates, or future

ones, for their ability to attenuate autoimmune responses in beta-cell

graft recipients offers new avenues for immune suppression.
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4.2 CAR T reg and TCR T reg

The donor beta cells express allogeneic major and minor

histocompatibility antigens, traditionally targeted by the host

immune response in the setting of organ transplantation.

Moreover, the donor beta cells also express a full complement of

antigens associated with islet autoimmunity. Of these, glutamic acid

decarboxylase 65 (GAD65), insulinoma-associated protein 2, zinc

transporter 8 (ZnT8) and (pro)insulin appear to be highly antigenic

in humans both for T cells and B cells (166). Beta-cell replacement

into a subject with pre-existing autoimmunity is essentially an

immunological challenge where conceptually similar immune

responses—transplant rejection and tissue-specific autoimmunity

—coexist, but with the potential for reactivation of autoreactive

memory T and B cells posing an additional set of therapeutic

obstacles. Adoptive cell therapy using CD4+CD25+FOXP3+

Tregs, a naturally suppressive immune subset, is a promising

approach to achieving localized and specific immune suppression

in the site of transplant (283). However, clinical trials testing

administration of polyclonal Tregs in recent-onset T1D have

observed limited efficacy despite an excellent safety profile (284,

285). Similarly, administration of autologous Tregs together with

intraportal allogeneic islet transplantation yielded no severe

negative effects (286). These clinical trials have been fundamental

to identify barriers to an effective Treg therapy. First, the use of

polyclonal Treg for adoptive cell therapy relies on the assumption

on the natural existence of rare, disease relevant TCRs in the

adoptively transferred Treg population. However, different studies

in NOD mice reported that therapy using antigen specific Tregs is

far more effective than the one using polyclonal Treg. Notably, one

study found that transfer of 2 million antigen-specific (BDC2.5 TCR

transgenic) Tregs controlled the rejection of a syngeneic islet

transplant in NOD mice, whereas 5 million polyclonal Tregs

displayed no effect (287). The recent emergence of advanced gene

editing techniques has opened new avenues to engineer Tregs with

selected antigen specificity (288). These include the generation of

Treg bearing a chimeric antigen receptor (CAR-Treg) as well as T

cells bearing a transgenic T cell receptor (TCRtg-Treg) with a

selected antigen specificity. CAR are composed by an extracellular

antigen-binding domain, usually a single-chain variable fragment

(scFv) derived from the variable regions of an antibody linked via

hinge and transmembrane domains to an intracellular signaling

domain (289). CAR do not need to be MHC-restricted, allowing the

use of the same CAR on virtually all subjects independently from

their HLAs. Moreover, modern CAR are designed as modular

systems in which the signaling pathway activated by antigen

recognition can be adapted to the desired effect (290). A notable

disadvantage of CARs is the requirement for cell-surface bound

target antigen whose expression ideally must be confined to beta-

cells. The difficulties in finding a good target antigen on beta-cells

has considerably limited the used of CAR-Treg to control

autoimmunity in type I diabetes. However, transplanted allogenic

beta-cells express mismatched HLA molecules that can be easily

targeted by CAR. Human CAR Tregs that target the commonly

mismatched HLA-A2 molecules are currently being tested clinically

in kidney (NCT04817774) and l iver transplantat ion
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(NCT052334190). TCRtg-Treg are easier to develop in the

