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Overexpression of MTHFD2
represents an inflamed tumor
microenvironment and precisely
predicts the molecular subtype
and immunotherapy response of
bladder cancer
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Chuang Yue1,2, Li Zuo1,2*, Lifeng Zhang1,2* and Shenglin Gao1,2*

1Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou,
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Introduction: Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), whose

aberrant expression is common in cancers, has recently been identified as a

potential regulator of immune response. However, its immune-related role in

bladder cancer (BLCA) and its association with immunotherapy efficacy

remain unclear.

Methods: RNA sequencing data from The Cancer Genome Atlas (TCGA) was

applied to analyze the immunological roles and prognostic value of MTHFD2 in

pan-cancers. The association of MTHFD2 with several immunological features of

tumor microenvironment (TME), including cancer-immunity cycle, immune cells

infiltration, immune checkpoints expression, and T cell inflamed score was

analyzed in TCGA-BLCA cohort. The predictors of cancer treatments

effectiveness, including the expression and mutation of certain genes,

molecular subtypes, and several signatures were evaluated as well. These

results were validated by another independent cohort (GSE48075). Finally, the

predictive value of MTHFD2 for TME and immunotherapy efficacy were validated

using immunohistochemistry assay and RNA sequencing data from IMvigor210

cohort, respectively.

Results: MTHFD2 was found to be positively associated with several

immunological features of an inflamed tumor microenvironment (TME) in

various cancers and could predict BLCA patients’ prognosis. In BLCA, high

expression of MTHFD2 was observed to be positively related with the cancer–

immunity cycle, the infiltration of several immune cells, and the expression of

immunoregulators and T-cell inflamed scores, indicating a positive correlation

with the inflamed TME. Moreover, patients with high MTHFD2 expression were

more likely to be basal-like subtypes and respond to BLCA treatments, including

immunotherapy, chemotherapy, and target therapy. The clinical data of the

IMvigor210 cohort confirmed the higher response rates and better survival

benefits of immunotherapy in high-MTHFD2-expression patients.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1326509/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1326509/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1326509/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1326509/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1326509/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1326509/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1326509&domain=pdf&date_stamp=2023-12-07
mailto:zuoli@njmu.edu.cn
mailto:nj-likky@163.com
mailto:gaoshenglin12135@njmu.edu.cn
https://doi.org/10.3389/fimmu.2023.1326509
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1326509
https://www.frontiersin.org/journals/immunology


Shi et al. 10.3389/fimmu.2023.1326509

Frontiers in Immunology
Conclusion: Collectively, high MTHFD2 predicts an inflamed TME, a basal-like

subtype, and a better response to various therapeutic strategies, especially the

ICB therapy, in bladder cancer.
KEYWORDS

bladder cancer, MTHFD2, inflamed tumor microenvironment, immunotherapy,
molecular subtype
Introduction

Bladder cancer (BLCA) is the 10th and 6th most prevalent

malignancy in male and female patients, respectively, causing more

than 570,000 new cases and 210,000 deaths worldwide every year

(1). Owing to the need for lifelong surveillance and invasive

treatments, BLCA imposes immense suffering and economic

burden on patients and the society (2). BLCA originates from the

transitional epithelium and can be classified into two groups

according to invasion depth: non-muscle-invasive BLCA

(NMIBC) and muscle-invasive BLCA (MIBC) (3). While the

prognosis of NMIBC patients has been favorable thanks to

treatment advancement, patients with MIBC still suffer from a

dismal prognosis (3). The 5-year survival of regional and distant

metastatic MIBC patients is 36% and 5%, respectively (3).

Recently, immunotherapies, particularly the immune

checkpoint blockade (ICB) therapy and chimeric antigen receptor

T cell (CAR-T) therapy, have shown great success in several cancers

and have shown promising survival benefits for advanced BLCA (4–

10). However, these treatments only work for a small portion of

patients (9, 10). Currently, there are several biomarkers that can

predict the responsiveness of immunotherapy, such as the mRNA

level of Programmed cell death 1 ligand 1(PD-L1), tumor mutation

burden (TMB), microsatellite instability (MSI), and molecular

subtypes (11–14). Nevertheless, all of these biomarkers have their

own drawbacks, which greatly limit their use in clinical practice. For

instance, the predictive accuracy of PD-L1 expression can be

disturbed by lots of factors, and the detection of TMB, MSI, and

molecular subtypes is complex, tardy, and expensive (11–15).

Therefore, explorations for new predictive biomarkers

remain urgent.

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a

vital enzyme involved in mitochondrial folate one-carbon

metabolism and exerts a dual role of dehydrogenase and

cyclohydrolase (16). It can catalyze the conversion of 5,10‐

methylenetetrahydrofolate (CH2‐THF) and NAD(P)+ to 10‐

formyl‐THF (CHO‐THF) and NAD(P)H, and thus participates in

several biological processes, including the production of energy and

the metabolism of nucleotide and amino acid (17, 18). Normally,

MTHFD2 is heavily expressed in fetuses, but almost absent in adults

(19). However, it can be upregulated in various cancers to meet the

high biosynthetic requirements of rapid cell proliferation (19).

