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Neuroinflammation has been identified as another significant pathogenic factor

in Alzheimer’s disease following Ab amyloid deposition and tau protein

hyperphosphorylation, activated in the central nervous system by glial cells in

response to injury-related and pathogen-related molecular patterns. Moderate

glial cell activity can be neuroprotective; however, excessive glial cell activation

advances the pathology of Alzheimer’s disease and is accompanied by structural

changes in the brain interface, with peripheral immune cells entering the brain

through the blood-bra in barr ier , creat ing a vic ious circ le . The

immunomodulatory properties of mesenchymal stem cells (MSCs) are primarily

conveyed through extracellular vesicles (EVs). MSC-EVs participate in chronic

inflammatory and immune processes by transferring nucleic acids, proteins and

lipids from the parent cell to the recipient cell, thus MSC-EVs retain their

immunomodulatory capacity while avoiding the safety issues associated with

living cell therapy, making them a promising focus for immunomodulatory

therapy. In this review, we discuss the modulatory effects of MSC-EVs on

Alzheimer’s disease-associated immune cells and the mechanisms involved in

their treatment of the condition. We have found a clinical trial of MSC-EVs in

Alzheimer’s disease treatment and outlined the challenges of this approach.

Overall, MSC-EVs have the potential to provide a safe and effective treatment

option for Alzheimer’s disease by targeting neuroinflammation.
KEYWORDS
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition

characterized by cognitive decline, memory impairments, and

motor abnormalities that impact language, behavior, and

visuospatial orientation (1). With the growth of the economy and

the increasing average age of the population, the incidence of

Alzheimer’s disease is on the rise. According to the World Health

Organization’s 2019 report, there are approximately 55 million

individuals worldwide affected by Alzheimer’s, a number

projected to reach around 139 million by 2050 (2, 3). The exact

pathogenesis of Alzheimer’s disease remains unclear, although it is

widely believed to be influenced by factors such as aging, genetics,

environment, and nutrition (4). Over the past few decades, the

neuropathological diagnostic criteria for AD have focused on the

presence of extracellular Ab amyloid deposits known as neuritic

plaques and intracellular tau protein hyperphosphorylation referred

to as neurofibrillary tangles (NFTs) (5). However, therapeutic

compounds tested for AD have failed to yield significant results

(6) , and there is mounting evidence suggest ing that

neuroinflammation, as a third pathological mechanism, precedes

the formation of amyloid Ab and tau protein hyperphosphorylation

(7–9). Neuroinflammation refers to the presence of inflammation in

the central nervous system, where glial cells are activated to respond

to damage (10, 11), playing a role in neuroprotection (12). However,

with the development of AD, glial cells are excessively activated,

leading to an increase in pro-inflammatory cytokines, ultimately

resulting in neuroinflammation and neurotoxicity (10), and further

exacerbat ing the pathology of Ab and tau through

various mechanisms.

Mesenchymal stem cells (MSCs) are pluripotent stem cells with

the capacity for self-renewal and multidirectional differentiation

and are derived from numerous tissues in the body, including bone

marrow, fat, muscle, lung, etc (13). Extracellular vesicles (EVs) are

multifunctional intercellular messengers. They are cell-derived

nano-sized double-membrane structures that contain proteins,

lipids, RNA, metabolites, growth factors, and cytokines. As a cell-

free bio-entity, MSC-EVs have garnered significant attention as a

promising therapeutic candidate, exhibiting comparable or even
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superior efficacy when compared to MSCs themselves (14). In

recent years, MSC-EVs have shown tremendous therapeutic

potential in various diseases (15–18), including cardiovascular

diseases, tumors, chronic kidney diseases, liver fibrosis,

autoimmune diseases, and of course, neurological disorders such

as stroke, Parkinson’s disease, and Alzheimer’s disease. In this

comprehensive analysis, we delved into the alterations that occur

in the innate and adaptive immune system in Alzheimer’s disease.

In addition, we have explored the immunomodulatory role of MSC-

EVs, especially targeting immune cells, and the relevant therapeutic

mechanisms for AD. Finally, we look forward to the future with

anticipation, contemplating the potentials and obstacles of MSC-

EVs for clinical applications in AD.
The immunomodulatory effects of
MSC-EVs on CNS innate immune cells

It is widely believed that MSCs exert their therapeutic effects in

various diseases by means of immunomodulation and tissue

regeneration. This is achieved through the secretion of paracrine

factors, including a class of membranous vesicles known as

extracellular vesicles (EVs) (19). EVs are released into the

extracellular environment by both healthy and apoptotic cells.

