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Crosstalk between innate and adaptive immunity is pivotal for an efficient

immune response and to maintain immune homeostasis under steady state

conditions. As part of the innate immune system, type 2 innate lymphoid cells

(ILC2s) have emerged as new important regulators of tissue homeostasis and

repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate

either pro- or anti-inflammatory immune responses in a context dependent

manner. Inflammation has proven to be a key driver of atherosclerosis,

resembling the key underlying pathophysiology of cardiovascular disease

(CVD). Notably, numerous studies point towards an atheroprotective role of

ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9).

Boosting these protective responses may be suitable for promising future

therapy, although these protective cues are currently incompletely

understood. Additionally, little is known about the mechanisms by which

chemokine/chemokine receptor signaling shapes ILC2 functions in vascular

inflammation and atherosclerosis. Hence, this review will focus on the latest

findings regarding the protective and chemokine/chemokine receptor

guided interplay between ILC2s and other immune cells like T and B cells,

dendritic cells and macrophages in atherosclerosis. Further, we will

elaborate on potential therapeutic implications which result or could be

distilled from the dialogue of ILC2s with cells of the immune system in

cardiovascular diseases.
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Introduction

The first line of defense in our immune system, known as innate

immunity, promptly identifies invading pathogens through the

immediate recognition of pathogen-associated molecular patterns

(PAMPs) present on their surfaces (1) or damage-associated

molecular patterns (DAMPs) released upon tissue injury or

inflammation (2). Receptor activation upon PAMP or DAMP

binding leads to the initiation of signaling cascades that result in

the release of pro-inflammatory cytokines and chemokines

produced by cells of the innate immune system. Effective

communication between innate and adaptive immune cells is a

fundamental requirement for a robust immune response. This

communication is partially ensured by the innate immune system

instructing the adaptive immune system through the presentation

of pathogen-derived peptides to adaptive immune cells or via the

signaling axis involving chemokines and their receptors.

Chemokines serve as chemotactic cytokines and play a crucial

role in recruiting leukocytes to sites of inflammation or injury (3).

Immune cell subsets are distributed among different sites in our

body where they reside in specific tissue areas or circulate via the

blood stream. Thus, cell-cell interactions across different locations

add another layer of complexity to this cross-talk. Most of our

knowledge about the human immune system is derived from

studies from human peripheral blood. However, recent advances

in computational modeling as well as better access to human tissue

samples has enabled us to study immune reactions and functions of

different immune cells across various locations in the body in

addition to peripheral blood (4–9). Recent cell populations

gaining attention are for example natural killer (NK) cells or

innate lymphoid cells (ILCs), both of which mainly reside in

tissues [e.g. in mucosal linings or adipose tissue (AT)] and adapt

to changes in their environment. ILCs are an important source of

cytokines for the initiation of immune reactions and have newly

been described as an important bridge between the innate and

adaptive immune system (10). ILCs have been discovered as the

“innate immune cell pendant” to CD4+ T cells, since they develop

from the common lymphoid progenitor and they express signature

cytokines similar to CD4+ T cells. ILCs comprise of three

subgroups: ILC1, ILC2, and ILC3 and their main common

characteristics are the lack of antigen-specific receptors and lack

of markers that are expressed on immune cells of the common

hematopoietic cell lineages (11).

ILCs especially reside at mucosal barriers, where they are

rapidly activated in response to invading pathogens. ILC2s secrete

cytokines typical for T helper cell type 2 (Th2) cells (interleukin

(IL)-5, IL-4, IL-9, and IL-13) in response to IL-33, IL-25 and thymic

stromal lymphopoietin (TSLP) and require expression of GATA

binding protein 3 (GATA3). Importantly, ILC2s have been first

discovered in AT and their critical role in regulating AT

homeostasis by the release of type-2 cytokines has henceforth

been intensively studied (12). In addition, ILC2s have been

implicated in the development of several diseases, where they

exert either pro- or anti-inflammatory properties in a tissue-

dependent manner depending on the expression of specific
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markers. Moreover, it has been demonstrated by Huang et al. that

tissue-resident natural ILC2s (nILC2) phenotypically differ from

ILC2s that are activated upon infection, termed inflammatory

ILC2s (iILC2S) (13). For example, they have been described to be

involved in the pathophysiology of cardiovascular diseases (CVDs).

