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Approaches to pandemic
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Developing effective vaccines against viral infections have significant impacts on

development, prosperity and well-being of human populations. Thus, successful

vaccines such as smallpox and polio vaccines, have promoted global societal

well-being. In contrast, ineffective vaccines may fuel arguments that retard

scientific progress. We aim to stimulate a multilevel discussion on how to

develop effective vaccines against recent and future pandemics by focusing on

acquired immunodeficiency syndrome (AIDS), coronavirus disease (COVID) and

other viral infections. We appeal to harnessing recent achievements in this field

specifically towards a cure for current pandemics and prevention of the next

pandemics. Among these, we propose to apply the HIV DNA in chromatin format

– an end product of aborted HIV integration in episomal forms, i.e., the

chromatin vaccines (cVacc), to elicit the epigenetic silencing and memory that

prevent viral replication and infection.

KEYWORDS
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Introduction

COVID-19 occurred after the AIDS pandemic. The treatment victories against AIDS

have provided lessons for COVID-19, and new bioscience approaches against both AIDS

and COVID-19 have developed new lessons for developing preventions of the

next pandemics.

Recently, in-house pharmacological research, academic collaboration and global team

building have created an ecosystem for innovation and manufacture of mRNA-based

vaccines (1). The leading role of the National Institute of Allergy and Infectious Diseases

(NIAID), Applied Science, collaborations among academia, industry, and global teams

have bolstered an effective ecosystem. This system forges vaccine victories and lessons to

build armamentaria for pandemic prevention, to achieve a goal of improving public health,

societal prosperity, and a worldwide wellbeing (2–10).
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Here we detail three vaccine victories and lessons for discussion

at a multilevel: first, vaccine efficacy, second, viral pathogenicity,

and third, developing a biologic arsenal against viral infections

based on the knowledge of virus-host interaction. We align these

with the progress and lessons learned in today’s precision/

personalized medicine.
Vaccine efficacy

We consider that vaccine efficacy is a key to development of the

next generation vaccines. Specifically, this should build on and

derive from the more than four decades of research and knowledge

that have risen up in this field, in particular the AIDS vaccines,

ranging from basic laboratory bench studies, animal model tests, to

clinical trials. This has led to development of highly effective

antiviral drugs, combined antiretroviral therapy (cART) and

analytical/structured treatment interruption (ATI), which are

applied to cure trials of AIDS to determine if anti-human

immunodeficiency virus (HIV) drugs can eradicate HIV

replication (3, 4, 6).

Such armamentaria, specifically the knowledge of how HIV

infects CD4 T cells, have resulted in effective control of the AIDS

pandemic (3, 4, 6–8). Since HIV, the causative pathogen of AIDS,

targets immune cells central to human immunity, there has been

little development of an effective vaccine eliciting host immunity

against HIV. In contrast, collaboration and the knowledge of SARS-

CoV-2 not targeting CD4 T-cells have resulted in successful

development of COVID vaccines (3–10).

Taking into account the victories achieved with anti-COVID

vaccines and resulting development of next generation mRNA-

based vaccines, we here raise some questions for multiple level

discussion on development of new AIDS and other vaccines:
Fron
1. What is the immune mechanism induced by COVID

mRNA vaccines?

2. Is it a viral specific humoral immunity, or a dominant

cellular immunity, or a dominant innate immunity? Or all

of these?

3. Through which immune signaling pathways have vaccinees

gained these immunities? Is via an interferon (IFN) related

pathway that reacts to the mRNA of COVID vaccine or

pathways that react to later translated Spike protein?