Among the three primary subtypes of EVs, namely exosomes

(exo), microvesicles (MVs), and apoptotic bodies, exosomes are

the most abundant, ranging in size from 40 to 120 nm (19–21)

(Table 1). To identify and distinguish MSC-EVs, various techniques

are employed, include Electron microscopy, Nanoparticle tracking

analysis (NTA), Flow cytometry, Western blotting and RNA/

protein analysis (Table 2). MSC- EVs possess a diverse array of

immunomodulatory properties, primarily targeting key

components of the innate and adaptive immune systems, such as

T and B lymphocytes, macrophages, dendritic cells, neutrophils,

and natural killer cells (22). Many studies have confirmed that

extracellular vesicles play an important role in intercellular

communication. They transport bioactive lipids, mRNA, miRNA,

lncRNA, and other paracrine messenger molecules, as well as

genomic DNA, mitochondrial DNA, and various types of proteins
TABLE 1 The characterization of different types of extracellular vesicles.

Characteristic Exosomes Microvesicles Apoptotic
bodies

Size(nm) 40-120 100-1000 50-4000

Morphology Homogenous cup-shape Heterogeneous irregular Heterogeneous
irregular

Origin Endosomal Plasma membrane Apoptotic cells

Proteins CD63, CD81, CD9, annexins, heat-shock proteins, Alix,
Tsg101, clathrin, caveolins, integrins, TfRs

Integrins, flotillins, selectins, CD40, metalloproteinases Histones

Lipids Lysobisphosphatidic acid, cholesterol, ceramide,
sphingomyelin and low concentration of phosphatidylserine

High amount of cholesterol, sphingomyelin, ceramide,
high concentration of phosphatidylserine

High concentration
of phosphatidylserine

Nucleic acids mRNA and miRNA mRNA and miRNA mRNA, miRNA,
fragments of DNA
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(23). This process of establishing intercellular communication

through the transfer of bioactive molecules can alter the activity

of cells under physiological and pathological conditions (24).
Neuroinflammation and CNS innate
immunity in AD

Neuroinflammation has been demonstrated to be a major factor

in the pathogenesis and progression of AD, activated by damage-

associated molecular patterns (DAMPs) or pathogen-associated

molecular patterns (PAMPs) (7, 25). Cells contain five major

pattern recognition receptors (PRRs), including Toll-like

receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like

receptors (RLRs), nucleotide-binding oligomerization domain

(NOD)-like receptors (NLRs), C-type lectin receptors (CLRs) and

melanoma 2 (AIM2)-like receptors (ALRs), responsible for

recognizing DAMPs and PAMPs, inducing inflammatory

signaling pathways and immune responses that induce cell death

to eliminate infected cells (26). The inflammatory response in the

CNS is predominantly mediated by glial cells, including microglia

and astrocytes. During the early stages of AD, microglia and

astrocytes, which are innate immune cells , assume a

neuroprotective role (12). However, as the disease progresses, glial

cells become excessively activated and secrete substantial amounts

of pro-inflammatory cytokines , thereby exacerbat ing

neuroinflammation and further contributing to Ab and tau

protein deposition (10, 27). Consequently, this leads to synaptic

damage, neuronal processes impairment, disruption of the blood-

brain barrier (BBB), and infiltration of certain peripheral immune

cells into the brain (28). Hence, an appropriate immune response
Frontiers in Immunology 03
aids in the clearance of Ab and Tau deposits, while an excessive

immune response fosters neuroinflammatory brain damage (29).
Microglia
As innate immune cells of the central nervous system, microglia

are inactive and quiescent in the healthy brain, monitoring the

surrounding neuronal environment and other glial cell

communication (30). However, microglia are activated in

pathological conditions such as neurodegenerative diseases,

strokes and tumor invasion (31). Initially, activated microglia

have an active role in the clearance of Ab through phagocytosis;

over a period of time, sustained activation also leads to a decrease in

the enzymatic activity of microglia to degrade Ab and a decrease in

the efficiency of binding and phagocytosis of Ab (32). The resultant

pro-inflammatory cytokines also reduce the phagocytic activity of

microglia, and they may also convert microglia to a pro-

inflammatory phenotype (33, 34). In addition, pro-inflammatory

microglia increase phosphorylation of tau, exacerbating the

pathology of tau (35).

Microglia are able to progress towards a pro-inflammatory

phenotype after sensing DAMPs and PAMPs through PRRs such

as TLRs, RLRs and NLRs (36), which are at highly expressed in

microglia in AD and cause inflammatory responses and pro-

inflammatory cytokine secretion through PRRs signaling (37, 38).