context of beta-cell autoimmunity. Indeed, a number of TCRs

specific for epitopes of GAD65, preproinsulin, IGRP as well as

neo-epitopes have already been identified from patients with type I

diabetes (291, 292). While MHC restriction can represent a

limitation, the use of target peptides associated to commonly

expressed HLAs, such as HLA-A2 or T1D risk associated class II

haplotypes, potentially allows to treat a significant proportion of

subjects with relatively few different TCRtg-Treg. TCRtg-Treg also

requires additional gene editing to be fully functional. Suppression

of the endogenous TCR is needed to improve expression of the

transgenic TCR but also to avoid mispairing of the endogenous and

transgenic TCR alpha and beta chains, potentially impairing beta-

cell antigen-specificity and increasing the risk of off-target antigen

recognition (293). It has also to be determined whether peptide/

HLA class I restricted TCR can efficiently recognize the antigen

when transduced into CD4+ Treg and whether transgenic

expression of CD8 can improve antigen recognition. With several

important issues yet to be determined, Abata Therapeutics have

recently announced the development of a beta-cell specific TCRtg-

Treg product (ABA-201) that will be clinically tested in 2025. A

second important limitation of adoptive Treg therapy is the survival

and persistence of Treg transferred in patients that may impact the

therapeutic effect. Bluestone et al. (NTC01210664) observed a rapid

decline in the number of circulating Treg following adoptive

transfer into patients with T1D. Specifically, once infused into

patients, the ex vivo expanded Treg population exhibits a biphasic

exponential decay kinetic, characterized by a short-lived subset (75-

90%) with a half-life of a few days to weeks, and a long-lived subset

(10-25%) detectable up to one year post-infusion (284). Notably,

although the expanded Treg initially display a CCR7+CD45RO

+CD45RA- central-memory phenotype, the subset that survives

longer in patients exhibits a CCR7+CD45RA+CD45RO-/+

phenotype, resembling that of conventional naïve or memory

stem T cells. Addressing the issue of Treg survival, a second trial

involving adoptive transfer of polyclonal Treg cells along with

exogenous administration of low doses of recombinant human

IL-2 was conducted (279) (NCT02772679). Addition of IL-2 did

not improve the survival of adoptively transferred Treg but was

associated with increase endogenous Treg numbers and expansion

of inflammatory NK and CD8+GMZB+ T cells. Several other

strategies to promote Treg survival in patients are under intensive

studies. Notably, synthetic orthogonal receptor-ligand pair has been

generated. In this approach T cells are transduced with an

orthogonal IL-2 receptor that can only be activated by an

exogenously administered synthetic ligand (294). An alternative

approach is to transduce Treg with a membrane-bound form of IL-

2, in which IL-2 is tethered to the membrane by a short linker that

only allows cis-interactions between IL-2 and its receptors on the

same cell (295). As Treg need to be expanded in vitro to achieve a

number sufficient to display therapeutic effectiveness, modification

to the expansion protocols to improve T cell survival are under

consideration. Tregs are traditionally expanded using anti CD3/

CD38 microbeads in combination with high doses of interleukin 2

(IL-2) (296). Despite low expression of the IL-7Ralpha (CD127)

human naïve Treg have been shown to respond to and proliferate in
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response to IL-7 in vitro (297). Furthermore, in conditions of Treg

depletion, IL-7 contributes to Treg compartment reconstitution in

patients treated with the anti-CD25monoclonal antibody

basiliximab (226). A novel protocol of expansion of Treg using a

combination of IL-2 and IL-7 was shown to improve the survival of

Treg in the NSG mouse model (298). As transplanted beta-cells can

be targeted by allo-reactive and auto-reactive T cells, adoptive Treg

therapy represent an opportunity to keep T cell responses in check.

While the clinical testing, especially in T1D, has provided clear

results in terms of safety but also highlighted several critical issues

that need to be addressed, and effective Treg therapy can be

available in the coming years. Specifically in the transplantation

setting an additional effort is required to determine T cell survival,

persistence, and therapeutic effectiveness when Treg therapy is

administered in combination with immune-suppressive drugs.
4.3 Stem stealth cells

Stem cell technology has ushered in a new era in b cell

generation for transplantation. “Stem stealth cells” represent a

novel concept where stem cells are genetically modified to evade

immune recognition. The first and one of the most successful

strategies to reduce immunogenicity is the abrogation of the Beta-

2 microglobulin (B2M) gene, which encodes a common subunit of

HLA class I molecules. Knocking out B2M results in HLA class I-

negative iPSCs, which can function as universal donors for the

transplantation of cells that do not express HLA class I (299).

Several methods have been developed to disrupt the B2M gene in

ESCs and iPSCs. For example, one study used Cre-recombinase to

ablate two adeno-associated virus (AAV)-inserted cassettes into

exon one of the B2M gene. This method successfully silenced B2M

expression and resulted in reduced allogeneic responses of T cells

(299). A second study employed CRISPR/Cas9 technology to target

exons 2 and 3 of the B2M gene, replacing them with other genetic

cassettes (300). These cells were resistant to interferon-g stimulation

and alloreactive CD8+ T cells, indicating that they do not express

cell surface human leukocyte antigen (HLA) molecules.