CVDs consist of conditions affecting the heart or blood vessels

including coronary heart disease and cerebrovascular disease. The

dominant cause for this condition is atherosclerosis, the thickening

of the arteries due to accumulation of lipids and immune cells

resulting in plaque development. However, the exact mechanisms

by which ILC2s mediate their pleitropic roles in different diseases

including CVDs are not well understood.

Hence, this review will concentrate on elucidating the

mechanisms through which ILC2s facilitate their multifaceted

communication with various immune cells to orchestrate immune

responses. We will describe their roles at different anatomical sites

in the body in steady state and in diseases like asthma or skin

fibrosis. Additionally, we will underscore their significant

contributions to CVD and will shed light on the specific

chemokine-chemokine receptor signaling pathways that play a

pivotal role in mediating immune responses of ILC2s in CVD. As

an outlook we will discuss how these cell-to-cell interactions during

immune responses can serve as promising novel targets for

therapeutic interventions in the management of chronic

inflammatory disorders.
ILC2 in tissue maintenance and repair

ILC2s express different surface markers depending on the tissue

they inhabit which facilitates their tissue-specific identification.

These cells are most prominently found in the skin, intestine,

lung, and AT where they exert context specific functions in

steady state (11, 14, 15).

Within visceral adipose tissue (VAT) for example, ILC2s

primarily produce IL-5 and IL-13 in response to IL-33, leading to

the recruitment of eosinophils (14, 15). These eosinophils, in

conjunction with regulatory T cells (Tregs) and anti-

inflammatory M2 macrophages, play crucial roles in reducing

inflammation within the AT. The presence of IL-33 attracts these

tissue-resident Tregs to sites of AT inflammation through ligation

of its receptor interleukin 1 receptor-like 1 (IL1RL1), also known as

ST2 (16). Therefore, ILC2s function as mediators for Treg

recruitment via interaction with the co-stimulatory molecule

OX40L expressed on ILC2s following IL-33 stimulation, a

mechanism also observed in other tissues such as the lung and

intestine (17). Conversely, it has been reported that during

inflammatory conditions, such as obesity, the numbers of ILC2s

decrease in both mouse and human adipose tissue (18, 19). This

leads to a transition from anti-inflammatory M2 macrophages to

pro-inflammatory M1 macrophages, marked by the release of pro-

inflammatory cytokines. Consequently, studies utilizing mice

deficient in ILC2s have demonstrated a significant reduction in

eosinophils and M2 macrophages in VAT, ultimately leading to

increased adiposity and insulin resistance in animal models (19).
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Interestingly, ILC2s which are distributed along different tissues

are also involved in mechanisms of tissue repair. In response to

tissue damage, e.g. after cardiac stress, liver damage, or upon skin

fibrosis, stromal cells release the alarmin IL-33 to recruit ILC2s via

IL-33R/ST2 (20) . Th i s in te rac t ion t r i gger s GATA3

phosphorylation, a transcription factor which is required for

regulating type-2 cytokine genes (IL-4, IL-5, IL-13) (21).

Moreover, the release of IL-13 by ILC2s recruits alternatively

activated M2 macrophages, which have been shown to be

important to initiate wound healing and tissue homeostasis (19,

22, 23).

These studies highlight that ILC2s differentially orchestrate

immune responses in a tissue-specific manner under steady state

and inflammatory conditions in order to maintain tissue

homeostasis or to initiate tissue repair. However, depending on

tissue type and disease context, ILC2s have been reported to exert

dual roles of mediating either pro- or anti-inflammatory responses.
ILC2 in inflammation and infection

Initially, ILC2s have been described to exert type-2 immunity by

secreting type-2 cytokines (IL-5, IL-13) upon helminth infection (24).