Under normal conditions, microglia clear Ab by using surface

receptors (CD14, TLR2, TLR4, a6b1 integrin, CD47) and

scavenger receptors (CD36) (39, 40); with the TLR2, TLR4 and

TLR4 coreceptor CD14 playing a major role (41). However, TLR2

and TLR4 in chronically activated microglia induce the production

of Ab (41) and lose the ability of Ab elimination (42, 43). Related

literature has reported that TLR2-deficient microglia cause

phenotypic changes in microglia that reduce Ab-triggered
inflammatory activation and enhance phagocytosis of Ab (44),

and TLR2/4-deficient mice exhibit better neurocognitive and

behavioral patterns in response to Ab1-42 peptide than wild-type

mice (45). Thus innate immune activation of microglia is implicated

in AD pathogenesis.

Inflammasomes are multi-protein complexes involving

intracytoplasmic pattern recognition receptors (PRRs) assembled

with receptor proteins (NLR or ALR protein family), junctional

proteins (ASC), and effector proteins (caspases) as the underlying

structure, and are an essential component of the innate immune

system, capable of recognizing PAMPs and DAMPs. A series of

studies by Prof. Heneka’s team revealed that NLRP3 can be

activated by persistently activated microglia in the APP/PS1

mouse model, thereby mediating caspase-1 activation and

elevated expression levels of the inflammatory factor IL-1b, and
that inhibition of NLRP3 activity reduces Ab load and decreases the

production of pro-inflammatory cytokines and cognitive

impairment (46). Furthermore, the team revealed the pathological

relationship between NLRP3 and tau and showed that inhibition of

NLRP3 function was able to regulate tau kinase and phosphatase

thereby reducing tau hyperphosphorylation and aggregation (47).

Thus, deposition of Ab leads to the pathological development of

tau, in which NLRP3 provides a key role.
TABLE 2 Techniques and Methods to identified MSC-EVs.

Technique Method Identified

Electron
microscopy

allows for the
visualization of the
vesicles and their
characteristic size
and morphology

distinguish exosomes from other
types of extracellular vesicles

NTA uses laser light
scattering to
measure the size and
concentration of
particles in a sample

determine the size distribution of
MSC-EVs and estimate
their concentration

Flow
cytometry

used to analyze the
surface markers of
MSC-EVs

labeling the vesicles with specific
antibodies against known exosomal
markers to provide information
about the protein composition of
the vesicles

Western
blotting

used to detect
specific proteins in
MSC-EVs

by probing for exosomal markers to
confirm the identity of the vesicles
as exosomes

RNA/
protein
analysis

MSC-EVs can be
isolated and their
RNA and protein
content can
be analyzed

RNA sequencing and proteomics can
provide information about the cargo
carried by the vesicles, which can
help in their identification
and characterization
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In addition, activated NLRP3 promotes the oligomerization of ASC

to form large intracellular macromolecular aggregates, termed ASC

spots. ASC spots have been reported to be released into the extracellular

space and propagate inflammatory responses via prion-like transport

mediated by phagocytosis in neighbouring macrophages (48). Friker

et al. showed that in AD mice, ASC expression was increased and

interacted extracellularly with Ab to form an intensely toxic ASC-Ab
complex that was capable of causing scorch death of microglia and

preventing the clearance of Ab bymicroglia (49). However, the detailed

molecular mechanisms underlying the release of intracellular ASC

spots into the extracellular space, and their role in neuroinflammation,

remain unknown.

Activation of the microglia-associated PRRs signaling pathway

induce the secretion of pro-inflammatory cytokines that prompt

microglia to clear Ab, but the release of pro-inflammatory cytokine

and activation of inflammasome caused by excessive microglia

activation further contributes to AD pathology.

Astrocyte
Astrocytes are the most common glial cells in the brain (50) and

play an important role in regulating blood flow, maintaining the

blood-brain barrier (BBB), providing energy metabolites to

neurons, regulating extracellular ion homeostasis and modulating

synaptic activity (51). Astrocytes express numerous receptors for

PAMPs and DAMPs known to trigger innate immune responses,

particularly TLRs, including TLR4 (52), in response to activators of

innate immune responses (53). In contrast, astrocytes exhibit a

response in response to CNS injury and disease that is often termed

astroglial cell reactivity (54). Reactive astrocytes are an integral part

of the innate immunity of the central nervous system. Similar to

microglia, reactive astrocytes are divided into pro-inflammatory A1

and immunomodulatory (neuroprotective) A2 subsets (55). Pro-

inflammatory reactive astrocytes upregulate complement cascade

genes and induce pro-inflammatory factors such as IL-1b and TNF-

a, while neuroprotective reactive astrocytes upregulate and support

neuronal growth with a range of neurotrophic factors (56).