Conversely, the absence of MTHFD2 in tumors may impair the

malignant features of cancers and trigger cell death (19). The high
02
expression of MTHFD2 is also correlated with the shorter survival

of several cancers, including breast cancer, colorectal cancer, kidney

cancer, and liver cancer (20–23), thus becoming a promising

prognostic biomarker and therapeutic target (24).

However, recent studies have indicated that, except for

metabolic functions, MTHFD2 is also involved in the regulation

of the immune system in several diseases. The study of Sugiura et al.

(25). demonstrated that MTHFD2 is vital to functions of T cells.

While high MTHFD2 expression can support de novo purine

synthesis of activated CD4+ T cells, insufficient MTHFD2 will

promote Treg-like phenotypes of Th17 cells. Therefore, targeting

MTHFD2 to decline its expression may be an ideal way to protect

against inflammation and autoimmunity (25). In addition, another

study has shown that MTHFD2 can upregulate the expression of

PD-L1, thereby causing cancer immune evasion (26). These results

revealed the possible association of MTHFD2 with cancer

immunity and its potential to be a novel biomarker in cancer

treatment. However, its detailed role in specific cancers including

BLCA and its relationship with immunotherapy response

remain obscure.

In this study, we performed a multi-omics analysis of immune-

related functions of MTHFD2 in BLCA. We observed that

MTHFD2 expression level is associated with the tumor

microenvironment (TME) in BLCA and has the ability to

precisely predict the molecular subtypes, inflamed TME, and

immunotherapy response in bladder urothelial carcinoma.
Methods

Patients and tissue samples

Tumor tissue microarrays of BLCA (HBlaU050CS01), which

added the staining results of CD8 and PD-L1, were purchased from

Shanghai Outdo Biotech Company (Shanghai, China). CD8 is an

antigen of cytotoxic T lymphocyte. The proportion of CD8+T cells’

positive rate was calculated as follows: number of CD8+ cells in the

nest/number of all cells in the nest. Only the proportion of cells with

a strong positive rate was recorded, and the proportion of cells with

a weak positive rate was ignored. The study was approved by the

Ethics Committee of Shanghai Outdo Biotech Company. The

immunohistochemistry of the tumor tissue microarray was

performed by Biossci Company, Hubei, China. The anti-

MTHFD2 antibody (12270-1-AP) was purchased from
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Proteintech Company. Subsequently, two independent pathologists

were asked to semiquantitatively score the intensity of

immunohistochemical staining of MTHFD2 as negative (0),

weakly positive (1+), moderately positive (2+), or strongly positive

(3+) along with the percentage of positive cells. For each observed

tissue component (the cytoplasm and nucleus), a summary value

referred to as the component H-score was calculated by multiplying

the intensity score (ranging from 0 to 3) and the percentage of

positive cells (ranging from 0 to 100).
Data collection and preprocessing

The transcriptional data (FPKM value), prognosis information,

and genetic alteration data of pan-cancers were acquired from the

UCSC Xena (https://xenabrowser.net/datapages/) database (27).

Then, the FPKM data were transformed into TPM data with the

following formula:

TPM =
FPKMi

SjFPKMj
� 106

Then, the log2(TPM+1) transformation was further performed on

the TPM value for subsequent analysis. The somatic mutation data

were processed by VarScan (28) (https://varscan.sourceforge.net/)

and calculated to TMB. Furthermore, we downloaded the MSI data

from the cBioPortal (29) (http://www.cbioportal.org/) database.

The copy number variation (CNV) data of hyperprogression

marker genes were obtained from a previous study (30).

Furthermore, three independent cohorts, namely, GSE48075, E-

MTAB-4321, and IMvigor210 (http://research-pub.gene.com/

IMvigor210CoreBiologies/), were downloaded for external

validation (31–33). These data were also transformed into the

TPM value for subsequent analysis.
Assessment of
immunological characteristics

The association between MTHFD2 expression and several

immunological characteristics was analyzed. The gene lists of

immune checkpoints and various immunoregulators and various

immunoregulators, including chemokines, chemokine receptors,

and major histocompatibility complex (MHC), were acquired

from previous studies (34, 35). The cancer–immunity cycle,

which reflects the stepwise events of immune systems’ response to

cancer (36), was analyzed by single sample gene set enrichment

analysis (ssGSEA) and normalized to z-score. The infiltration of

TIICs was evaluated by ssGSEA in pan-cancer, and six other

algorithms in BLCA, namely, TIMER (37), MCP-counter (38),

CIBERSORT (39), quanTIseq (40), xCell (41), and EPIC (42), to

enhance the credibility of results. While the ssGSEA was performed

by the R package “GSVA” based on signatures from the TISIDB

database (43), the results of the other six algorithms were obtained

from the TIMER (http://timer.cistrome.org/) website. The

expression of effector genes of these immune cells, which was
Frontiers in Immunology 03
obtained from a previous study (30), was assessed as well.