4. Are exosomes of antigen presenting cells generated in the

draining tissues involved in this mRNA vaccine efficacy

(11)? Answers to these questions are key to understanding

why protection induced by COVID mRNA vaccines can

have a short efficacy of about 6 months (12–17). This is the

shortest efficacy among anti-viral vaccines licensed by the

FDA. Such short efficacy, termed vaccine breakthrough, is

not solely explained by development of the viral variants

(12–32).
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Moreover, the efficacy of COVID vaccines by recipients who are

greater than 50- year-old generally need to be protected further

from the most severe symptoms and death by boosted repeat

vaccinations, and boosted protection by adding antiviral drugs

such as Paxlovid. This is now called COVID – Paxlovid treatment

(33–36).

Lessons learned from AIDS research have gone through full

cycles per the COVID vaccines. All together, it has become clear

that antiviral drug targeting the viral lifecycle play an important role

in the best control of such viral pandemics. With these learned

lessons concerning knowledge of vaccinology, we believe the NIAID

Vaccine Research Center (VRC) should remain to play a cardinal

role in vaccine development to prevent the inevitable next

pandemic. Developing effective vaccines effectively remains the

key. This is particularly pertinent to developments in this area,

epitomized by a Coronavirus Vaccines Research and Development

(R&D) Roadmap (CVR) in the University of Minnesota, or a SARS-

CoV-2 Assessment of Viral Evolution (SAVE) program elsewhere

(2, 14).

Note that the efficacy of a preventive vaccine differs from a

therapeutic vaccine. We consider this one of the lessons that we

have learned via the COVID mRNA vaccines. Their efficacy can

prevent the disease for a period of time and alternatively treat

disease by reducing severe COVID symptoms (12–17, 33–36).

We believe that the vaccine efficacy remains most important in

developing next generation vaccines. Additionally, COVID mRNA

vaccines are a victory of therapeutic vaccines now taking center

stage, and to be applied to reduce the severity in other instances of

different viral infections (37), lyme disease (38), parasitic disease

(39), bacterial disease (40), allergy (41), autoimmunity (42), or

cancer immunotherapy (43).
Viral pathogenicity

We would like to emphasize that understanding of viral

pathogenesis itself is crucial to determining the efficacy of a

vaccine. It is generally recognized that viruses cause host damage

in two ways: first, viral multiplication at the expense of host cells,

even to a level to killing the host. Second, viral genotoxicities can

directly act on host DNA, RNA and proteins. Such genotoxicities

occur from the viral nucleic acids and proteins per se, which

damage cell genomic DNA and RNA at the gene expression levels

up to a degree that change a cell to the cancer cell, as in the

infections of papillomavirus, SV40 virus, and cancer related

hepatitis B or C viruses, etc.

Despite the fact that other pathogens can do similar damages,

viral caused genotoxicities to human DNA can override other

damages to the host cells, particularly the harm on the signaling

pathways governing cellular homeostasis. This leads to two

pertinent questions for discussion:
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First, studies have revealed that SARS-CoV-2-specific memory

T cells likely prove critical for long-term immune protection against

COVID-19. Should therefore, the next generation of vaccines

function on eliciting durable T cell immunity, specifically via CD4

T-cells that have been associated with the effective control and

eradication of SARS-CoV-2 via activating other adaptive immune

cells including antibody-producing B-cells (17–22)?

Second, should the next generation of vaccines affect the route

of infection, such as a nasal spray COVID vaccine (44)? This can

greatly increase the efficacy of a vaccine by blocking viral entry

along the route of infection and spread, similar to that of effective

polio vaccine.

We note that poliovirus targets the motor neurons in the spinal

cord, and causes damage to motor neurons leading to paralysis. The

most effective polio vaccine functions at the entry level of viral

infection systematically, specially the digestive system (23, 24).

If we consider that the smallpox vaccine was made before we

fully understood the human immune system, the polio vaccine was

also made before we fully applied the systems vaccinology to

develop the modern vaccines. The victories and lessons we

learned from both vaccines are that the route of infection plays a

key role in the efficacy of a vaccine. In the smallpox case, the damage

occurs on the skin, the infections spread via the skin, and

vaccinations are executed on the skin. Poliovirus is spread via the

digestive system, and the vaccination occurs in the digestive system.