Professor Barres’ research has shown that reactive astrocytes A1

lose the function of resting astrocytes to form synapses and produce

toxic effects on neurons. In addition, as synaptic loss is also a

characteristic feature of AD, Barres et al. also found that in AD,

nearly 60% of astrocytes in the prefrontal cortex (the active site of

the disease) are in the A1 condition and drive the disease

progression in AD due to the high toxicity of A1 to neurons and

oligodendrocytes (57).

Although the innate immune sensing of astrocytes is not well

understood, many studies have shown that astrocytes and microglia

regulate each other’s functions by secreting cytokines. On the one

hand, the inflammatory factors TNF-a, IL-1 and C1q secreted by

activated microglia induce the transformation of resting astrocytes

into neurotoxic reactive astrocytes A1 (57); on the other hand, the

large amount of IL-3 secreted by astrocytes is able to bind to the IL-

3a receptor aberrantly expressed by microglia in AD disease and is
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capable of regulating microglia to perform the clearance of Ab
function (58). Thus, the interaction between astrocytes and

microglia may become a new therapeutic direction.
MSC-EVs inhibit glial cell activity

As previously mentioned, the excessive activation of glial cells

exacerbates the neuroinflammatory pathology of Alzheimer’s

disease. Numerous in vitro and in vivo experiments have

demonstrated that the extracellular vesicles derived from

mesenchymal stem cells (MSCs) inhibit the activity of glial cells,

thereby reducing the expression of pro-inflammatory cytokines and

alleviating neuroinflammation. Mao Ding et al. discovered that

extracellular vesicles from human umbilical cord MSCs regulate the

levels of inflammatory cytokines by modulating the activity of

microglial cells in vitro. Injection of extracellular vesicles derived

from human umbilical cord MSCs into AD mouse models has been

shown to improve cognitive impairment and promote the clearance

of Ab. Additionally, there is a decrease in the number of

inflammatory microglial cells, an increase in the levels of

immunoregulatory microglial cells, a reduction in the levels of

pro-inflammatory cytokines (IL-1b and TNF-a) in the peripheral

blood and brain of mice, and an elevation in the levels of anti-

inflammatory cytokines (IL-10 and TGF-b) (59). In addition, the

Mesenchymal stem cell-derived exosomes can also reduce the

activity of astrocytes. In a study on exosomes derived from

hypoxia-preconditioned MSCs (PC-MSCs), injection of PC-MSC

exosomes significantly improved the learning and memory abilities

of APP/PS1 mice compared to exosomes from normoxic MSCs. The

activity of microglia and astrocytes was reduced, plaque deposition

and Ab levels were decreased, and the expression of growth-related

protein 43, synaptophysin 1, and IL-10 was increased. The levels of

neuroglial fibrillary acidic protein, ionized calcium-binding adapter

molecule 1, TNF-a, IL-1b, as well as the activation of STAT3 and

NF-kB, all sharply decreased. This may be attributed to the higher

expression of miR-21 in PC-MSC exosomes (60). Some studies have

indicated that the levels of miRNA-21 significantly decrease in the

presence of chronic inflammation and cellular apoptosis. However,

the mesenchymal stem cells in the extracellular matrix exhibit high

levels of miRNA-21, which contribute to the reduction of

inflammation and cellular apoptosis (61). Therefore, the

extracellular vesicles released by mesenchymal stem cells

containing miRNA can inhibit the activity of immune cells and

induce their phenotypic transformation into anti-inflammatory.

Vascular dementia (VaD) is another common cause of dementia,

following Alzheimer’s disease. In the establishment of a VaD rat

model through bilateral carotid artery ligation, there is an increase

in inflammatory microglial cells. HUCMSC-Evs, by activating the

PI3K/AKT/Nrf2 pathway, suppresses the activity of inflammatory

microglial cells, inflammation, and oxidative stress, thereby

protecting the neural function of VaD rats (62).
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The immunomodulatory effects of
MSC-EVs on peripheral immune cells

Peripheral immune cell infiltration in AD

As mentioned above, excessive protein deposition in AD

triggers a shift in glial cells towards an inflammatory phenotype,

the release of pro-inflammatory cytokines and complement, causing

hyperact ivat ion of gl ia l ce l ls and a vicious cycle of

neurodegeneration. In this state, structural or biological changes

occur at the brain interface, allowing peripheral immune cells to

infiltrate the brain parenchyma through the blood-brain barrier

(63), choroid plexus (64, 65) or meninges (66, 67), exacerbating the

pathological development of AD. Single cell sequencing has shown

that peripheral immune cells include myeloid cells such as natural

killer cells (NK cells), polymorphonuclear neutrophils (PMNs),

monocytes/macrophages, dendritic cells (68), and adaptive

immune cells such as T cells (69) and B cells (70, 71). Due to the

unclear role of dendritic cells in AD, as well as the controversial

results regarding how MSC-EVs regulate B cells. Here we focused

on macrophages and T cells.
Monocytes/macrophages
In AD, damage to the central nervous system leads to increased