A sustained type-2 immunity response, however, can also lead to

tissue damage and chronic inflammation. For instance, in asthma and

allergic lung inflammation, ILC2s are the main producers of type-2

immune cytokines, thereby driving these pathologies. Accordingly, it

has been demonstrated that ILC2-mediated IL-13-IL-33 signaling

induced airway hyper-reactivity (AHR) upon influenza infection in

mice (25). Conversely, blocking the IL-33/IL-33R signaling pathway

or the use of anti-CD90 monoclonal antibodies to block ILC2

expansion protected mice from the influenza-induced AHR,

thereby proving an essential role of ILC2s in mediating airway

inflammation (25). Importantly, Halim et al. could demonstrate

that ILC2s are required to initiate a Th2 cell differentiation upon

intranasal papain administration, thus building a bridge from innate

to adaptive immunity in allergic lung inflammation (26).

Similarly, ILC2s have also been reported to mediate pro-

inflammatory immune responses in inflamed liver tissue (27). In

a murine model of Con A-induced immune-mediated hepatitis,

evidence could be provided for a link between increased levels of IL-

33 and enhanced numbers of ILC2s, which recruited eosinophils

and the sustained release of type-2 cytokines, further promoting

tissue damage, as seen in the AHR mouse model. Interestingly, the

study found that a priori IL-33 treatment before Con A challenge

led to an expansion of ST2+ Tregs and that this specific population

regulated ILC2 activity and hence, led to a reduction of liver

inflammation (27).

Conversely, in a model of arthritis, ILC2s are required for the

resolution of inflammation. Mechanistically, it has been shown that

IL-9 triggered the activation of ILC2s which in turn recruits Tregs

via interaction of the co-stimulatory molecules Glucocorticoid-

induced tumor necrosis factor receptor-related protein (GITR;

Tregs) - GITR ligand (GITRL; ILC2s) and Inducible T Cell

Costimulator (ICOS; Tregs) - ICOS ligand (ICOSL; ILC2s) (28).
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Moreover, patients in remission phase of rheumatoid arthritis

showed increased numbers of IL-9-expressing ILC2s in their

joints and in the circulation (28).

The dual role of ILC2 subsets, i.e. promoting either pro- or anti-

inflammatory responses depending on disease- and tissue-context

based on the expression of specific markers as outlined earlier, is

further emphasized by recent publications showing a regulatory

function of ILC2s through the production of IL-10 upon exposure

to the allergen papainin in the lung (29) and during intestinal

inflammation (30). Treg-inducing factor, retinoic acid (RA),

induced the IL-10-producing subset of ILC2s in vitro (31) and

these regulatory ILC2s were able to mediate resolution of lung and

intestinal inflammation in mouse models (29, 30). In humans, these

cells were increased in human nasal tissue from healthy donors

compared to patients suffering from chronic rhinosinusitis with

nasal polyps (30). More recently, regulatory ILC2s have been

associated with a better clinical response upon allergen-induced

immunotherapy (32). In contrast to this, analysis of extracellular

particles (EPs) derived from severe Coronavirus Disease of 2019

(COVID-19) patients revealed an activated phenotype of ILC2s,

which led to a more aggressive disease score (33). Interestingly, EPs

from severe COVID-19 patients also failed to dampen the cytokine

production of ILC2s (33).