COVID is spread via the respiratory route, so the vaccine efficacy

can be improved by vaccination nasally, right at the start of human

respiratory system.

Thus, understanding the molecular mechanisms of SARS-CoV-2

pathogenicity and COVID-19 immune pathogenesis underpin

developing effective next generation antiviral vaccines as reported

(45). Scientific gaps and opportunities are not limited as stated there.

Specifically, development of SARS-CoV-2 mucosal vaccines needs to

be built on the lessons learned from developing the influenza

vaccines, where CD4 T-cells play a cardinal role (37, 45–49).
Potential vaccine-
related pathogenicity

The molecular mechanisms underpinning COVID-19 immune

pathogenesis need to be considered as crucial in improving vaccine

efficacy. A cautionary note has been raised by several studies

reporting complications from the vaccine and this has fueled anti-

vaccine sentiments. Complications of post-COVID-19 mRNA

vaccine include myocarditis as potentially direct toxicity of viral

nucleic acids and proteins on the human hosts (50–52). Although

post-COVID-19 mRNA vaccine myocarditis occurs in rare cases,

and it was determined under the FDA Emergency Use

Authorizations that the benefits of using mRNA COVID-19

vaccines clearly outweigh such risks in all populations, the

adverse events need to be addressed for the development of next

generation vaccines. In addition, it is well known that HIV envelope
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protein (Env) is a causative agent that causes neuropathogenesis in

AIDS (53–56).

Another potential adverse effect concerns genomic integration of

vaccine RNA. This is based on the recent demonstration that SARS-

CoV-2 sequences can integrate into the genome of infected cultured

cells and of patients by a LINE-1 mediated retrotransposition

mechanism (57). Though genomic integration of viral sequences is

a rare event in virus infected cells, the possibility of vaccine RNA

integration has been used by the anti-vaxxers as an argument against

vaccination. Recent experiments tested whether viral RNA

transfected into cells would integrate but no evidence for genomic

integration was found (58). This is consistent with the fact that

vaccine RNA that does not integrate into the genome, in contrast to

RNA from the viral infection.
Approaches to prevent the
next pandemic

The mRNA vaccines against SARS-CoV-2 provide protection

against severe symptoms of COVID. This protection decreases over

months and variants of SARS-CoV-2, such as Omicron along with

many mutations, evolve and escape immune protection. Paxlovid is

an anti-SARS-CoV-2 compound, and an anti-COVID pill that

inhibits the viral protease. Paxlovid effectively controls the viral

infections in patients even those having fully and boosted COVID

vaccinations (12–16, 33–36). The rapid development of Paxlovid is

also built on the four decades of AIDS research, since Paxlovid is a

drug consisting of two viral protease inhibitors, nirmatrelvir and

ritonavir. The latter effectively inhibits the HIV protease activity

(59, 60).

Current studies have revealed that SARS-CoV-2 causes

dysfunctions in the myeloid cell compartment, disturbs myeloid

progenitor cell function, and produces abnormal neutrophils and

monocytes. The exact signaling pathway causing this change of cell

development remains to be investigated (25–32).

Victories against AIDS have lessons for COVID. Likewise,

victories against COVID have lessons for AIDS. Here we sum up

three questions for discussion, aiming to the victories and in order

to learn lessons in building armamentaria to prevent the

next pandemic:
1. AIDS vaccines against envelope glycoprotein (Env) have

run into the problem of variants due to the multiple

mutations on Env. Is this lesson learned in developing

the COVID vaccines?

2. Despite SARS-CoV-2 affecting the innate immune system

and HIV affecting the adaptive immunity, both viruses

cause pathogeneses by usurping host DNA function by the

viral RNA/DNA that not only change the immune cell type

but also the effector cell function. COVID vaccines are not

primarily designed to elicit the functions of innate immune

cells (15–20, 25–32), as the vaccines were made in the
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context of that the pathogenicity of SARS-CoV-2 was not

yet determined. This is a marked contrast to the

HIV vaccines.