permeability of the BBB, favoring infiltration of peripheral

monocytes. Ab has been shown to induce the release of

chemokines, such as monocyte chelator proteins (MCPs), capable

of attracting monocytes. Pro-inflammatory cytokines such as IL-6

and TNF-a produced by monocytes to enhance their phagocytosis

of Ab (72). A recent study has shown that inflammatory

monocytes/macrophages are elevated in cell cultures stimulated

by Ab in AD patients. These cells express TLR2, TLR4, IL-6 and

CCR2, which in turn can facilitate the migration of monocytes/

macrophages across the BBB into the brain. Research has shown

that patients with AD and mild cognitive impairment (MCI) exhibit

higher expression of TLR3 and TLR8 in monocytes/macrophages,

as well as production of IL-23. Additionally, AD monocytes/

macrophages also possess independent MHC-II/Ab42 complexes.

These findings suggest that monocytes/macrophages in AD exhibit

inflammatory characteristics and are involved in both innate and

adaptive immune responses through TLR stimulation.

Furthermore, they may present Ab peptides in an MHC-

restricted manner (73). In the presence of soluble or mildly

aggregated Ab, there is an increase in T cell proliferation and

pro-inflammatory cytokine secretion. These observations indicate

that Ab may not only act as an antigen but also as a more

widespread positive regulator of peripheral adaptive immune

responses. When activated T cells cross the blood-brain barrier

and enter the brain, they can also modulate adaptive immune

responses within the brain (74). In parallel, alterations in the

monocyte/macrophage subpopulation were observed in AD (75,

76), but whether this alteration is due to a shift in the monocyte

phenotype or the gradual death of classical monocytes remains to be

further investigated.
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Lymphocytes are an indispensable component of the adaptive

immune system, and mounting evidence suggests that adaptive

immune cells play a crucial role in the pathophysiology of

neurodegenerative diseases such as Alzheimer’s disease (AD). T

cells infiltrate the central nervous system during the onset of AD,

promoting neuroinflammation (69, 77–79). On the one hand,

helper T cells cross the blood-brain barrier and interact with glial

cells, triggering immune and inflammatory responses, ultimately

leading to neuroinflammation and neuronal damage. Browne et al.

(80). found a significant presence of T cells, particularly Ab-specific
Th1 cells, in the brains of APP/PS1 mice, which increased activation

of microglia and Ab deposition through the production of IFN-g,
resulting in cognitive impairment. In vitro experiments conducted

by McQuillan et al. (81). also demonstrated that Ab-specific Th1

and Th17 cells induce glial cells to produce pro-inflammatory

cytokines , while Th2 cel ls attenuate this effect . The

aforementioned study elucidates that the regulation of T cell

activation on microglia is contingent upon their cellular

phenotype. Furthermore, T cell activation can also promote the

activation and proliferation of glial cells, thereby exacerbating the

inflammatory response. Earlier work by Yong et al. (82)

demonstrated that IFN-g produced by T cells induces

proliferation of astrocytes in vitro and facilitates reactive

astrogliosis in the brain. Currently, IL-17 produced by Th17 cells

has been repeatedly confirmed as an effective stimulant for

astrocytes. IL-17 stimulation activates inducible nitric oxide

synthase (83), regulates the expression of macrophage

inflammatory protein-1a (MIP-1a) through the PI3K/Akt and

NF-kB pathways (84), and enhances the IL-6 signaling pathway

in astrocytes (85). On the other hand, the infiltration of cytotoxic T

cells is associated with the deterioration of AD (69, 77, 78). A recent

study discovered the presence of clonally expanded CD8+ cells in

the cerebrospinal fluid of AD patients, with TEMRA being the

predominant subset (69). These cells are associated with immune

memory and can release inflammatory factors and cytotoxic

molecules. Furthermore, the cytotoxic effector genes of these cells

are highly expressed in the hippocampus of AD patients.

Additionally, the levels of TEMRA cells in the peripheral blood of

AD patients show a negative correlation with cognitive levels, as

well as a negative correlation with central memory T cells (TCM)

and effector memory T cells (TEM). This suggests that adaptive

immune cells may also play a role in Alzheimer’s disease, and CD8+

T cells may impact neurodegeneration and/or cognitive impairment

in AD.

