
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ming Yi,
Zhejiang University, China

REVIEWED BY

Siqi Chen,
Washington University in St. Louis,
United States
Sandra Cascio,
University of Pittsburgh, United States

*CORRESPONDENCE

David S. P. Tan

david_sp_tan@nuhs.edu.sg

RECEIVED 27 October 2023
ACCEPTED 05 December 2023

PUBLISHED 18 December 2023

CITATION

Blanc-Durand F, Clemence Wei Xian L and
Tan DSP (2023) Targeting the immune
microenvironment for ovarian cancer therapy.
Front. Immunol. 14:1328651.
doi: 10.3389/fimmu.2023.1328651

COPYRIGHT

© 2023 Blanc-Durand, Clemence Wei Xian and
Tan. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 18 December 2023

DOI 10.3389/fimmu.2023.1328651
Targeting the immune
microenvironment for
ovarian cancer therapy
Felix Blanc-Durand1,2, Lai Clemence Wei Xian1,2

and David S. P. Tan1,3*

1Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS),
National University Hospital, Singapore, Singapore, 2Yong Loo Lin School of Medicine and
Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore,
3Yong Loo Lin School of Medicine, National University Centre for Cancer Research (N2CR) and
Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
Ovarian cancer (OC) is an aggressive malignancy characterized by a complex

immunosuppressive tumor microenvironment (TME). Immune checkpoint

inhibitors have emerged as a breakthrough in cancer therapy by reactivating

the antitumor immune response suppressed by tumor cells. However, in the

case of OC, these inhibitors have failed to demonstrate significant

improvements in patient outcomes, and existing biomarkers have not yet

identified promising subgroups. Consequently, there remains a pressing

need to understand the interplay between OC tumor cells and their

surrounding microenvironment to develop effective immunotherapeutic

approaches. This review aims to provide an overview of the OC TME and

explore its potential as a therapeutic strategy. Tumor-infiltrating lymphocytes

(TILs) are major actors in OC TME. Evidence has been accumulating

regarding the spontaneous TILS response against OC antigens. Activated

T-helpers secrete a wide range of inflammatory cytokines with a supportive

action on cytotoxic T-cells. Simultaneously, mature B-cells are recruited and

play a significant antitumor role through opsonization of target antigens and

T-cell recruitment. Macrophages also form an important subset of innate

immunity (M1-macrophages) while participating in the immune-stimulation

context. Finally, OC has shown to engage a significant natural-killer-cells

immune response, exerting direct cytotoxicity without prior sensitization.

Despite this initial cytotoxicity, OC cells develop various strategies to induce

an immune-tolerant state. To this end, multiple immunosuppressive

molecules are secreted to impair cytotoxic cells, recruit regulatory cells,

alter antigen presentation, and effectively evade immune response.

Consequently, OC TME is predominantly infiltrated by immunosuppressive

cells such as FOXP3+ regulatory T-cells, M2-polarized macrophages and

myeloid-derived suppressor cells. Despite this strong immunosuppressive

state, PD-1/PD-L1 inhibitors have failed to improve outcomes. Beyond PD-1/

PD-L1, OC expresses multiple other immune checkpoints that contribute to

immune evasion, and each representing potential immune targets. Novel

immunotherapies are attempting to overcome the immunosuppressive state

and induce specific immune responses using antibodies adoptive cell therapy

or vaccines. Overall, the OC TME presents both opportunities and obstacles.
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Immunotherapeutic approaches continue to show promise, and next-

generation inhibitors offer exciting opportunities. However, tailoring

therapies to individual immune characteristics will be critical for the

success of these treatments.
KEYWORDS
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1 Introduction

Ovarian cancer (OC) is a leading cause of women mortality by

cancer, with more than 200,000 death annually (1). Significant

progress was made this last decade regarding the molecular

characterization of OC, particularly the discovery of recurrent

alterations in the homologous recombination (HR) pathway, such

as BRCA1 and 2 mutations, among others. OC has served as a

model demonstrating that inhibitors of the poly-ADP ribose

polymerase (PARPi) are synthetically lethal in case of deficient

HR (HRD) leading to a tremendous improvement in progression-

free and overall survival (2–6). Approximately 40% of newly

diagnosed OC cases are estimated to be, with half of them having

BRCA mutations, making them potential beneficiaries of

maintenance PARPi after a positive response to platinum-based

chemotherapy (7, 8). However, despite these advancements, most

HRD patients will eventually recur and effective strategies in the

relapse setting are still lacking. Furthermore, for the majority of OC

patients not classified as HRD, and those with no objective response

to platinum, no targeted therapy has demonstrated a survival

benefit highlighting the need for new effective treatment strategies.

Themajority of OC cases are diagnosed at advanced stages (stage

III/IV) and typically present with pelvic masses, peritoneal nodules

and, less frequently, distant metastases (lymph nodes, lung and liver)

(9). Classically, OC will spread and disseminates via malignant

ascites composed of free-floating tumors cells or spheroids

alongside with a complex ecosystem (10). The tumor cells,

together with their surrounding non-malignant cells, extracellular

matrix and various signaling molecules, create a unique tumor

microenvironment (TME) that promotes cancer progression.