3. What have we learned from COVID vaccines to design next

AIDS vaccines? Can we retrospectively have a systems

vaccinology mindset to learn from the effective polio

vaccines? Specifically, it has been reported that a vaccine

variant has caused a recent polio epidemic (23, 24).
In celebrating the victories and learning the lessons, we propose

to add and discuss a chromatin vaccine (cVacc) as a possible new

approach to prevent the next pandemic. The cVacc aims to stop the

expression of viral nuclei acids, therefore to stop viral variant

production (61–64). We consider that this strategy can greatly

increase the efficacy of a vaccine.

The HIV cVacc elicits epigenetic immunity (63, 64). cVacc is a

functional gene transcription unit with enhancer, in nucleosome

format that resists nuclease degradation while mediating epigenetic

silencing of viral RNA by the functions of noncoding RNA

(ncRNA) and enhancer decommissioning. Furthermore, cVacc

differs from the traditional vaccines in the following ways:
1. HIV cVacc consists of 2-LTR/1-LTR circles (65), triggering

a signaling pathway that silences the HIV RNA

transcription by decommissioning the HIV enhancer (63,

64). This vaccination quenches and prevents the

genotoxicity and virulence of viral RNAs, proteins, and

mutants from damaging host cells while priming CD4 T-

cell differentiation to immune effector cells (Figure 1).

2. The production and validation of a cVacc is built on the

knowledge and technology of the NIH Roadmap
tiers in Immunology 04
Epigenomics project and ENCODE consortium,

specifically Omics data, which enable analyses by a

systems vaccinology approach (9, 10, 61–64).

3. Further, the induced autologous vaccinated CD4 T-cells

can be infused back to the patients to elicit an autologous

immunization, embodying both prophylactic and

therapeutic functions of the cVacc (Figure 1).

4. As a cVacc elicits the cell enhancer decommissioning that is

the molecular mechanism governing cell differentiation and

cell type, a cVacc can also act as an anticancer vaccine

against cancer stem cells.
Conclusions

Several approaches are being developed to make next generation

vaccines against SARS-CoV-2 (66), and some of these could have

applications against other viruses such as HIV. One approach

involves making nanoparticles studded with multiple viral proteins

that could generate a more potent immune response, or use of natural

nano extracellular vesicles like exosomes to do this (67, 68).

The design of cVacc is built on the accomplishments and

lessons gained from development of both AIDS and COVID

vaccines. Therefore, cVacc embodies features of therapeutic and

preventive vaccines. This aligns achievements and lessons learned

in vaccine development with the advancements in now

personalized/precision medicine.

We hope multilevel discussions on the two vaccines, COVID

and AIDS, can forge knowledge, good laboratory practice (GLP),
FIGURE 1

cVacc vs. a DNA vaccine. Multiple copies of provirus per a cell make H9 (ATCC CRL8543) a proper source to generate cVacc that are further verified
by ChIP-exo/ChIP-seq qualitatively and quantitatively. *cVacc can be generated from patient CD4 T-cells after clonal expansion and then tested
after results of H9 cVaccs, serving as autologous vaccination. The cVacc elicited immune function can be tested in vitro via CD4 T-cell colony
formation assays, ex-vivo in humanized mouse models, and/or in nonhuman primate models. Note that cVacc exerts so-called binary functions: 1)
to efficiently express its own immunogens, such as ncRNA and epi-markers, and 2) trigger the p21-signalosome pathway to enforce the HIV into a
new human endogenous retrovirus (HERV). Patient CD4 T-cells, after in vitro exposure to cVacc (in vitro vaccination), can be infused back to
accomplish an autologous or allogeneic vaccination.
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and research & development (R&D) to build a biologic arsenal that

not only can cure the current but also prevent next pandemics.
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