Moreover, the T cell-inflamed score (TIS), a previously developed

predictor of cancer immunity and efficacy of anti PD-1 therapy (44),

was utilized to evaluate the degree of inflammation of the TME in

BLCA as well. The TIS, which could reflect the pre-existing

anticancer immunity and predict the clinical response of ICB, was

calculated based on 18 IFN-g responsive genes. These genes was

collected from the research of Ayers et al.

TIS = S18
g =1bgXg

where bg is a weighted coefficient predefined in a previous study,
and Xg is the gth gene’s expression level. Moreover, the association

be tween MTHFD2 and severa l p rev ious l y r epor ted

hyperprogression predictive genes, whose aberrant expression or

copy number variance can predict the occurrence of

hyperprogression, was analyzed as well.
Evaluation of the associations between
MTHFD2 and various therapeutic efficacy

To determine the relationships between MTHFD2 expression

and the efficacy of different therapies, we performed analyses on

several predictive biomarkers. The expression or genetic alteration

conditions of various previously reported predictive genes were

evaluated, including genes for hyperprogression after

immunotherapy (45–47), predictors for neoadjuvant chemotherapy

responsiveness (48–51), and drug-targeted genes of different

treatment strategies. The drug-targeted genes were downloaded

from the Drugbank (52) database (https://www.drugbank.com/).

Furthermore, a lot of previously established gene signatures with

predictive power were examined by the ssGSEA algorithm as well (14,

33, 53–56). The GSVA package was utilized to assess the enrichment

score of different signatures in various samples (57).
Molecular subtype assessment

The molecular subtype of BLCA samples was determined by

different subtyping systems, including UNC (58), Baylor (59),

TCGA (60), MDA, Lund (61), CIT-Curie (62), and Consensus

subtypes (14). The analyses were performed by the R package

“BLCAsubtyping” and “ConsensusMIBC”.
Statistics

Wilcoxon signed rank test or Kruskal–Wallis test was applied for

the differences among continuous variables according to the number

of groups, and the chi-square test was applied for the differences

among classified variables. The correlation analyses were based on

Pearson’s coefficients. The survival of patients was compared by both

univariate Cox regression and the Kaplan–Meier method. All analyses

were performed by R (version 4.2.3) and results with a two-sided p-

value of less than 0.05 were considered significant.
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Results

Pan-cancer analysis of MTHFD2 prognostic
value and immunological association

Pan-cancer analysis was performed to have a basic understanding

of the biological functions and prognostic value of MTHFD2. Firstly,

univariate Cox regression and survival curve was used to assess the

prognostic value of MTHFD2 in terms of overall survival (OS),

progression-free survival (PFS), and disease-free survival (DFS). As
Frontiers in Immunology 04
shown in Supplementary Figure 1, MTHFD2 overexpression had a

significant risky role for OS in ACC, BLCA, BRCA, HNSC, KICH,

KIRC, KIRP, LUAD, MESO, PAAD, PRAD, and UCEC via

univariate Cox regression, while the protective role was only found

in GBM, LGG, and SKCM. Similar results were observed in PFS

analysis, except BRCA, GBM, MESO, and SKCM were no longer

significant, while PCPG and UVM reached significance

(Supplementary Figure 2). However, in DFS analysis, only KIRP,

KICH, and PAAD reached significance (Supplementary Figure 3).

Subsequently, we further investigated the correlation between
B C

D E

F

A

FIGURE 1

Pan-cancer analysis revealed the correlation between MTHFD2 and immunological status. (A) The heatmap for correlation between MTHFD2 and
various immunomodulators in pan-cancers. Grids in red represent positive correlation while grids in blue represent negative correlation. (*p< 0.05).
(B–E) The scatter plot for correlation between MTHFD2 and various immune checkpoints (PD-1, CTLA4, PD-L1, and Tim-3). Dots in red represent
the absolute correlation > 0.3. (F) The heatmap for association between MTHFD2 expression and infiltration level of various immune cells in pan-
cancers. Grids in red represent positive correlation while grids in blue indicate adverse correlation (*p< 0.05, **p< 0.01).
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MTHFD2 expression and immunological features. The expression of

MTHFD2 was found to be positively correlated with numerous

immunoregulators in most cancers, especially in BLCA, CHOL,

KIRC, KIRP, LIHC, and THCA (Figure 1A). However, a negative

correlation with immunoregulators was also observed in some

cancers, including DLBC, LUAD, LUSC, and TGCT, reflecting the

high heterogeneity of MTHFD2 function in various cancers.