Additionally, these B2M-/- hESCs do not have any off-target

integration or cleavage events, lack stable B2M mRNA, have a

normal karyotype, and maintain their self-renewal capacity,

genomic stability, and pluripotency. To validate the potential of

these strategies, preclinical studies have demonstrated the feasibility

of B2M-knockout iPSCs in various transplantation models. B2M-

null iPSC-derived cells, such as neurons, cardiomyocytes, and

retinal pigment epithelial cells, have been successfully

transplanted into animal models, with extended survival and

functional integration compared to their HLA-mismatched

counterparts (301–303). These promising findings highlight the

potential of B2M-knockout cells as universal donors for cell-based

therapies. The limit of this approach is that the B2M-null cells are

protected from CD8+ T cell responses but become more susceptible

to NK cell-mediated destruction (300). To address this issue, new

strategies were developed to express specific ligands on the cell

surface that interact with inhibitory receptors on NK cells,
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rendering them less cytotoxic. One such ligand is human

leukocyte antigen-E (HLA-E), which interacts with inhibitory

receptors such as NKG2A/CD94 on NK cells, leading to their

inhibition (304, 305). Expressing HLA-E on the surface of iPSC-

derived cells has been shown to protect them from NK cell-

mediated lysis (301, 306). In addition to HLA-E, HLA-G, another

member of the HLA family with immunosuppressive properties

(307) has also been explored (308, 309). Recently, innovative

approaches which involve editing iPSC to remove NK-activating

ligands, such as CD155 and B7-H3, have been proposed. These

ligands, when expressed on the cell surface, can trigger NK cell

cytotoxicity (310). By eliminating these ligands, iPSC-derived cells

resulted more resistant to NK cell-mediated killing (311). This work

also proved that the capacity to differentiate into b cells was not

impaired in gene edited iPSC and that iPSC-derived pancreatic cells

were able to survive in vivo after transplantation in mice, while

unedited cells were eliminated by NK cells.

Another component of the immune system involved in

rejection is CD4+ T cell, which helps to coordinate the immune

response by stimulating other immune cells, such as macrophages,

B lymphocytes, and CD8 T lymphocytes. HLA II defected hESC

were generated via deleting CIITA, a master regulator of

constitutive and IFN-g inducible expression of HLA II genes.

CIITA-/- ESC can differentiate into tissue cells with non-HLA II

expression and escape the attack of receptors’ CD4+ T cells (302,

312). These strategies and the possibility to combine them hold

great promise in enhancing the immune evasion capabilities of

transplanted cells.

In addition to approaches that directly aim to escape cytotoxic

cell recognition, the induction of tolerogenic genes within

transplanted cel ls to create a more immune-tolerant

microenvironment was explored. Several genes have been

investigated for their potential to suppress immune responses and

promote graft acceptance:
• PD-L1 (Programmed Death-Ligand 1): PD-L1 is an

immune checkpoint protein that interacts with the PD-1

receptor on T cells, leading to T cell exhaustion and

immune tolerance (313). Studies have shown that

overexpressing PD-L1 in iPSC-derived cells can mitigate

T cell responses and enhance graft survival (314).

• CTLA4-Ig: Cytotoxic T lymphocyte-associated protein 4-

immunoglobulin (CTLA4-Ig) is a fusion protein that binds

to CD80 and CD86 on antigen-presenting cells, preventing

their interaction with CD28 on T cells. This blockade

inhibits T cell activation and promotes immune tolerance

(315). Incorporating CTLA4-Ig expression into

transplanted cells has demonstrated success in prolonging

graft survival (314).

• CD47: CD47 is a cell surface protein that acts as a “don’t eat

me” signal by binding to the signal-regulatory protein alpha

(SIRPa) on phagocytic cells, inhibiting their engulfment of

the CD47-expressing cell (316). Enhancing CD47 expression

on iPSC-derived cells has been shown to reduce their

susceptibility to phagocytic clearance (317, 318).
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• IDO (Indoleamine 2,3-Dioxygenase): IDO is an enzyme

that plays a role in immunosuppression by degrading

tryptophan, an essential amino acid for T cell

proliferation (319). By overexpressing IDO in islet cells,

researchers have aimed to create a tolerogenic

microenvironment that inhibits T cell responses and

promotes graft survival (320).
These gene-based strategies aim to create a microenvironment

within transplanted cells that is conducive to immune tolerance,

thereby improving the long-term survival of grafts. These approaches

collectively represent a growing toolbox of strategies to improve the

success of islet transplantation without the need for extensive

immunosuppressive regimens. To demonstrate this, very recently,

gene editing techniques that combine targeting of HLA class I and II

and the immunomodulatory gene CD47 were tested in human donor

islets, modifying them to become hypoimmune (HIP). It was

demonstrated that these human HIP islets could survive, engraft,

and improve diabetes in allogeneic, diabetic humanized mice.