Taken together, these studies outline how environmental

stimuli, the surrounding milieu, disease context and the release of

specific cytokines shape ILC2 function in healthy and diseased

states. Their pleiotropic function is further highlighted in low-grade

inflammatory obesity (34). As outlined before, in obese patients or

mice, numbers of ILC2s are reduced and thus, an inflammatory

milieu prevails. However, the underlying mechanisms of an obesity-

induced decrease in ILC2 numbers remain poorly understood. The

pro-inflammatory environment in obesity is associated with an

increased risk of developing cardiovascular disorders. Therefore, we

will shed light on the consequence of ILC2 dysregulation in

inflammatory-induced CVDs.
ILC2 in atherosclerotic
cardiovascular diseases

CVDs are the leading cause of death worldwide and they

comprise of coronary heart diseases, peripheral artery disease,

stroke, and cerebrovascular diseases, among others. Herein,

atherosclerosis is the underlying pathological process which arises

from the accumulation of lipids and immune cells in the intima of

arteries, forming so called atherosclerotic plaques, leading to an

increased thickness and stiffness of the vessels. Besides non-

modifiable risk factors like increasing age, gender or genetic

factors, several modifiable risk factors exist for atherosclerosis,

like smoking, hypertension and hyperlipidemia. Therefore it is

not surprising that obesity, characterized by excessive lipid

accumulation and hyperlipidemia, is also a major risk factor for

atherosclerotic cardiovascular diseases (ACVDs), although the

underlying mechanisms explaining this association are still not

completely understood.
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Retention of lipids causes the modification of low-density-

lipoprotein (LDL) into oxidized-LDL (oxLDL), which is targeted

by the immune system as “non-self”. Moreover, obesity-induced

chronic inflammation is caused by elevated serum levels of pro-

inflammatory cytokines, which further attracts leukocytes to

infiltrate the lesion (35).

The artery vessels are further composed of media and

adventitia, which are imbedded into perivascular adipose tissue

(PVAT). It has become clear, that the PVAT plays a major role in

the pathogenesis of atherosclerosis. Under homeostatic conditions,

PVAT regulates vascular tone and intravascular thermoregulation.

However, chronic inflammation (as in atherosclerosis) leads to

PVAT dysfunction (36, 37). Of interest, ILC2s have been shown

to regulate PVAT homeostasis by secreting type-2 cytokines (IL-4,

IL-5, IL-13) in order to maintain an anti-inflammatory milieu by

induction of M2 macrophages and eosinophils (Figure 1).

LDL receptor deficient (Ldlr−/−) mouse models are widely used

as a model to study an altered cholesterol metabolism due to lack of
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endocytosis of circulating LDL caused by the LDL-R deletion.

Consequently, circulating cholesterol levels are increased, which

can be further enhanced when the mice are subjected to a high-fat

diet (38). In this regard, first studies in 2015 using immunodeficient

Ldlr−/−rag1−/− mouse models showed a protective role of ILC2s in

atherosclerosis (39). Specifically, such mice treated with the IL-2/

anti-IL-2 complex demonstrated expansion of CD25+ ILC2s and a

reduction in very low-density-lipoprotein (VLDL) levels. Moreover,

an increase in eosinophils in VAT and liver upon ILC2 expansion

was observed (39). However, the use of an immunodeficient mouse

model and the expansion of ILC2s by IL-2/anti-IL2 complexes

rather created an artificial environment.

Therefore, to evaluate the role of naturally occurring ILC2s in

atherosclerosis, another group made use of an apolipoprotein e-

deficient (Apoe-/-) mouse model that is susceptible for

atherosclerosis development (40). Intriguingly, ILC2s present in

PVAT and lymph nodes phenotypically differed from those found

in AT. Upon high-fat diet, ILC2s were not only reduced in numbers
FIGURE 1

ILC2-mediated immune responses. (1) Expression of known chemokine receptors on ILC2s. (2) Recruitment of ILC2s after myocardial infarction via
CXCR4/CXCL12 to initiate tissue repair by release of IL-5. (3) Atheroprotective functions of ILC2s in PVAT and atherosclerotic plaques are mediated
by yet unidentified chemokine-chemokine receptor interactions. (4) ILC2s maintain an anti-inflammatory environment by the release of type-2
cytokines (IL-4, IL-5, IL-13), which leads to recruitment of alternatively activated M2 macrophages and eosinophils in adipose tissues. (5) Increase of
pro-inflammatory cytokines (IL-1b, TNFa, IL-6) in adipose tissue inflammation leads to dysfunction of ILC2-mediated responses, which might be
mediated by yet unknown chemokine-chemokine receptor signaling. (6) IL-25 treatment leads to expansion of ILC2 exerting atheroprotective
functions by the production of B1-secreting IgM cells in atherosclerosis. Innate lymphoid cells type 2 (ILC2), GATA binding protein 3 (GATA3), RAR
related orphan receptor A (RORa), myocardial infarction (MI), C-X-C chemokine receptor (CXCR), chemokine (C-X-C motif) ligand (CXCL), CC
chemokine receptor (CCR), immunoglobulin M (IgM), Interleukin (IL), Tumor necrosis factor a (TNFa), perivascular adipose tissue (PVAT). Made
with biorender.com. The "?" indicates that there is a yet unknown mechanism.
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in PVAT but those remaining also altered their protective