Moreover, MTHFD2 was discovered to be positively associated

with several immune checkpoints, such as cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4), PD-L1, T-cell immunoglobulin and

mucin domain-3 (TIM-3), and Programmed Cell Death 1 (PD-1) in

most cancers, especially in BLCA (Figures 1B–E). Then, the immune

cells’ infiltration analysis based on the ssGSEA algorithm was

performed. The heatmap demonstrated that MTHFD2 expression

was correlated with lots of immune cells’ infiltration in cancers.

Specifically, MTHFD2 was positively associated with most immune

cells in THCA, PAAD, LIHC, KIRP, KIRC, KICH, and BLCA,

whereas it was also negatively associated with most immune cells

in some other cancers, such as UCEC, SARC, LUSC, and LUAD

(Figure 1F). Furthermore, we noted that BLCA is one of the cancers

with the strongest association between MTHFD2 and TME.

Additionally, we noted that MTHFD2 expression was correlated

with TMB and MSI in several cancers, indicating its potential value

for predicting immunotherapy response in these cancers

(Supplementary Figures 4A, B). In summary, the expression level

of MTHFD2 was associated with immunological features in pan-

cancers, including BLCA, and could assess the prognosis of patients.
MTHFD2 upregulation indicates an
inflamed tumor microenvironment in BLCA

Cons ide r ing the a s soc i a t i on be tween MTHFD2 ,

immunoregulators, and immune cell infiltrations in pan-cancer, we

then investigated its immune-related biological functions in detail in

BLCA. The cancer–immunity cycle analysis, which can reflect the

stepwise events in anticancer immune response, was performed first.

As demonstrated in Figure 2A, the activities of most steps were

upregulated in the high-MTHFD2 group, indicating an inflamed

TME in these patients. The immune cells’ infiltration analyses based

on different algorithms, such as TIMER and MCP-counter, were

performed as well. As visualized, most immune cells especially T cells

and macrophages were highly infiltrated in the high-MTHFD2 group

(Figures 2B, C). Correlation analysis also revealed a positive

correlation between MTHFD2 expression and its effector genes

(Figure 2D). Moreover, six algorithms were used to further evaluate

the correlation between MTHFD2 and anti-tumor TIICs, including

CD8+ T cells, NK cells, Th1 cells, dendritic cells, and macrophages

(Figure 2E). These observations indicate that MTHFD2

overexpression could predict an inflamed TME in BLCA patients.
MTHFD2 could predict the efficacy of
immune checkpoint blockade in BLCA

Given the association between MTHFD2 and the tumor

immune microenvironment, we further investigated the potential
Frontiers in Immunology 05
of MTHFD2 in predicting tumor immunotherapies, such as ICB

therapy. Therefore, we explored the relationships between

MTHFD2 and several ICB response biomarkers. As shown in

Figure 3A, most well-known immune checkpoints are

significantly enriched in the high-MTHFD2 group, including

several clinically widely used ICB targets such as CD274 (PD-L1),

PDCD1 (PD-1), and CTLA-4. Moreover, lots of immunotherapy

response predicted pathways were also remarkably enriched in the

high-MTHFD2 group (Figure 3B). The correlation analysis also

showed a positive correlation between MTHFD2 expression and

immune inhibitory genes (Figure 3D). The TIS, which could predict

the efficacy of ICB, was evaluated as well, and a significant positive

correlation between TIS andMTHFD2 was discovered via Pearson’s

correlation test (Figure 3C). These results suggested that patients

with high MTHFD2 expression are apt to respond to

immunotherapies. Furthermore, considering the significant

adverse effect of hyperprogression on patients’ prognosis, we also

investigated the relationships between MTHFD2 and several

hyperprogression predictors. CDKN2A and CDKN2B, whose

amplification are adversely associated with the possibility of

hyperprogression, were observed to be significantly elevated in

the high-MTHFD2 group and showed a lower frequency of copy

number loss, suggesting a lower possibility of hyperprogression in

these patients (Figures 3E, F). However, the correlations of

MTHFD2 with genes positively associated with the possibility of

hyperprogression varied. While some genes were significantly

downregulated in the high-MTHFD2 group or showed a similar

tendency, such as MDM4 and CCND1, some other genes were

upregulated, such as DNMT3A, EGFR, FGF19, and FGF3

(Figures 3E, F). Thus, further investigations are needed.
MTHFD2 expression could precisely predict
the molecular subtypes and possible
therapeutic strategies in BLCA

Owing to the heterogeneity of BLCA and the tight associations

between molecular subtypes and patients’ prognosis and treatment

outcomes, the molecular subtypes of patients with different

MTHFD2 expression levels were analyzed based on seven

classification systems. As shown in Figure 4A, basal-like subtypes,

which are considered to be more aggressive but also apt to respond

to certain therapies such as immunotherapy and anti-EGFR

therapy, were found to be enriched in the high-MTHFD2 group.