Furthermore, the HIP islet cells exhibited the ability to evade

autoimmune destruction in autologous, diabetic humanized

autoimmune mice (318). The same approach of HLA class I and II

depletion and CD47 overexpression (B2M-/-CIITA-/-CD47+) was

used in rhesus macaque HIP stem cells, which were transplanted into

four allogeneic rhesus macaques. The HIP cells demonstrated

unrestricted survival for 16 weeks in fully immunocompetent

allogeneic recipients and differentiated into various lineages,

whereas allogeneic wild-type cells were strongly rejected.

Additionally, human HIP cells were differentiated into pancreatic

islets and shown to survive in immunocompetent, allogeneic diabetic

humanized mice for 4 weeks, effectively ameliorating diabetes. Edited

primary rhesus macaque islets with HIP modifications were able to

survive for 40 weeks in an allogeneic rhesus macaque recipient

without the need for immunosuppression, whereas unedited islets

were rapidly rejected (321).

This last evidence supports the strategy to use gene engineering

to make stem cell-derived and isolated islet transplants less visible to

the host immune system, thereby increasing the likelihood of

successful transplantation and reducing the dependence on long-

term immunosuppressive therapy. From the abrogation of the B2M

and CIITA genes to the modulation of NK ligands, these innovative

ways could protect transplanted cells from immune responses

(311). Moreover, the induction of tolerogenic genes like PDL-1

and CD47 and the engineering of immune-evasive islets have

shown promise in creating a more immunologically tolerant

microenvironment within the transplanted cells (322).

Despite these remarkable advancements, challenges remain on

the path to clinical implementation. The long-term safety of these

immune-evasive strategies need to be rigorously evaluated. In fact,

hypoimmunogenic cells may raise potential safety concerns

associated with long-term immune surveillance and malignancy

risk: a hypoimmunogenic transplant may evade immediate immune

responses, but the long-term ability of the recipient’s immune

system to recognize and respond to potential threats, such as
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malignancies or chronic infections, may be compromised.

Besides, a suppressed immune system may be less effective in

preventing the growth and spread of tumor cells. One possible

strategy to increase the safety of hypoimmunogenic cell would be to

equip the cell with a safety switch, able to induce cell suicide in case

of abnormal cell proliferation and tumorigenesis (323, 324).

Finally, the safety of genetic manipulation must be considered,

and safety improvements achieved by the thoughtful design of

nucleases and repair templates, the analysis of off-target editing,

and the careful utilization of viral vectors (325–327). The

development of new generations of gene editing tools will

hopefully bring to improved targeting of specific sequences while

minimizing the risk of unintended outcomes.

In conclusion, if combination of gene editing immunological

targets will prove effective and safety requirements will be satisfied,

stem stealth cells have the chance of serving as a replenishable and

customizable source of bcells for transplantation, mitigating the

risks associated with immune rejection.
4.4 Tissue engineering and encapsulation

Tissue engineering and encapsulation technologies have made

remarkable progress in creating protective microenvironments for

transplanted beta cells, reshaping the landscape of diabetes

treatment (328, 329). Micro and macro-encapsulation devices

function as essential shields, safeguarding cells from immune

attacks while facilitating the crucial exchange of oxygen and

nutrients. In this scenario, a valuable lesson has been gleaned

from the clinical experience of Viacyte, emphasizing the need for

a swift transition from a closed to an open device to facilitate

vascular scaffold connection (117). This underscores the

importance of considering the mandatory requirements of beta

cells in terms of nutrient supply and vascular integration in tissue

engineering for beta cell replacement. Concurrently, ongoing

initiatives in tissue engineering are focused on the development of

bioengineered scaffolds that closely mimic the natural pancreatic

microenvironment, thereby enhancing the survival and function of

transplanted cells (329). These innovative strategies not only shield

beta cells from immune threats but also facilitate seamless

integration and sustained functionality within the host

environment (328). These technologies, ranging from organ

engineering (330) to cutting-edge 3D-bioprinting (331), play a

pivotal role in modulating the endocrine niche before

transplantation. This modulation is achieved by intricately

integrating various cell components within an extracellular matrix

(ECM) framework. Dedicated bioreactors enable the repopulation

of these constructs with different target cells, matured to acquire

new scaffold functions. For example, the repurposing of organ

strategies has transformed decellularized rat lungs into structures

repopulated with pancreatic islet and endothelial cells, generating a

vascularized endocrine pancreas (332, 333). These new devices

exhibit matured vascularized endocrine structures, resembling the

pancreatic endocrine niche prior the implantation, displaying both
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ex vivo and in vivo functionality. This versatility in cell selection

may allow, in the future, for the design of immunomodulation

strategies during the engineering process, reducing device

immunogenicity and enabling the delivery of immune-

modulatory compounds.