phenotype (40) . PVAT-resident ILC2s resembled the

inflammatory Killer cell Lectin-like receptor G1 (KLRG1)hi ST2-

ILC2 (iILC2-like) phenotype and produced less IL-5 and IL-13 (41).

Collectively, these data suggest that ILC2s exerted their anti-

inflammatory functions via the production of IL-5 and IL-13, which

could be potentially a prerequisite for changes in macrophages and

B1-dependent natural IgM production. Importantly, IgM antibodies

produced by B1 cells exert atheroprotective properties by capturing

lipids expressing oxidation-specific epitopes (OSEs) present on LDL,

thereby hindering the uptake by macrophages (42–44).

A strong atheroprotective role of the ILC2-released cytokine IL-5

has been further demonstrated by showing an association of low levels

of IL-5 with the presence of plaque development in the carotid bulb in

humans (45). To confirm the previous finding in an experimental

mouse model, the authors used Western diet-fed Apoe-/- mice lacking

IL-5 and implanted a perivascular shear stress modifier on the right

carotid artery to disrupt the pattern of hemodynamic flow.

Interestingly, mice that lacked IL-5 displayed enlarged plaques at

the location of the shear stress modifier implant, further supporting

the importance of IL-5 production by local mediators in order to

mediate atherprotective functions (45). The finding that IL-5 has

strong atheroprotective functions and that it is mostly produced by

ILC2s has been further supported by another study showing that ILC2

depletion in Ldlr−/− mice led to an acceleration in atherosclerosis

progression. Conversely, only wild-type ILC2s could rescue this

phenotype in these mice, whereas Il5−/− ILC2s did not (40).

Myocardial infarctions (MI) cause almost half of the cases of

CVDs (46) and after acute MI, an increase of inflammation is

induced in order to initiate cell repair. However, persistent

inflammation can lead to adverse remodeling of the injured

tissue. Several immune cell types migrate to the site of infarction.

In this regard, one study found an increased accumulation of ILC2s

at sites of MI, which released IL-5 and attracted eosinophils and

dendritic cells (DCs) to induce tissue repair (47) (Figure 1). Mice

with a diphtheria toxin-induced ILC2-specific deletion showed

worsened cardiac dysfunction after MI induction, suggesting an

important role of ILC2s in repairing tissue injury post-MI (47).

Similarly, Yu et al. examined the role of ILC2s in restoring

postischemic injury by using a mouse model of MI with a genetic

deletion of ILC2s (48). In wildtype mice, the authors could find an

increased number of ILC2s at the site of infarction which

contributed to tissue repair as assessed by histology and

echocardiography, while genetic deletion of ILC2s impeded this

recovery. Importantly, low-dose IL-2 treatment in post-MI mice

activated ILC2s and thus, improved the recovery rate of these mice.

Of note, this therapeutic approach showed also promising results in

a clinical trial of patients with acute coronary syndromes by

increased production of IL-5 by ILC2s (48).

As outlined in the previous section, depending on the disease

and tissue context, ILC2s express different markers. One study

analyzed the role of IL-25-expanded ILC2s isolated from spleens of

IL-25-treated Apoe-/- mice in an in vitro and in vivo model (49).

High-fat diet-fed Apoe-/- mice were injected subcutaneously with

0.5 × 106 in vitro-expanded splenic ILC2s for a total of four transfers

with two weeks breaks in between. With this experimental
Frontiers in Immunology 05
approach, the authors were able to show that the transfer of

ILC2s led to a reduction of the lipid content in atherosclerotic

lesions of Apoe-/- mice (Figure 1). Interestingly, an increased

production of B1-dependent IgM antibodies was observed (49).