Other immune cells
NK cells are potent cytotoxic effectors against infected

pathogens and tumor cells (86, 87). They play a crucial role in

bridging the innate and adaptive immune systems by secreting

cytokines and interacting with other immune cells. Compared to

healthy elderly individuals of matching age, the distribution of NK

cells in AD patients remains unchanged. However, in the early

stages of AD, specifically in cases of amnestic mild cognitive

impairment (aMCI), NK cells are activated and exhibit stronger
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activity (88). For instance, increased production of granule enzyme

B and pro-inflammatory cytokines (TNFa, IFNg) has been

observed in aMCI subjects, contrasting with NK cells in

confirmed cases of mild AD (mAD) (87). The activated state of

NK cells may be a congenital immune response to cope with

unidentified challenges, which may include viral or microbial

agents. Furthermore, this activation state may contribute to the

occurrence of neuroinflammation. Therefore, the protective role of

NK cells may no longer be effective in the progression from aMCI to

AD, and NK cells could potentially be considered as biomarkers for

the early stages of AD.

At the same time, polymorphonuclear neutrophils (PMN), as

frontline immune cells, also participate in the early stages of AD.

The functional changes of these cells during different stages of AD

pathology may be associated with pathological stimuli (89). CD177

expression was increased in mAD but not in healthy individuals or

aMCI patients. Expression of CD14 and CD16 was lower in the

PMN of patients with mAD compared with controls, whereas it was

unchanged in patients with aMCI. Only the PMN of aMCI patients

expressed lower levels of CD88. The production of inflammatory

cytokines (TNFa, IL-6, IL-1b, IL-12p70) and chemokines (MIP-1a,
MIP-1b, IL-8) in response to LPS stimulation was very low in

patients with aMCI and virtually absent in patients with mAD.

TLR2 is only expressed at lower levels in aMCI. We therefore

suggest that since AD may be the result of a pathogen challenge,

neutrophils at the front line will fight the pathogen and instruct

other immune cells to intervene. In this way, neutrophils may be

involved in the earliest stages of AD pathogenesis.

Although the extracellular vesicles of MSCs have shown

potential therapeutic effects in immune regulation, further

research is needed to understand their role in modulating

immune cells in AD. AD is a neurodegenerative disorder that is

associated with abnormal activation of the immune system and

inflammatory responses. Therefore, understanding the regulatory

effects of MSCs extracellular vesicles on immune cells in

Alzheimer’s disease is of great significance in uncovering the

mechanisms of disease progression and developing new

treatment strategies.
The mechanism of MSC-EVs in
treating AD

The immunomodulatory effects of MSC-EVs on immune cells

mainly manifest in inhibiting glial cell activity, reducing the

expression of inflammatory factors, thereby alleviating

neuroinflammatory reactions; inhibiting the proliferation and

differentiation of lymphocytes, promoting the differentiation of

lymphocytes into anti-inflammatory subtypes; and inducing

macrophages to transition from a pro-inflammatory phenotype to

an anti-inflammatory phenotype. In addition, the MSC-EVs in the

treatment of Alzheimer’s disease also includes the clearance of Ab,
neuroprotective effects and as a potential drug delivery vehicle.
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The clearance of Ab

Ab is a hallmark pathological protein of AD, which are believed to

be associated with neuronal damage and death. Once they exceed the

clearance capacity of neuroglial cells, abnormal accumulation will lead

to gradual decline in memory and cognitive dysfunction. It has been

proven that clearing pathogenic proteins is beneficial for treating AD

(90). MSCs-EVs can reduce the deposition of Ab in the body through

several different ways. Firstly, by inhibiting the expression of neutral

sphingomyelinase-2 (nSMase2), the secretion function of pathological

cells in AD patients can be reduced. This leads to a decrease in

pathological exosomes and ultimately lowers the level of Ab in the

brain (91). Additionally, the reduction of nSMase2 can inhibit the

conversion of sphingomyelin to ceramide, thereby increasing the level

of sphingomyelin and promoting the secretion of exosomes from

normal neurons. These exosomes can induce conformational

changes in Ab deposits, transforming them into fiber tissue without

causing toxic effects on brain tissue. Surrounding microglial cells can

uptake and degrade these fiber tissues, thereby reducing the amount of

Ab (92). Moreover, the surface of exosomes is rich in

glycosphingolipids, which facilitate the binding of Ab to exosomes.

This characteristic enables exosomes to effectively serve as carriers for

adsorbing Ab and accelerating its removal from the body (93).