This finding was further confirmed by the enrichment analysis of

molecular subtype-related pathways. The high-MTHFD2 group

showed significantly increased activity in pathways including

basal differentiation, EMT differentiation, immune differentiation,

myofibroblasts, interferon response, mitochondria, keratinization,

and neuroendocrine differentiation. In contrast, the low-MTHFD2

group exhibited higher activity in pathways including urothelial

differentiation, Ta pathway, and luminal differentiation (Figure 4A).

Furthermore, apart from MDA and Baylor systems, the value of

area under curve (AUC) of all other subtyping systems was larger

than 0.8, suggesting the high accuracy of MTHFD2 in predicting

molecular subtypes (Figure 4B). Similar results were validated in
frontiersin.org
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two independent cohorts (E-MTAB-432 and IMvigor210 cohorts),

further increasing the reliability of the conclusions (Supplementary

Figures 4C, D).

The association between MTHFD2 and molecular subtypes of

BLCA suggested that except for the previously mentioned

immunotherapies, MTHFD2 could have the potential to predict

the efficacy of other therapies as well. Thus, we explored the
Frontiers in Immunology 06
relationship between MTHFD2 expression and many therapeutic

effect-related biomarkers, including the mutation profile of

neoadjuvant-related molecules, several therapeutic signatures, and

targeted drug-related gene expression. The high-MTHFD2 group

showed a higher mutation frequency of several neoadjuvant

chemotherapy-related genes, especially RB1 and ERCC2

(Figures 4C, D). Moreover, the EGFR ligands and radiotherapy-
B

C

D

E

A

FIGURE 2

The correlation between MTHFD2 expression and immunological characteristics in the TCGA cohort (A) Comparison for enrichment scores of steps
involved in cancer immunity cycle between the high- and low-MTHFD2-expression groups in bladder cancer. (B, C) Comparison for infiltration level
of various immune and stromal cells using TIMER (B) and MCP-counter (C) algorithms between the high- and low-MTHFD2-expression groups in
bladder cancer. (D) The correlation analysis between MTHFD2 expression and steps of cancer immunity cycle as well as effector molecules of anti-
tumor TIICs (including CD8+T cell, macrophages, NK cell, Th1 cell, and dendritic cell). (E) The correlation between MTHFD2 expression and
infiltration level of various anti-tumor TIICs using six different algorithms (*p< 0.05, **p< 0.01, ***p< 0.001, Not sig refers to not significant, Null
means no data for analysis, Tcm refers to central memory T cell, and Tem refers to effector memory T cell).
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predicted pathways were enriched in the high-MTHFD2 group,

while the immune inhibited oncogenic pathways, whose activation

was associated with non-inflamed TME and immunotherapy

resistance (53–55), were enriched in the low-MTHFD2 group

(Figure 4E). Furthermore, the expression of lots of drug-targeted

genes was observed to be significantly higher in the high-MTHFD2

group (Figure 4F). Specifically, almost all targets of chemotherapy,

immunotherapy, and ERBB (epidermal growth factor) therapy, as
Frontiers in Immunology 07
well as some targets of anti-angiogenic therapy, such as SH2B3,

RAF1, and CSF1R, were elevated in the high-MTHFD2 group.

However, there were also some targets of anti-angiogenic therapy

found to be underexpressed in the high-MTHFD2 group

(Figure 4F). These findings suggested that neoadjuvant and

adjuvant chemotherapy, radiotherapy, immunotherapy, and

ERBB-family-based target therapy could be ideal choices for

BLCA patients with high MTHFD2 expression.
B

C

D

E F

A

FIGURE 3

MTHFD2 expression was closely correlated with biomarkers of ICB response in the TCGA cohort. (A) Comparison for expression of immune
checkpoints between the high- and low-MTHFD2-expression groups in bladder cancer. (B) Comparison for enrichment scores of immune predicted
pathways between the high- and low-MTHFD2-expression groups in bladder cancer. (C) Pearson’s correlation test between MTHFD2 expression and
T cell-inflamed scores in bladder cancer in the TCGA cohort. (D) The correlation analysis between MTHFD2 expression and enrichment scores of
immune predicted pathways as well as expression of various immune checkpoints. (E, F) Comparison for expression (E) and copy number variation
(CNV) (F) of hyper-progression-related genes between the high- and low-MTHFD2-expression groups in bladder cancer (*p< 0.05, **p< 0.01,
***p< 0.001, ns means not significant, pos means positive correlation, and neg mean negative correlation).
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Validating the role of MTHFD2 in the
GSE48075 cohort

Next, considering the possible biases of bioinformatic analysis,

we validated the findings mentioned above in an independent

external cohort (GSE48075 cohort). MTHFD2 was validated to be

positively correlated with several immune checkpoints, including

PDCD1 (PD-1), CD274 (PD-L1), and CTLA-4. Higher MTHFD2

expression tend to be accompanied by higher expression of these
Frontiers in Immunology 08
immune checkpoints (Figures 5A, B). Furthermore, the positive

correlation between MTHFD2 expression and TIS was also

confirmed via Pearson ’s correlation test (Figure 5C).