These findings further highlight the importance of ILC2

interactions with other immune cells ranging from innate to

adaptive immunity as well as humoral immunity in order to

mediate atheroprotective responses in cardiovascular inflammation.

More recently, it has been proposed that atherosclerosis also has

autoimmune-like features. In this regard, it was shown that Tregs

and ILC2s directly interact with each other during cardiovascular

inflammation (50). Specifically, the disruption of cell-to-cell

contacts reduced the release of IL-13 by ILC2s in vitro and in

vivo. The importance of IL-13 in protecting against cardiovascular

inflammation has been highlighted in previous sections.

Intriguingly, ILC2 (18, 19) and Treg numbers [summarized in

(51)] are reduced in atherosclerotic mouse models and humans

with CVDs. Moreover, Tregs from Apoe-/- mice have been shown to

have a reduced ability to suppress CD4+ T cell proliferation in vitro

(52). Notably, under conditions of sustained inflammation such as

in atherosclerosis, Tregs have been shown to acquire a pro-

inflammatory phenotype (53). A similar ILC2 plasticity has also

been observed in airway diseases (54–56). However, the exact

mechanisms leading to reduced numbers of ILC2s in

atherosclerosis remain unclear. Moreover, understanding

mechanisms involved in the Treg-ILC2 are still in its infancy.

Most of the studies used the Rorafl/flIl7rCre/+mouse model for

the generation of ILC2 deletion, however, other ILC subsets might

be affected in this model as well (57). Therefore, new mouse lines

that specifically target or delete ILC2s are currently being

investigated in order to improve the specificity (58–60).

Overall, these studies could demonstrate that ILC2s play an

important role in protecting against vascular inflammation.

However, under conditions of sustained inflammation, ILC2s

acquire an inflammatory phenotype in atherosclerosis. Therefore,

a better understanding of underlying mechanisms that shape ILC2

responses under such conditions are needed.
ILC2s and chemokine receptors/
ligands in disease

Chemokines and chemokine receptors play an important role in

recruiting immune cells to sites of inflammation and therefore

significantly impact on disease progression. Importantly, while

chemokine receptors can have multiple ligands and vice-versa

chemokines can bind to more than one receptor, they only pair

with the structurally identical cysteine residues (3). However,

depending on the pairing, chemokines and their receptors can

exert different effects. In the past years, it has become clear that

chemokine-chemokine receptor signaling is not only essential for

leukocyte recruitment in atherosclerosis, but that their signaling

cascade also mediates other important biological functions. For

instance, blockade of chemokine (C-C motif) ligand 19 (CCL19)

and CCL21 binding to CC chemokine receptor 7 (CCR7) has been

shown to preserve foam cell content (61). Moreover, depending on
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the cells they are expressed on, chemokine-chemokine receptor

interactions contribute to their pleiotropic function of either

mediating pro- or anti-inflammatory responses (62).

Some early studies in the 2000’s already describe how

chemokine receptors are able to shape T cell subsets and their

responses. During that time, the existence of ILCs had not been

known yet. One could therefore speculate, that those studies

describing “uncommitted, primed, precursor cells” (Thpp),

misidentified first interactions of ILC2s as being Th2 precursors

with chemokines (63, 64).
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Currently, several chemokine receptors expressed on ILC2s

have been identified: CCR9, C-X-C chemokine receptor 4

(CXCR4), CXCR6 (15, 65–67), CCR4 (68) and CCR8 (69) in

mice, and the expression of some chemokine receptors (CCR2,

CCR4, CCR10 CXCR4) on ILC2s have also been described in

humans, although studies remain scarce (70, 71) (Figures 1, 2).