Over the past twenty years, targeting TME has become a key

therapeutic strategy in solid tumors (11). The first successes

involved Programmed-death 1(PD-1)/Programmed-Death ligand

1 (PD-L1) and cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) pathways which are crucial mediators of cancer cells

evasion from antitumoral T-cell-mediated cytotoxicity (12).

Consequently, immune-checkpoint inhibitors (ICIs) targeting PD-

1/PD-L1, and CTLA-4 were the first to be developed, demonstrating

unprecedented benefits in selected patients and reshaping the

therapeutic landscape for numerous cancers (13). Naturally, these
02
ICIs were also tested on OC patients but ICIs as monotherapy or

combined with chemotherapy have not been associated with any

statistical significant survival benefits in phase III trials (14–17). It is

suspected that the strongly immunosuppressive context and the

number of actors involved in the OC TME are responsible for these

disappointing results. Current data suggests that targeting the OC

TME looks like an elusive goal, but it is also likely that focusing on

T-cell activity and PD-1/PD-L1 pathway is too narrow in the

context of the OC TME, and only an extensive characterization

and more comprehensive understanding of the complex interaction

between OC tumor cells and its microenvironment might change

this paradigm.
2 Tumor-infiltrating lymphocytes in
OC microenvironment

2.1 T-cells

Intraepithelial cytotoxic T-cells (usually defined as CD8+)

recognize cancer-specific antigens carried by presenting cells and

generate local inflammation via cytokine release, particularly

interferon-gamma (IFNg) and tumor necrosis factor alpha

(TNFa) and recruitment of secondary immune actors that lead to

the elimination of tumor cells (Figure 1). Therefore, they are a

critical determinant of antitumor adaptative immunity. In OC,

similar to many other solid tumors, a high infiltration of

cytotoxic TILs appears to be a positive prognosis biomarker (18,

19). Importantly, this prognostic impact is particularly associated

with TILs’ within the tumor epithelium rather than in stromal areas

(20). However, both the abundance of CD8+ T-cell in primary

tumors or metastatic localizations retain prognostic value (20).

Among cytotoxic T-cells, it is well-established that several

subpopulations coexist, exerting a broad range of inflammatory

effects and supportive functions. CD44 and CD69 are typically

associated with the initial activation of CD8+ T-cells. Subsequently,

effector T-cells tend to express at their surface, the CD103 marker, a

component of the alpha E/beta 7 integrin that binds to E-cadherin

on epithelial cells, the killer cell lectin-like receptor G1 (KLRG1)

and IL-2 receptor subunit-a (CD25) while downregulating
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L-selectin (CD62L), IL-7 receptor subunit-a (CD127) and CD27

(21, 22). CD103+ TILS have been linked to improved survival rates

in OC patients (23, 24). Additionally, alternative effector CD8+ T-

cells subsets (Tc2, Tc9 and Tc17 cells) display complementary

inflammatory effects and mediate CD4+ T-helpers through

specific interleukins secretion, particularly IL-4, IL-9 and IL-17,

although their identification in vivo remains challenging (25–27).

CD4+ T-helpers (Th) are activated by antigen-presenting cells

and have dualistic effects. On one hand, they provide cytokine

support (Interleukine-2, IL-16 and IFNg) to effectors cells like CD8+

T-cells and macrophages and trigger the recruitment of dendritic

cells, consequently enhancing the duration of cytotoxic response

(Th1 cells). Thus, most reports have observed a survival benefit

associated with the number of CD4+ TILs in OC TME (28, 29). On

the other hand, the Th2 profile drives the immunosuppressive

context by the secretion of IL-4, 5, 6 and 10 and may explain why

the prognostic value of CD4+ cells is inconsistent (30).

Based on the TCGA dataset and then confirmed on

independent cohorts, HRD tumors (associated with a BRCA1/2

mutation or not) exhibit a higher neoantigen load compared to HR

proficient tumors (31). In addition, BRCA1 mutations have been

associated with a modest increase in TILs infiltration (32). However,

this was not the case for BRCA2 mutations (33).

Regulatory T-cells (Tregs) expressing FOXP3 transcription

factors, are central actors in immune-regulation to avoid self-

tissue toxicity (autoimmunity) but have a detrimental effect on

the antitumor immune response (34). They can arise from naïve

CD4+ exposed locally to transforming growth factor beta (TGFb)
and express elevated levels of CD25, or develop in the thymus and

be recruited in the tumor TME (natural Tregs) (35). Tegs isolated

from OC are highly activated as they tend to express multiple

immunomodulatory molecules including PD-1, 4-1BB, TIGIT and

ICOS and secrete important immunosuppressive factors such as IL-

10, TGFb and various granzymes (granzyme B, and perforins) that
Frontiers in Immunology 03
directly target other immune cells (36, 37). Indoleamine 2,3-

dioxygenase (IDO1), vascular endothelial growth factor (VEGF),

and B7-H4 are highly expressed in OC TME and have significant

negative impact on effector T-cell proliferation while favoring Tregs

proliferation and contributing to OC immune evasion (Figure 1)

(38, 39). Moreover, a Treg subpopulation expressing the TNF

receptor 1 (TNFR2), particularly immunosuppressive, is highly

present in malignant ascites and could represent another factor

driving OC dissemination (40).