Furthermore, the enrichment scores of all immunotherapy

predicted pathways and the expression of effector genes for most

anti-tumor immune cells were elevated in patients with high

MTHFD2 expression (Figures 5D–G).

In addition, MTHFD2 was validated to have the potential to

accurately distinguish the molecular subtypes of BLCA in the
B

C D

E F

A

FIGURE 4

MTHFD2 expression was closely related to the molecular subtype and predictive biomarkers of therapeutic effects of various clinical treatment strategies of
BLCA in TCGA cohort. (A) Distribution of bladder cancer molecular subtypes calculated via multiple algorithms in patients with different MTHFD2 expression
levels. (B) Receiver operating characteristics (ROC) curve and area under the curve (AUC) for MTHFD2 in molecular subtype prediction in the TCGA cohort.
(C, D) The mutation profile of neoadjuvant-related molecules in the high- and low-MTHFD2-expression groups. (E) Comparison for enrichment scores of
different therapeutic strategies in the high- and low-MTHFD2-expression groups in bladder cancer. (F) Comparison for expression of various drug-targeted
genes in the high- and low-MTHFD2-expression groups in bladder cancer (*p< 0.05, **p< 0.01, ***p< 0.001).
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GSE48075 cohort, in terms of the basal and luminal subtypes

(Figures 6A, B). As for the relationships with therapeutic

biomarkers, the results of GSE48075 were similar with those from

the TCGA-BLCA cohort, confirming the predictive value of

MTHFD2 in the efficacy of chemotherapy, radiotherapy,

immunotherapy, and targeted therapy (Figures 6C, D).

Collectively, the association of MTHFD2 expression with TME,

molecular subtypes, and efficacy of multiple treatments was

validated in an independent external cohort.
Validating the role of MTHFD2 in
distinguishing immunophenotype and the
clinical response of ICB by
immunohistochemistry and the
IMvigor210 cohort

To further investigate the relationship between MTHFD2 and

TME, we performed immunohistochemistry staining on BLCA

s amp l e s . Th e s e s amp l e s w e r e d i v i d e d i n t o t h r e e

immunophenotypes (inflamed, excluded, and deserted) according

to a previous study (63), based on the infiltration of CD8+ T cells
Frontiers in Immunology 09
into tumors. The samples of the inflamed type also exhibited the

highest PD-L1 expression. As for MTHFD2, it was found to be most

abundant in the inflamed phenotype, but significantly lower in

excluded phenotypes and absent in deserted phenotypes

(Figure 7A). Boxplot showed the evaluated H-score of PD-L1 and

MTHFD2 in three different immune phenotypes. The H-scores of

PD-L1 and MTHFD2 were significantly lower in the deserted group

than in the inflamed group. However, unlike the H-score of

MTHFD2, the H-score of PD-L1 was observed with no significant

difference between the inflamed group and the excluded group

(Figures 7B, C). Furthermore, significant positive relationships were

observed between the positive rate of CD8+ T cells, the H-score of

PD-L1, and MTHFD2 in correlation analysis (Figures 7D–F). These

findings were further validated in the IMvigor210 cohort. The high-

MTHFD2 group had significantly higher proportion of IC 2+

(immune cells showing highest PD-L1 level), TC 2+ (tumor cells

showing highest PD-L1 level), and the inflamed phenotype

(Figure 7G). Moreover, the prognosis and response rate of anti-

PD-L1 therapy were significantly better in the high-MTHFD2

group. The patients with better clinical benefit also showed higher

MTHFD2 expression, indicating the predictive value of MTHFD2

in immune response of immunotherapy (Figures 7H–J).
B C
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FIGURE 5

Validation of the correlation between MTHFD2 expression and biomarkers of ICB response in the GSE48075 cohort (A) Comparison for expression
of immune checkpoints between the high- and low-MTHFD2-expression groups in bladder cancer. (B) The correlation between MTHFD2 expression
and immune checkpoints using Pearson’s correlation analysis. (C) Correlation between MTHFD2 expression and T cell-inflamed scores in bladder
cancer in the GSE48075 cohort. (D) Comparison for enrichment scores of immune predicted pathways between the high- and low-MTHFD2-
expression groups in bladder cancer. (E) The correlation analysis between MTHFD2 expression and enrichment scores of immune predicted
pathways. (F) Comparison for expression of effector genes derived from anti-tumor cells in the high- and low-MTHFD2-expression groups. (G) The
correlation analysis between MTHFD2 expression and expression of effector genes derived from anti-tumor cells (*p< 0.05, **p< 0.01, ***p< 0.001,
ns means not significant, pos means positive correlation, and neg mean negative correlation).
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In conclusion, overexpression of MTHFD2 was closely related