Secondly, neprilysin (NEP) and insulin-degrading enzyme (IDE), as

well as zinc metallopeptidase, are believed to be involved in the

degradation of Ab in the brain (94). As early as 2000, researchers

injected radiolabeled synthetic Ab peptides into the hippocampus of

rats and observed that endogenous NEP could subsequently

proteolytically degrade the peptides (95). In mice with NEP or IDE

deficiencies, endogenous Ab levels increased in a gene-dose-dependent

manner (96, 97). Thirdly, research has found that in the human body,

enkephalin is one of the enzymes in brain tissue that is most effective in

breaking down and absorbing Ab (98). Experiments have shown that

when fat MSCs exosomes are added to the environment of AD model

cells with high expression of Ab-related proteins, the amount of Ab
detected in the cells and surrounding environment significantly

decreases. This is due to the fact that fat MSCs exosomes are rich in

enkephalinase levels that exceed the average (99). Hence, the crucial

role of MSC-EVs in Ab degradation highlights their potential in

Alzheimer’s disease treatment.
Neuroprotective effects of MSC-Evs

Another pathological hallmark of AD is synaptic dysfunction,

which is directly associated with cognitive impairment. The

experimental results from Mariana et al. (100) show that MSCs

and their exosomes can protect hippocampal neurons and related

synapses from damage caused by oxidative stress reactions resulting

from Ab deposition. Cui et al. (60) summarized the experimental

results and speculated that MSC exosomes may improve learning

and memory abilities in APP/PS1 double transgenic AD model

mice by improving the function of damaged synapses and immune
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regulation at the site of injury. They found that exosomes extracted

from mesenchymal stem cells subjected to hypoxic preconditioning

significantly enhanced the expression of synaptic proteins (synapsin

1 and PSD95). The expression levels of synaptic proteins can to

some extent reflect the function of synapses, and synapsin 1 and

PSD95 are synaptic proteins involved in neural signal transmission

and maintaining synaptic integrity. Another experiment showed

that after fusion with neural cells, MSC exosomes can transfer miR-

133b into neurons, promoting axonal repair and reducing neural

damage caused by modeling. Additionally, MSC exosomes are rich

in miR-17-92, and increasing their exogenous content can promote

the generation of oligodendrocytes and axonal growth. In a

transient cerebral ischemia mouse model, intravenous injection of

exosomes with high expression of miR-17-92 enhanced neuronal

plasticity and axonal growth speed compared to injection of normal

MSC exosomes, achieving the effect of promoting neural function

recovery (101).
Potential drug delivery vehicle

The lipid bilayer structure of exosomes gives them excellent

biocompatibility, supporting the loading of hydrophobic or

hydrophilic drugs (102). Mesenchymal stem cell-derived

exosomes can directly bind to membrane receptors through their

exosomal exosome, allowing their contents to be internalized into

target cells, or deliver bioactive substances to target cells through

fusion with the plasma membrane. In addition, exosomes can easily

cross the blood-brain barrier (BBB) and increase the concentration

of drugs in the brain (103). Furthermore, exosome administration

can avoid some complications, including intracranial infection,

non-specific absorption, and drug toxicity, due to the low

immunogenicity of exosomes (104). Previous studies have shown

that exosomes can deliver drugs to the brains of AD mice (104).

Furthermore, by using peptide-modified exosomes expressing the

membrane protein Lamp2b, exosomes produced by engineered

dendritic cells can bind to neuron-specific rabies virus

glycoprotein (RVG) peptide, improving the cognitive function of

AD transgenic mice (105).
Blood exosomes as biomarkers of
Alzheimer’s disease

In addition to potential therapeutic value, EVs can also serve as

biomarkers, which is important in clinical applications. In

particular blood exosomes, which are EVs secreted by living cells

into the circulating blood, are regarded as a relatively noninvasive

novel tool for monitoring brain physiology and disease states, and

brain-derived exosomes in peripheral blood is an ideal biomarker

for AD. A meta-analysis described the diagnostic performance of

biomarkers of blood exosomes in AD (Registration No.

CRD4200173498) (106). The findings revealed that individuals

with preclinical Alzheimer’s disease, mild cognitive impairment,

and Alzheimer’s disease exhibited elevated levels of core
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biomarkers, including Ab1-42, P-T181-tau, P-S396-tau, and T-

tau, in blood neuron-derived exosomes. Furthermore, there was

an increase in molecules associated with other risk factors, such as

C1q for neuroinflammation, P-S312-IRS-1 for metabolism disorder,

HGF for neurotrophic deficiency, VEGF-D for vascular injury, and

cathepsin D for autophagy-lysosomal system dysfunction. At the

genetic level, the differential expression of REST, a transcription-

related factor, and miR-132, a microRNA, also influenced RNA

splicing, transport, and translation. These findings confirm the

potential of the aforementioned core molecules and additional

risk-related factors in blood exosomes as candidate biomarkers

for preclinical and clinical Alzheimer’s disease. Consequently, these

findings support the further development of exosome biomarkers

for a clinical blood test for Alzheimer’s disease.
Application of MSC-EVs in clinical
practice and their advantages
and limitations

There is presently an ongoing clinical trial, led by Ruijin

Hospital affiliated with Shanghai Jiao Tong University, which

aims to assess the safety and efficacy of utilizing allogeneic

adipose-derived mesenchymal stem cells in patients with

Alzheimer’s disease (www.clinicaltrials.gov). Although the clinical

trial is still awaiting results, the therapeutic efficacy of MSC-EVs has

shown promising outcomes in other conditions, such as pre-

eclampsia (NCT03562715) and chronic ulcers (NCT04134676).