Overall, increased Tregs infiltration (usually defined as CD4+/

FOXP3+ phenotype) is correlated with immune tolerance and poor

prognosis, including in OC (41–44). Consistently, a higher CD8/

FOXP3 ratio appears to be correlated with improved outcomes (45,

46). Similarly, based on gene expression profiles, large retrospective

studies have confirmed the large variability in TILs composition

and the prognostic implications of specific immune infiltrates (47,

48). However, CD8+ T cells and Tregs were not found to be related

with patients’ prognosis highlighting the probable coexistence of

different functional subtypes not yet identified by this type of

analyses (48).

Black plain arrows depict a secretion. Dotted stem arrows

represent a inhibitory or a stimulatory signal. Tapered arrows

represent a cytolysis effect.
2.2 B-cells

B-cells are classically known for their role in the antibody response

against foreign antigens. As such, tumor-infiltrating B-cells stimulate

antitumor immunity through opsonization of target antigens,

complement activation and T-cell recruitment (49). However, recent

studies have shown that they can also modulate immunity via the

secretion of cytokine or other immunomodulatory molecules and

through direct cell-cell interactions (50). Multiple B-cells subsets have
FIGURE 1

T cell immune response in OC microenvironnement.
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been identified so far, including memory B-cells, antibody secreting B-

cells (plasma cells), germinal center B-cells, regulatory B-cells (Bregs),

etc. each with distinct surface markers. All of these subsets have been

identified in OC, along with evidence of autoantibody response against

OC antigens, such as P53 and NY-ESO-1 highlighting the importance

of these immune cells in OC (51, 52).

Bregs are important immunosuppressive cells in the OC TME;

they produce IL-10 and TGFb, express several immune checkpoints

at their surface (PD1, PDL1, OX40 etc) to impair CD4+ and CD8+ T

cell proliferation and can promote tumor growth and progression

via IL-35 signaling (53–55).

Mature B-cells (CD20+) and antibody-secreting B-cells

(CD19+) are reported to be associated with favorable outcomes in

OC (56–58). Furthermore, tumor infiltration by plasma cells can

participate in the recruitment of CD8+ and CD4+ T-cell and

follicular dendritic cells in organized lymphoid aggregates inside

tumor stroma (Figure 2), resembling lymph nodes architecture and

called tertiary lymphoid structures (TLS). TLS are documented in

around 30% of OC but tend to be associated with improved overall

prognosis (59). Similarly, the coexistence of a high density of CD20+

B-cells with high levels of CD8+ and CD4+ T-cell is associated with

favorable outcomes (57).

Conversely, some studies have suggested that high B-cell

infiltration is associated with poor prognosis (60, 61). These

discrepancies suggest that both the assessment of the absolute

abundance of B-cells and the evaluation of the relative infiltration

by different B-cells subtypes are necessary when addressing their

clinical relevance. In addition, while the understanding of the

importance of B cells in the antitumor immune response is

rapidly growing, there is a clear need for better markers to

precisely characterize B-cell infiltration.
2.3 NK cells

NK lymphocytes are a part of innate immunity and they exert

direct cell toxicity using perforin and granzymes. They also produce

various chemokines and inflammatory factors (IFNg, TNFa, CCL5,
XCL1, XCL2) against tumor cells without prior sensitization, mostly
Frontiers in Immunology 04
in an antigen-independent manner (62). NK activity is tightly

regulated by the balance between inhibitory and stimulatory

signals. They are classically activated by CD16, NKp30 and

NKG2D, while inhibited by MHC proteins present at the surface

of healthy cells (63). Additionally, they can influence B-cell and T-

cell shaping as well as the selection of immature dendritic cells (DC)

depending on the antigenic signal (64–66). Interestingly, the OC

TME has shown to contain multiple NK inhibitory signals such as

macrophage migration inhibitory factor (MIF) responsible for

inhibiting NKG2D signal and B7-H6 ligand, which contributes to

the downregulation of NKp30 signaling (67, 68).

In OC, NK cells often co-infiltrate tumor stroma along with

CD8+ T-cells and are observed in high numbers in malignant ascites

(24). Consequently, higher NK infiltration (CD56+) appears as a

positive predictive biomarker (69). Conversely, some authors have

observed the opposite effect when considering different markers for

NK cell detection. For instance, higher CD16+ cells infiltration

appears to be associated with poorer prognosis (61). Taken

together, NK cells seem to be crucial components of the OC

microenvironment. However, the lack of robust biomarkers to

assess their relative abundance and potential impairment is a

major limitation to existing data.
3 Myeloid precursors, dendritic cells
and macrophages

3.1 Tumor-associated macrophages

Macrophages are a key component of innate immune response

in humans and the most abundant immune cell within the TME

(70). Macrophages residing in the TME are called TAMs and can

originate from circulating monocytes recruited and matured locally,

or from the differentiation of tissue-resident macrophages (71).