to an inflamed TME and showed robust predictive value in

predicting immunotherapy response.
Discussion

MTHFD2, a critical enzyme of folate metabolism, was found to

be associated with various malignant features and patients’

prognosis in several cancers (19–24). Recently, some studies

revealed that it was also involved in the regulation of immune

cells (25, 26). However, its detailed roles in cancer immunity and its

relationship to cancer immunotherapy remain obscure. In this

study, we briefly assessed the prognostic value and immunological

function of MTHFD2 in pan-carcinoma, and further investigated its

relationship with TME, molecular subtypes, and immunotherapy

response in BLCA in detail.
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The pan-cancer co-expression analysis revealed that MTHFD2

was positively correlated with most immunoregulators, including

immune checkpoints, in most cancers. These findings confirmed

the wide involvement of MTHFD2 in cancer immunity and its

association with some immune checkpoints (26). Furthermore,

MTHFD2 was observed to be positively correlated with

infiltrations of several immune cells in various cancers, especially

the activated CD4+ T cell and type 2 T helper cell, which were

significant in almost all cancers, suggesting that MTHFD2 might be

related to the inflamed TME. This result is in line with a prior study

demonstrating that MTHFD2 plays a critical role in maintaining

the de novo purine synthesis of activated CD4+ T cells (25). Notably,

THCA, LIHC, KIRP, KIRC, KICH, and BLCA reached significance

in almost all co-expression analysis and immune cell infiltration

analysis, indicating that these cancers may be a suitable candidate

for MTHFD2-based therapy or predictive model. In prognostic

value analysis, we discovered that high MTHFD2 expression was a
B

C D

A

FIGURE 6

MTHFD2 expression was closely related to the molecular subtype and response for various clinical treatment strategies of bladder cancer in the
GSE48075 cohort. (A) Distribution of bladder cancer molecular subtypes calculated via multiple algorithms in patients with different MTHFD2
expression levels. (B) Receiver operating characteristics (ROC) curve and area under curve (AUC) for MTHFD2 in molecular subtype prediction in the
GSE48075 cohort. (C) Comparison for enrichment scores of various therapeutic effects predictive signature in the high- and low-MTHFD2-
expression groups in bladder cancer. (D) Comparison for expression of various drug-targeted genes in the high- and low-MTHFD2-expression
groups in bladder cancer (*p< 0.05, **p< 0.01, ***p< 0.001).
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risky factor for patients’ survival in many cancer types, which is in

line with previous studies and the theory that high MTHFD2

expression can help cancer cells meet the high biosynthetic

requirement (19–24).

Then, in detail, we explored the immunological functions of

MTHFD2 in BLCA. The cancer–immunity cycle analysis, which

can reflect the immune system regulation step by step, revealed that
Frontiers in Immunology 11
high MTHFD2 was correlated with higher score of most steps in

immune response, including T-cell recruiting, NK cell recruiting,

and killing of cancer cells. Consistently, the infiltration of several

typical anti-tumor TIICs, including CD8+ T cell (64), NK cell (65),

type 1 T helper cell (66), dendritic cell (67), and macrophage (68),

was significantly higher in patients with high MTHFD2 expression.

The expression of effector genes of these anti-tumor TIICs was also
B C
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FIGURE 7

Overexpression of MTHFD2 represents an inflamed tumor microenvironment, indicating the favorable response of immunotherapy. (A) The
immunochemistry staining of CD8, PD-L1, and MTHFD2 on BLCA samples with different immunophenotypes. (B, C) Comparison for the H-score of
PD-L1 and MTHFD2 in different immune phenotypes based on immunohistochemistry. (D) The correlation between the CD8-positive rate and H-
score of PD-L1. (E) The correlation between the CD8-positive rate and H-score of MTHFD2. (F) The correlation between the H-score of PD-L1 and
MTHFD2. (G) The proportions of immune (left) and tumor (middle) cells with different PD-L1 expression levels and the fraction of various
immunophenotypes (right) in the high- and low-MTHFD2-expression groups based on the IMvigor210 cohort. (H) Survival curves of patients
receiving immunotherapy (Atezolizumab/anti-PD-L1) treatment based on MTHFD2 expression. (I) Comparison for the response rate of
immunotherapy (Atezolizumab/anti-PD-L1) treatment between the high- and low-MTHFD2-expression groups. (J) The different expression level of
MTHFD2 between people with different clinical benefit (*p< 0.05, **p< 0.01, ns refers to not significant, TC refers to tumor cells, IC refers to
immune cells).
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positively related with MTHFD2 expression. Moreover, similar

results were observed in validation analysis performed on the

external cohort GSE48075. Combining with these findings, we

conclude that the high expression of MTHFD2 can predict an

inflamed TME in BLCA.