The advantages of MSC-EVs mainly lie in the following aspects:

(1) The nanoscale MSC-EVs reduce vascular obstruction and are

more capable of penetrating the blood-brain barrier (107); (2)

MSC-EVs cannot replicate, avoiding uncontrolled division and

reducing the risk of tumor formation during proliferation (108),

as well as preventing mutations and DNA damage caused by cell

transplantation (109); (3) MSC-EVs have low immunogenicity,

making allogeneic applications possible (110); (4) Mesenchymal

stem cells can produce a large amount of EVs, whose composition

remains unchanged, facilitating storage and suitable for large-scale

production (111). Apart from these advantages, the clinical

application of MSC-EVs, especially in the context of AD, still

faces certain limitations, primarily including: (1) the current

methods for extracting MSC-EVs are time-consuming and

inefficient, necessitating further exploration and research into

efficient extraction methods that can be effectively applied in

clinical settings; (2) Due to the different composition of cytokines

in mesenchymal stem cell-derived extracellular vesicles from

different sources, the clinical application relies on time-saving,

cost-effective, and efficient methods. Further research is needed

for the development of effective biomarkers for extracellular

vesicles; (3) the specific mechanisms by which MSC-EVs regulate

immune responses, promote Ab degradation, and enhance axonal

growth remain unclear and require further experimental

investigation; (4) due to the complex biological composition of

MSC-EVs, their safety when applied in animal models and the
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significance of specific therapeutic molecules within MSC-EVs

warrant further attention.
Conclusion

As a progressive neurodegenerative disease, Alzheimer’s disease

currently lacks a cure. Previous research on the pathogenesis of

Alzheimer’s disease has primarily focused on the abnormal

accumulation of neurofibrillary tangles (NFTs) and amyloid

plaques (Ab). However, clinical trials targeting this mechanism

have ended in failure, indicating that NFTs and Ab are not the

primary causes of Alzheimer’s disease. In recent years, studies have

discovered that excessive immune response in the central nervous

system may be a significant factor in protein deposition. In this

pathological state, peripheral immune cells gather in the brain

parenchyma through a compromised blood-brain barrier, further

exacerbating the progression of Alzheimer’s disease. Mesenchymal

stem cell-derived extracellular vesicles (MSC-EVs), as a cell-free

therapy, have demonstrated excellent immunomodulatory effects
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on both central nervous system immune cells and peripheral

immune cells. They have also shown two major benefits in

Alzhe imer ’ s d i s ea se : c l ea r ing pro te in depos i t s and

neuroprotection (Figure 1). Compared to the MSC - Evs as drug

delivery carrier alone, directly isolated MSC-EVs retain natural

substances and surface markers, which can minimize immune

rejection and other potential complications. Engineering vesicles

can by modifying the composition of vesicle or surface

characteristics, load specific drugs or therapeutic molecules, so as

to realize precise targeting and controlled release, but the

engineering process can be complex and may alter the natural

properties of the vesicles. The choice between direct isolation of

MSC-EVs or preparation of engineered vesicles as therapeutic

interventions depends on the specific application and desired

outcomes. Further research and clinical trials are needed to

determine which approach is more effective and practical in

different therapeutic contexts. Currently, there is an ongoing

study investigating the safety and efficacy of MSC-EVs in treating

Alzheimer’s disease. It is believed that in the near future, further

exploration of its therapeutic mechanisms and optimization of
FIGURE 1

In the early stages of AD, immune cells, microglia, and astrocytes in the central nervous system are activated to clear protein deposits. However, as
the disease progresses, glial cells become overactivated, leading to the secretion of a large number of pro-inflammatory cytokines. This not only
exacerbates protein deposition but also damages the blood-brain barrier, allowing peripheral immune cells such as T cells and macrophages to
infiltrate the brain, further exacerbating neuroinflammation and causing a vicious cycle. Extracellular vesicles derived from mesenchymal stem cells
can regulate peripheral immune cells, inhibit overactive glial cells, and play a therapeutic role in Alzheimer’s disease by promoting neuroprotection
and clearing protein deposits.
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treatment strategies will provide more effective treatment options

for Alzheimer’s disease patients.
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