They are programmed to participate in antitumoral immunity as

M1-polarized macrophages, characterized by their phagocytic

functions, defined as CD63+CD86+, and stimulated by IFNg and

granulocyte/macrophage colony-stimulation factor (GM-CSF).

Their inflammatory activity involves various inflammatory
FIGURE 2

Schematic cellular composition of tertiary lymphoid structure in OC stroma.
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molecules such as IL-1, IL-12 and IL-23, TNFa, and chemokine

ligands (CXCL5, CXCL9 and CXCL12) as well as tumor-specific

antigen presentation via major histocompatibility complex

molecules (MHC class 1 and 2) (72, 73). In the context of OC,

high M1-TAMs infiltration (along with a high M1/M2 ratio)

constitute a good prognostic biomarker (74–76)

On the other hand, it has been noted that M1-macrophages

display strong plasticity and can transform into immune-

suppressive protumoral immune cells as M2-polarized

macrophages, under stimulation by prostaglandin E2 (PGE2), IL-

4, IL-10 and IL-13 (77, 78). M2-macrophages express high levels of

scavenger receptor class B (CD163) and secrete a variety of

immunosuppressive molecules, such as IL-10, IL-13, TGFb,
CCL17, CCL22 and CCL24, which participate in monocytes

differentiation to M2-macrophages (79, 80). They effectively

modulate effector T-cell proliferation [through the expression of

PD-L1 and CTLA4 receptors and arginase-1 (ARG1) activity] and

enhance Tregs recruitment (mediated by CCL22) (81, 82). Aside

from immunosuppression, M2 TAMs are involved in a wide range

of actions including angiogenesis (VEGF secretion), TME

remodeling and extracellular matrix degradation, adipocytes

interaction and chemoresistance, all of which promote tumor

progression and dissemination (83–88). In OC, M2-like TAMs

play a role in the formation of spheroids during peritoneal

dissemination via the secretion of epidermal growth (EGF) and

VEGF and the absence of M2-like TAMs (as well as EGFR-

blockage) seems to prevent metastatic dissemination in mouse

models (Figure 3) (89, 90). Across various solid tumors, including

ovarian cancer, a higher M2/M1-like ratio have shown to be

correlated with advanced stage, high histologic grade,

lymphovascular invasion and poorer outcomes (91, 92).

M2-like TAMs are the most represented immune cell in OC

TME and play a pivotal role in OC carcinogenesis. Altogether, the

interplay between OC and macrophages, and the subsequent
Frontiers in Immunology 05
balance between M1-inflammed macrophages versus M2-

immunosuppressive cells, is likely critically important in the

natural history of ovarian cancer.
3.2 Dendritic cells

Dendritic cells mainly home into lymph nodes or TLS and act as

the most potent antigen-presenting cells. After capturing antigens,

DCs mature into active DCs to present these foreign antigens on

major histocompatibility complex, MHC-I and MHC-II,

stimulating effector T-cells while providing inflammatory

cytokines support (favoring Th1 immunity and cytotoxic T-cells

proliferation) (93, 94). The abundance of mature DC (CD103+)

appears to be correlated with the density of their secreted ligands

such as CXCL9, CXCL10 and lysosomal-associated membrane

protein 3 (DC-LAMP) and is associated with improved outcomes

in OC (95–97). In OC, the abundance of DC-LAMP+ cells appears

to be robustly associated with effective antitumor T-cell activity and

better outcomes (96).

Nonetheless, in OC TME, tumor cells have shown to subvert

normal physiological activity of DCs into an immature or an

immunosuppressive phenotype, inhibiting T-cell activity instead

of enhancing it. A subset of DC called plasmacytoid DCs (pDCs) is

generally associated with inflammatory impairment. The

immunosuppressive microenvironment, comprising CXL12,

TGFb, IL-10, VEGF, and IDO1, secreted by tumor cells

(part icular ly in mal ignant asci tes) , Tregs and other

immunosuppressive cells, drives the proliferation of immature

and pDCS (98–100). In OC, immature DCs can secrete IL-6, IL-

10, IDO1, ICOS-L and TGFb among others, express PD-L1 and B7-

H4 and thus, effectively disrupt the normal maturation of myeloid

precursors, actively suppress T-cell responses, expand potent Tregs

and consequently significantly weaken antitumor immunity
FIGURE 3

Myeloid cell immune response in OC microenvironnement.
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(Figure 3) (101–105). In addition, pDCs are responsible for

stimulating angiogenesis by the production of IL-8 and TNFa
(98). Overall, most studies have revealed that the presence of

pDCs correlates with low TILs infiltration, neoangiogenesis and,

herein, is associated with poor prognosis (106, 107).