As previous studies illustrated, tumors with an inflamed TME

have a higher possibility to respond to immunotherapy, including

ICB therapy (69–71). Thus, we subsequently assessed the

association between MTHFD2 and immunotherapy efficacy. The

results illustrated that MTHFD2 was positively correlated with most

immune checkpoints and immunotherapy response predictive

pathways, as well as the TIS, which can predict the effectiveness

of ICB (64). These findings were validated in the GSE48075 cohort

as well. Furthermore, the MTHFD2 expression was found to be

related to the expression level and copy number variance of several

hyperprogression predictive genes, suggesting its potential to

predict the hyperprogression in BLCA patients treated with ICB

(63). Collectively, our results illustrated that the high expression of

MTHFD2 may be a predictor of good outcomes of immunotherapy

in BLCA patients.

Considering the predictive value of molecular subtype for

patients’ prognosis and treatment responses, we then evaluated

the association of MTHFD2 with molecular subtypes based on

different classification systems. Patients with high MTHFD2

expression showed significantly higher proportion of the basal-

like subtype, which are considered to be more aggressive but also

respond better to some treatments, such as chemotherapy, ICB

therapy, and EGFR-based targeted therapy (14, 31, 58–60, 62, 72).

The basal-type associated pathways were enriched in the high-

MTHFD2 group as well. Additionally, the AUC value of receiver

operating characteristics (ROCs) suggested that the accuracy of

MTHFD2 in predicting molecular subtypes is pretty high, further

enhancing its potential value in clinical practice. The relationships

of MTHFD2 with other biomarkers that can predict the therapeutic

effects were analyzed too. Consistent with molecular subtype

analysis, the high-MTHFD2 group showed higher mutation

frequency of chemotherapy response predictive genes, higher

enrichment of radiotherapy predictive pathways and EGFR

ligands, lower enrichment of immunotherapy resistance predictive

pathways, and higher expression of many drug-targeted genes.

These findings suggested that MTHFD2 can not only predict the

immunotherapy efficacy, but also have the potential to predict the

efficacy of many other anti-cancer treatments, increasing its value in

clinical practice again. In addition, similar results in the validation

group also enhance the certainty of these conclusions.

Finally, we verified the association of MTHFD2 with TME

and immunotherapy efficacy by immunohistochemistry and

RNA-seq analysis in the IMvigor210 cohort. According to the

IHC assay and analyses results of the IMvigor210 cohort, higher

MTHFD2 expression was found to be related with higher

proportion of inflamed immune phenotype, which indicates a

high infiltration degree of TIICs and a higher rate of ICB

response (73). Consistently, the PD-L1 expression was elevated

in patients with high MTHFD2 expression as well. Furthermore,

the clinical data of the IMvigor210 cohort confirmed the

correlation between MTHFD2 and ICB therapy efficacy directly.
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Patients in the high-MTHFD2 group showed a higher proportion

to respond to anti-PD-L1 therapy and benefited more from it. It

was noteworthy that, in the IMvigor210 cohort, the survival

length of the high-MTHFD2 group was also remarkably longer

than that of the low-MTHFD2 group, as this was contrary to the

prognosis data of the TCGA database, which correlated high

MTHFD2 with shorter OS and PFS. Considering that all patients

of the IMvigor210 cohort received atezolizumab therapy (1,200

mg, every 3 weeks), we thought that this was due to the

significant survival benefits from ICB therapy in patients with

high MTHFD2 expression.

Collectively, different from previous studies that mainly

focused on its roles in cancer cells, such as promoting cancer

cell proliferation and participating in transcriptional regulation

and metabolic reprogramming, regarding MTHFD2 as a novel

promising target for cancer therapy (23, 24, 74), our study

concentrated on its correlation with cancer immunity and

revealed that MTHFD2 could be a robust biomarker for

immunotherapy outcomes in BLCA. Given that the inhibitors

of MTHFD2 are still under development, immunotherapy

might be an alternative option for patients with high

MTHFD2 expression.

However, there are several limitations in our study as well. First

of all, although external cohorts were adopted to make validation,

our conclusion is still largely based on bioinformatic analysis of data

from public databases, with limited exploration for specific

mechanisms. Therefore, further investigation focusing on the

detailed processes of MTHFD2 in regulating cancer immunity is

needed in the future. Secondly, the patient samples from Shanghai

Outdo Biotech Company lacked corresponding follow-up

information and immunotherapy efficacy data; hence, the efficacy

data of ICB therapy in the IMvigor210 cohort, which could be

influenced by random effects and biases, have not been

independently verified. Thus, further clinical research is clearly

necessary. Lastly, although we have verified the conclusions of the

public databases by immunohistochemistry to some extent, more

experiments are still needed to reduce the inevitable biases brought

by bioinformatics analysis.
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