In the first scenario, a viable solution involves selecting

autologous endocrine niche cells to create an open vascularized

device, significantly reducing immunogenicity from a

transplantation perspective. While autologous cells sourced from

stem cells are prone to autoimmune responses, recent gene editing

advancements have generated cell sources from stem cells or even

human islet or pig donors, evading both auto and allo or xeno-

immune responses (318, 334, 335). This progress empowers the

assembly of innovative open devices, ensuring complete structural

integration and genetically engineered immune protection.

Although these strategies look promising, they are still evaluated

in advanced preclinical stage and further tests will be required to

move in clinical arena. In the second scenario, immunomodulatory

compounds are delivered within the device and locally released at

the transplant site, minimizing compound toxicity, and enhancing

local drug efficacy. In this context hydrogels are widely used as cell

encapsulation technology, as their mechanical properties, along

with the high hydration degree, mimic soft tissues. They can be

synthesized in the micro and macro scale, which typically imposes a

volume increase that prevents intrahepatic infusion. They have been

largely tested within beta cells and have been demonstrated to safely

integrate with the recipient allowing vascularization in vivo (336,

337). Multiple engineered scaffolds have been developed to deliver

immunomodulatory compounds or apoptosis modulators in

hydrogel form, dampening or halting the immune-mediated graft

response (338, 339). These attempts reported, in preclinical setting

promising result in protecting beta cells from recipient immune

attack. Additional experimental are on-going to observe long term

function of this devices and their efficacy in protecting the graft

based on local immunomodulatory compounds with pancreatic

islet or stem cell derived beta-cells form immune recognition (340).

Alternatively, advanced macro-engineering devices are pre-

implanted to foster vascular integration. Subsequently, these

devices can be loaded with pancreatic islets and immune-

suppressant drugs, shielding engrafted pancreatic islets from

inflammatory and immunological reactions. Recent data, in both

rodent and human primate model, have demonstrated the

effectiveness of this technology in protecting engrafted cells and

constraining the immune reaction against the graft in the presence

of a reduced early engraftment due to the time of connection of the

seeded islet within the new generated vascular network.

In the evolution of tissue engineering approaches for beta cell

replacement, a critical role has also the selection of the implantation

site that can affect, from oxygen, nutrient supply and

immunological activity, the outcome, and the translatability of the

results. Despite the agreement that an extrahepatic site for islet

transplantation is needed, non a common consensus have been

released on the best alternative site for device implantation. The

most used is the subcutaneous space considering its exposure and
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flexibility in case of device retrieval. In this direction a recent study

has introduced a cutting-edge computational platform. This

platform aims to explore the therapeutic potential of

programmable bioartificial pancreas devices (341). The study

employed sophisticated software that considered factors such as

cell load and site-specific oxygen levels. This analysis allowed for

precise adjustments in terms of cell loading and oxygen supply

within the device, marking a significant stride in the field of tissue

engineering for diabetes treatment. Looking ahead, artificial

intelligence (AI) tools are poised to play a pivotal role in

advancing beta cell replacement technology (342). By leveraging

AI, researchers can amalgamate intricate details such as scaffold

designs, transplantation site characteristics (including

vascularization and immunoreactivity), and the specific cell types

being used (343). These AI-driven tools are anticipated to

revolutionize device design, guiding the creation of an ideal

technology tailored to individual patient needs. This integration

of advanced computational techniques and artificial intelligence

heralds a new era in tissue engineering, promising more effective

and personalized solutions in the realm of beta cel l

replacement therapies.
5 Conclusion

In closing, Allo Beta Cell Transplantation represents a beacon of

hope in the quest to transform the lives of individuals living with

T1D. As we navigate the immunological intricacies that come with

this therapeutic approach, innovation, collaboration, and a deep

understanding of the interplay between the immune system and

beta cells are the keys to success. With each unanswered question,

we inch closer to effective solutions, and with each emerging

strategy, we gain ground in the battle against T1D. As we move

forward, we do so with a shared commitment to improving the lives

of those who face the daily challenges of T1D, fuelled by the promise

of Allo Beta Cell Transplantation and the resolve to conquer its

immunological hurdles.
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41. Giménez M, Gilabert R, Monteagudo J, Alonso A, Casamitjana R, Paré C, et al.
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