Therefore, the OC TME appears to profoundly alter DCs

functions from potent inflammatory actors into central

immunosuppressive mediators, fostering effective immune evasion

and carcinogenic progression. The pivotal immunosuppressive role

of DCs in the TME has led to considerable efforts in the

development of DC-based vaccines intended to restore antigen-

presenting capacity and improve antitumor immunity (108).
3.3 Myeloid-derived suppressor cells

Myeloid derived suppressor cells (MDSCs) are immature

progenitors to myeloid cells such as dendritic cells and

macrophages and they are stimulated by tumor cells to promote

tumor growth and immunosuppression, particularly via inhibition

of T-cells (109). The MDSCs are major producers of IL-10 in the

TME, as well as a vast range of inflammatory mediators such as

ARG1, nitric oxide (NO), reactive-oxygen species (ROS), TGFb and

IDO1, reinforcing their pivotal role in immune tolerance (110–112).

In addition multiple factors highly expressed in the OC TME, have

been shown to enhance MDSCs recruitment, such as

cyclooxygenase-2 (COX2), prostaglandins, GM-CSF, and VEGF

(Figure 3) (113–115). Other factors in the TME also tend to

activate MDSCs, including IFNg, IL-4 and TGFb (111, 116, 117).

Active MDSCs inhibit effector CD4+ and CD8+ T-cells and

attenuate NK-mediated cytotoxicity while also interfering with their

migration capacity (118). Interestingly, OC favors their recruitment

via inflammatory mediators like PGE2 which has been shown to

induce the expression of PD-L1, CXCR4 and its ligand CXCL12

promoting angiogenesis, MDSCs accumulation and Tregs

recruitment (119–121). Consistently, the OC TME contains high

levels of tumor-infiltrating MDSCs, and an elevated number of

MDSCs is associated with advanced stages, high-grade tumors, and

poor prognosis (120, 122–124).

Nonetheless, the lack of specific markers has hampered their

precise characterization and the understanding of their impact

on immunosuppression

Black plain arrows depict a secretion. Dotted stem arrows

represent a inhibitory or a stimulatory signal. Tapered arrows

represent a cytolysis effect.
4 Compositional heterogeneity within
the OC TME

The understanding of the composition and cross-talk between

TME components remain critical in decoding the complex

workings of the TME. Conventional bulk transcriptome analysis

has made substantial contributions to our comprehension of the

TME components. Bioinformatic deconvolution methods, such as

CIBERSORTx and xCell, enable the inference of multiple cell types
Frontiers in Immunology 06
from bulk RNA-seq data, thus unveiling the heterogeneity of the

TME. These methods employ predetermined gene signatures that

represent each cell type, providing a general estimate of cell type

abundance based on bulk data (125, 126). Immune deconvolution

of TCGA data defined three immune subtypes: immune-activated,

immune-suppressed and immune-desert, characterized by differing

abundances of CD8+ T cells, M1 and M2 macrophages, and

exhibiting distinct survival trends (127). Notably, neutrophil

infiltration was associated with poor survival outcomes in only

two out of the four molecular subtypes identified in HGSOC (128),

underscoring the necessity to understand the tumor context and its

surrounding components in order to elucidate the various immune-

related influences on survival.

The emergence of single-cell RNA sequencing (scRNA-seq)

technology has empowered us to explore the transcriptomic

diversity of tumors and microenvironment components with

unprecedented resolution (129). By incorporating unique

molecular identifiers (UMIs) in droplet-based protocols, scRNA-

seq allows the simultaneous analysis of thousands of individual cells

from a single biopsy. This facilitates the detection of small cell

populations that may hold prognostic significance. Several scRNA-

seq studies have characterized components of OC TME, revealing

extensive subpopulations of tumor, stromal and immune cells. For

instance, scRNA-seq profiling of 12 HGSOC biopsies obtained from

various sites (ovarian, peritoneal and omentum) revealed the

existence of 32 stromal subclusters. Among these, distinct

functional phenotypes of mesothelial cells, endothelial cells and

fibroblasts were identified, with several showing correlation with

poor survival. In another study focused on the landscape of

infiltrating T cells in seven cases of HGSOC, 22 subclusters of T

cells were detected, comprising 7 clusters of CD4+ and 15 clusters of

CD8+ cells, each characterized by their unique signature genes

(130). This discovery underscores the inherent functional

differences within the T cell compartment.

Significantly, distinct TME niches can coexist within the same

patient. Profiling OC at different tumor sites has revealed

compositionally diverse TMEs within individual patients. In a

study involving multi-site biopsies from 42 HGSOC patients.