With respect to ILC2s, for instance, in response to allergens, IL-

13 release by ILC2s leads to the production of DC-derived CCL17,

thereby stimulating Th2 cell responses (26). Conversely, binding of

CCL1 to CCR8 expressed on ILC2s protected mice from intestinal
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Heat maps show normalized mRNA copy number (A, B) or the expression difference in the indicated cell types (C, D) of the selected chemokine
receptor-coding genes. The data from human (A, C) and mouse (B, D) cells are available at ArrayExpress E-MTAB-8494 (72) and GEO GSE168208
(73), respectively. Innate lymphoid cell (ILC), helper T cell (Th), Lymphoid tissue inducer (LTi), ILC precursor (ILCP). The analysis was performed as
described in (73). P-value notation: * 0.01 ≤ p < 0.05, ** 0.001 ≤ p < 0.01, *** 0.0001 ≤ p < 0.001, ****p < 0.0001.
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damage in a model of experimental colitis (74). Moreover, it has

been shown that CCL1-CCR8 signaling on ILC2s triggered their

proliferation and increased their ability to respond to helminth

infections (68). In humans, CCR10+ ILC2s have been shown to

expand upon severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) pneumonia to trigger recovery and tissue repair

and their increased frequency was negatively correlated with pro-

inflammatory markers (75).

With respect to vascular inflammation, CXCR4 expressed on

vascular cells as well as on B cells exerts protective functions in

atherosclerosis (44, 76). In this regard, it has been shown that ILC2s

are recruited via CXCR4-CXCL12 interaction and aid in the

recovery from experimental MI in mice by increasing the levels of

IL-5 (48) (Figure 1).

Further, CCR9-CCL25 signaling has been shown to be pro-

atherogenic, since inhibition of CCR9 led to a delay in the

development of atherosclerosis in Apoe-/- mice (77). However, the

exact functions of CCR9 expressed on ILC2s in the context of

ACVDs remain elusive. So far, it has only been reported that CCR9

might serve as trafficking receptor for ILC2s to several organs (65).

Similarly, CXCR6 is an important T-cell homing receptor to the

aortic wall where it accelerates atherosclerosis (78) but its role on

ILC2s in ACVDs still needs to be explored. So far, it has only been

shown that CXCR6 is crucial for ILC progenitors to egress from the

bone marrow at steady state conditions (79).

Similarly, disrupted CCL1-CCR8 signaling in Tregs has been

shown to exacerbate atherosclerosis in mice (80). Specifically, a

reduction of the anti-inflammatory cytokine IL-10, and reduced

Tregs could be observed in aorta and spleen of fat-fed Apoe-/- mice

deficient in CCL1. Importantly, this effect could also be mimicked

by blocking CCR8 in high-fat-fed ldlr−/− mice, as evidenced by

decreased recruitment of Tregs to the aorta (80).

Importantly, CCR8 is also highly expressed on ILC2s (69).

However, studies investigating the role of CCR8 on ILC2s in

atherosclerosis are still lacking.

A list of known shared chemokine receptors between ILC2s and

other immune cell subsets is shown in Table 1.
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Due to their local availability, ILC2s are an attractive target for

the development of novel therapies. Accordingly, some strategies to

therapeutically manipulate ILC2s in disease have already been

developed or are currently being investigated in clinical trials [see

(84, 85)]. For instance, for the treatment of asthma there are several

FDA-approved drugs like mepolizumab, benralizumab, and

reslizumab that target the cytokine IL-5, which is expressed by

ILC2s, among others (86). Current therapies using monoclonal

antibodies targeting IL-5 are in clinical use as add-on therapy for

the treatment of uncontrolled asthma (87). In this setting, IL-5

blockade is required to dampen hyperactivity in asthma by reducing

recruitment of eosinophils and therefore, it is not specific to a given

cell type but it is applied systemically. For the treatment of specific

diseases where the role of ILC2s is implicated (e.g. CVDs), future

studies are required that aim at specifically targeting ILC2-mediated

IL-5 secretion.

In CVD, IL-2 treatment has led to promising results in mice by

the expansion of ILC2s and hence, promoting their atheroprotective

function (39) and recovery rate in post-MI mice (48). Since data

from murine studies point towards an atheroprotective role of

ILC2s and Tregs, using low-dose IL-2 treatment with the goal to

expand both immune cell subsets could be a promising approach to

dampen inflammatory responses in early atherosclerosis. The

current literature focused on the effects of IL-2/anti-IL-2

treatment in expanding either Tregs (88, 89) or ILC2s (40, 90) in

a specific disease setting. These studies did not investigate the

expansion of both cell types or others that might be expanded

upon this treatment strategy. It would be therefore crucial to

understand which cell types become activated upon that

treatment and how IL-2-mediated expansion affec ts

their phenotypes.

In this regard, the phase 2 clinical trial called IVORY has been

started to investigate the beneficial effect of low-dose IL-2 therapy in

patients with acute coronary syndromes (ACS), which will be

completed in 2024 (91).
TABLE 1 ILC2-immune cell crosstalk and their function in atherosclerosis.

Chemokine
receptor

shared expression
with ILC2s

Ligands Role in atherosclerosis References

CCR4 Th2 cells, Tregs CCL17
CCL22

Atheroprotective
Recruitment of Tregs to lesions

(68, 81)

CCR8 Tregs CCL1 Pro-atherogenic
Suppression of Tregs

(80, 82)

CCR9 DCs, B cells, T cells CCL25 Pro-atherogenic
Increased recruitment of pro-inflammatory immune cells

(77)

CXCR4 B cells, NK cells

CXCL12

Atheroprotective
Recruitment of immune cells important for tissue repair and increased
plasma IgM levels produced by B cells (44, 48, 76)

Endothelial cells Pro-atherogenic
Lesion development

CXCR6 Th17 cells CXCL16 Pro-atherogenic
Recruitment of pro-inflammatory IL-17A-producing T cells into aortas

(78, 83)
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Interestingly, whereas treatment of high fat-fed Apoe-/- mice

with IL-33 reduced atherosclerosis development (92), a more recent

study showed that ILC2s can also mediate the IL-33-induced

eosinophilic pericarditis (93). Here, anti-IL-5 treatment led to a

reduction of infiltrating eosinophils into the heart during

pericarditis (93).

These studies suggest that therapeutical targeting of the IL-33/

ST2/ILC2s signaling axis could be used as potential treatment for

several CVDs and highlight the importance to investigate the

function of ILC2-mediated signaling pathways in a disease-

dependent context.

Notably, systemically administered drugs have general safety

concerns due to off-target effects. Thus, targeting tissue-resident

ILC2s and/or their signaling cascade via chemokine-chemokine

receptor interactions enables a more specific and efficient approach

for therapeutic manipulation. Hence, a deep phenotypic

characterization of ILC2 is required for a better understanding of

their mode of action in a disease context such as ACVDs.

Along these lines new technologies such as single cell RNA

(scRNA) or nuclei RNA (snRNA) sequencing could improve our

understanding of the state of ILC2 in a disease- and tissue-specific

manner. ScRNA sequencing has identified ILC2 cells among human

lymphocytes (94), and characterized them based on their

microenvironmental localization in steady state and disease in

several human tissues (95, 96). Importantly, Jiang et al. identified

new ILC2 subclusters in myocardial ischemia of mice (97) and

another study using scRNA sequencing revealed heterogeneity in

the immune phenotypes of ILC2s from lesional atopic dermatitis

skin in humans (98). These studies highlight the potential of scRNA

sequencing technologies to advance our understanding in the

heterogeneity of ILC2 subset phenotypes in healthy and diseased

conditions. Moreover, the identification of such subsets will

critically contribute to the development of therapeutic applications.
Frontiers in Immunology 08
Author contributions

MK: Writing – original draft. EV: Writing – review & editing.

AS: Writing – review & editing. CW: Writing – review & editing.

YD: Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported in part by funding to YD and CW through the

Deutsche Forschungsgemeinschaft (SFB1123-A1) and was

supported by a grant from the Interdisciplinary Center for

Clinical Research within the faculty of Medicine at the RWTH

Aachen University to EV.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune
response. Curr Opin Immunol (1997) 9(1):4–9. doi: 10.1016/S0952-7915(97)80152-5
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