Comparative analysis revealed an enrichment of dysfunctional T

cell in adnexal sites compared to non-adnexal sites (131). Similarly,

the myeloid and DCs compartment exhibited significant

compositional variations between solid tumor foci and ascites,

both within and among patients. These findings illustrate the

existence of site-specific immunophenotypes, that may impact the

response to current treatment modalities. Differences in immune

context across various tumor sites may thus contribute to the

limited efficacy of current immunotherapy regimens. Approaches

potentially effective for ovarian tumors may not necessarily apply as

effectively to omental localizations and vice versa.
5 Spatial influences in TME

In addition to compositional differences in the TME, the

classification of ovarian tumors into “immune-hot”, “immune-

desert” or “immune-excluded” categories can be stratified based
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on the histological localization of CD8+ T cells. “Immune-hot”

tumors are characterized by the presence and high density of CD8+

T cells within the tumor bed. “Immune-desert” tumors are lack

CD8+ T cells in both the tumor bed and the tumor edges. Lastly,

“Immune-excluded” tumors are defined by the retention of CD8+ T

cells at the tumor edges without entering the tumor islets. Similarly,

considering stromal CAFs known to regulate tumor immunity, the

spatial positioning of CAFs also holds significance in mediating

immunosuppression in cancer. In lung cancer, the histological

presentation of alpha-smooth muscle actin (aSMA) CAFs lining

tumor aggregates instead of being spread across the stroma is

associated with decreased T cell infiltration into tumor nests,

indicating a more “immune-excluded” phenotype. These

observation underscore the importance of cell localization in

mediating different states of the TME (132). Indeed, mounting

evidence across various cancer types suggests that the spatial

positioning of the cellular components within the TME, in

relation to tumor cells, immune compartments, and vasculature,

plays a crucial role in regulating anti- or pro-tumoral responses and

understanding intricate intercellular networks (133–135).

Our current understanding of the OC TME has been primarily

shaped by traditional methods of immune deconvolution, such as

immunohistochemistry (IHC), and hematoxylin and eosin (H&E)

tissue staining. However, these low-content methods have

limitations in their ability to comprehensively unravel the spatial

architecture of the TME, which hinders the discovery of novel

distributions of cell populations. Advanced spatial techniques

include transcriptomic-based approaches such as Nanostring

GeoMx (136) and 10X Visium, and protein-based methods,

including OPAL-based multiplexed fluorescent imaging (137) and

imaging mass cytometry (138). A key advantage of these techniques

allows for the detection of multiple genes or proteins of interest

within the spatial architecture, which were restricted in

conventional IHC or in-situ hybridization transcriptomic

methods. Table 1 highlights some of these spatial platforms

in research.

These techniques are conducted on fresh frozen or FFPE tissues,

preserving the tissue architecture and cellular morphology. This

allows for information to be obtained from intact archival tissue in

the original physiological context. The simultaneous detection of

multiple genes or proteins in a single-tissue section enables the in-

depth exploration of the biology of relevant cell types and their

phenotypes within the TME, reaching unprecedented levels of detail

(146). For example, application of imaging mass cytometry (IMC)

on HGSOC tissues, allowed for the detection of 21 proteins of

interest simultaneously in a single tissue section enabling profound

levels of cell phenotyping, and capable of distinguishing functional

differences within the same cell type, such as the detection of M1-

from M2-polarized macrophages (138). The greater number of

targets detected generally unveils the TME composition beyond

the capabilities of traditional IHC modalities which detects only one

single marker in a tissue sample. In addition, the preservation of

spatial information facilitates the identification of unique spatial

patterns of immune cells within the TME. It is established that cells

closely clustered in proximity are likely to engage in stronger and

more frequent interactions, potentially leading to functional
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remodeling of the TME and influencing treatment responses.

These spatial patterns enable the identification of specific cellular

neighborhoods and cell-cell crosstalk with distinct anti-tumor

characteristics. For instance, multiplexed imaging analysis of

HGSOC tissues revealed a prognostically relevant proliferative

Ki67+ tumor cell population associated with enhanced spatial

tumor-immune interactions involving cytotoxic and helper T cells

in BRCA-mutated tumors, correlating with improved survival.

Interestingly, the prognostic role of CD8+ T cells was conveyed

only by their spatial arrangement near Ki67+ tumor cells rather than

their relative abundance (147). In the TOPACIO trial (148) where

OC patients received a PARP inhibitor (niraparib) combined with

an anti-PD-1 antibody (pembrolizumab), spatial analysis of TME

cellular neighborhoods revealed spatial clustering of exhausted

CD8+ T cells with PDL1+ macrophages as a central factor in

driving response towards PD1/PDL1-based immunotherapy

(149). In a study examining CAFs in short-term versus long-term

OC survivors, the APOE(CAFs) - LRP5(tumor) interaction pattern

between CAFs and tumor cells at the tumor-stroma interface was

associated with short-term survival. This specific cell-cell

interaction may play a crucial role in modulating the malignant

phenotype of OC, potentially serving as a spatially resolved

prognostic biomarker for patient survival.

Overall, spatial features within the TME, including the spatial

interactions of immune cell subpopulations, have the potential to be

linked to treatment response and hold promise for more effective

immunotherapeutic strategies and patient stratification in OC.
6 Non-cellular immune evasion actors

6.1 Immune-checkpoints

PD-L1 is a coregulatory molecule secreted on the surface of

multiple immune cells and cancer cells. When it binds to its

receptor PD-1, mainly present on lymphocytes, it generates an

inhibitory signal (150). Importantly, PD-L1 expression on TILS can

be induced by various factors secreted by TILS themselves or NK

cells, such as IFNg (151, 152). OC infiltrating DCs and MDSCs can

also express both PD-1 and PD-L1 on their surface, promoting T-

cell exhaustion (105, 121). However, there are inconsistent results

regarding the expression of PD-L1 in OC, as each report uses

different scoring system, different positivity thresholds, and

different antibodies. It is generally accepted that around 30% of

ovarian cancer cells show significant (≥5%) PD-L1 expression,

whereas a higher rate of cases present concomitant PD-L1 on

TILS (153–155). As for infiltrating lymphocytes, no significant

association between PD-L1 expression and BRCA1/2 mutations

has been observed (154, 156). Paradoxically, high PD-L1

expression is generally associated with improved outcomes, in

particular in case of high number of CD8+ TILS (153, 157–159).

Nonetheless, these results may simply suggest that PD-L1

expression behaves as a surrogate marker of CD8+ TILS infiltration.

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is

another transmembrane receptor, belonging to the CD28 family,

expressed on the T-cell surface that binds to CD80/CD86 (B7
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1328651
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Blanc-Durand et al. 10.3389/fimmu.2023.1328651
ligand) to transmit an inhibitory signal. Upon T-cell activation,

CTLA-4 is released to the cell surface and regulates effector T-cell

and Tregs proliferation, B-cell response, and indirectly IL-2

production (160, 161). Physiologically, CTLA-4 exerts an

inhibitory action on both effector and regulatory immune cells to

avoid uncontrolled inflammation. Consequently, CTLA-4

inhibitors have been developed to promote T-cell expansion and

increase antitumor response. In the context of OC, significant

heterogeneity exists between CTLA-4 expression, suggesting

different levels of B7-ligand pathway inhibition (162). Herein, it is

anticipated that only the subset of patients with high CTLA-4

expression will benefit from CTLA-4 specific inhibition.

Likewise, lymphocyte activating 3 (LAG3) is also an

coinhibitory checkpoint expressed on various mature immune

cells, including activated CD4+ and CD8+ T-cells, FOXP3+ Tregs,

NK cells and DCs (163–166). The activated LAG3 signal (induced

by MHC class-II molecules) acts synergistically with PD-L1

signaling in disrupting CD4+ and CD8+ functions, inducing their

apoptosis while favoring Tregs proliferation (167). Its expression

has been found to be associated with increased PD-L1 expression

and a higher number of CD8+ T-cells in OC TME (154, 168).

Around 10% of TILS infiltrating the OC TME express LAG3
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without any significant association with tumor mutational profile

or patient outcomes (156, 169).

T cell immunoglobulin and mucin domain containing protein 3

(TIM3), also known as hepatitis A virus cellular receptor 2, is an

immune checkpoint receptor present on the surface of

dysfunctional CD4+ and CD8+ T-cells, Tregs, NK-cells, M2-

macrophages and DCs (170–172). On T-cells, it binds to galectin-

9 and carcinoembryonic antigen-related cell adhesion molecule-1

(CEACAM1) carrying both an inhibitory signal inducing effector T-

cell exhaustion on one hand, and a stimulatory signal enhancing

Tregs immunosuppressive state on the other hand (173). At the

same time, TIM3 is constitutively expressed on DCs and

macrophages and appears to favor their immunosuppressive

functions within the TME, although this mechanism is still

unclear (174, 175). Like LAG3 and PD-L1, the expression of

TIM3 is significantly correlated with TILS in OC (176).

Importantly, TIM3 expression on OC TILS is very frequent, and

most TIM3+ cells coexpress one or multiple other coregulators

simultaneously (156, 177).

Platinum remains the cornerstone in the treatment of OC and is

associated with compelling activity in 1st line, with response rates of

more than 70% (178). Consequently, platinum chemotherapy has
TABLE 1 Overview and applications of spatial technologies.

Spatial Transcriptomics (RNA-based)

Technique Vendor Resolution
Tissue
Type

Number of RNA
targets per tissue
section (plexing)

General Applications

References
to OC-
related
studies

GeoMX Digital
Spatial

Profiling (DSP)
Nanostring Cell-type FF/FFPE

Whole Transcriptome
(~18000+)

Interrogate the biology of cell types of interest and
discovery of biomarkers correlating with immune

infiltration status and survival prognosis.

(139, 140)

Visium
10X

Genomics

Near cellular
(1-10 cells per
spot; 55uM)

FF/FFPE
Whole Transcriptome

(~18000+)
(141, 142)

Slide-Seq
Curio

Biosciences
Near

cellular (10uM)
FF Whole Transcriptome NIL

Stereo-Seq
Beijing
Genomic
Institute

Nano-cellular FF/FFPE Whole Transcriptome NIL

Spatial Proteomics

Technique Vendor Resolution
Tissue
Type

Number of Protein
targets per tissue
section (plexing)

General Applications
References to

OC-
related studies

OPAL-based
multiplexed
fluorescent
imaging

Akoya
Biosciences

Cellular FF/FFPE Up to 9

Identification of cellular neighborhoods and
spatially restricted cell types in relation to survival.

(143, 144)

Imaging
Mass Cytometry

Standard
Biotools

Cellular FF/FFPE Up to 50 (138)

MIBI Ionpath Subcellular FF/FFPE Up to 100 (145)

PhenoCycler-
Fusion

Akoya
Biosciences

Subcellular FF/FFPE Up to 100 NIL
FF, Fresh Frozen; FFPE, Formalin-fixed paraffin-embedded.
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been increasingly used in the neoadjuvant chemotherapy (NACT)

setting to decrease tumor burden and help achieve completeness in

surgery (179). This window-of-opportunity between diagnostic

biopsies and interval debulking surgery has allowed the

comparative assessment of OC immunogenicity before and after

chemotherapy exposure. Interestingly, multiple teams have

demonstrated immunogenic cell death with a positive impact of

NACT on CD4+, CD8+ and NK-cells, suggesting an antitumor

immune response induced by the chemotherapy (46, 180–182).

Conversely, some reports have also observed a significant increase

in PD-L1, CTLA4, and LAG3 expression under NACT which

probably tempers the immunogenicity (156, 182–184). Altogether,

t h e s e ob s e r v a t i on s sugge s t t h a t NACT pr ime s an

immunocompetent TME in which ICIs could be more efficient.
6.2 Cytokines, VEGF and interleukins

IDO1 is an immune regulatory factor induced by the

inflammation cascade, including signaling by interferons, IL-10 and

TGFb). It is often secreted by cancer cells, DCs andmacrophages, and

rarely by TILS, and its expression generates an immune-permissive

TME (185). IDO1 plays a crucial role in activating Tregs, allowing a

stable and IDO1-independent immunosuppressive TME (186).

Additionally, IDO1 appears to upregulate PD-L1 and CTLA-4

expression, indirectly affecting T-cell activation. Furthermore, IDO1

also contributes to the recruitment of MDSCs and enhances their

suppressor functions (187, 188). In OC, IDO1 is frequently expressed,

and higher expression is associated with chemoresistance and poor

prognosis (189).

VEGF is a family of proteins regulated by hypoxia-induced

genes (HIF) and EGF, and its role in OC angiogenesis, progression

and intraperitoneal dissemination is well-established (190, 191).

VEGF has also been shown to induce the evasion of innate and

adoptive immune response by inhibiting the maturation of DCs and

promoting Tregs activity. In the context of OC, a large amount of

VEGF is secreted in the TME, particularly in malignant ascites, in

contrast to normal ovarian tissue and non-malignant ascites (192,

193). Recently, it has been observed that VEGF expression can be

induced by multiples factors present in OC TME, such as PGE2,

TGFb, and TNFa, reinforcing its close relationship with the

immunosuppressive context (194, 195). Elevated levels of VEGF

are associated with poor prognosis in OC patients (99, 196, 197).

Based on these considerations, bevacizumab, a VEGF inhibitor, has

been intensively evaluated in OC patients and has demonstrated

higher response rates and improved outcomes. It is now FDA-

approved and routinely prescribed (198, 199). Interestingly,

bevacizumab has been shown to significantly increase T-cells and

B-cells infiltration, enhance DC maturation and block Tregs

proliferation in colorectal and breast models (200–202).

Altogether, these reports suggest that using VEGF-targeting

agents may give positive effects on the OC TME and enhance

antitumor immune responses.

As previously mentioned, the cytokine context within the OC

TME, plays a crucial role in creating an immunosuppressive state

that allows tumor progression and immune evasion. IL-10
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produced by various immune cells and OC cells themselves, is a

soluble factor which acts as a potent negative regulator of antitumor

inflammation. Its precise mechanisms on effector immune cells are

not fully understood, but it likely involves the induction of other

inhibitory factors like PGE2, the active blockage of DC maturation,

the induction of PD-1 expression and the deletion of antigen

presentation by ovarian tumor cells (203, 204). Interestingly, PD-

1 blockade can lead to a high release of IL-10 in OC TME,

suggesting a compensatory mechanism to escape inflammatory

response (204). Similarly, IL-6 produced mainly by macrophages

and cancer cells, plays a critical role in promoting angiogenesis,

ascites development, and T-cell exhaustion (205, 206). Overall, both

IL-10 and IL-6 are independent predictors of poorer outcomes in

OC (206–209).

TGFb is another cytokine that is highly expressed in OC TME

and has a dual role, acting as both a tumor suppressor and a

promotor of tumor progression and immunosuppression. Cancer

cells that escape the immunosuppressive effects of TGFb can

overexpress it to promote invasiveness, neoangiogenesis and

immune evasion (210, 211). TGFb directly affects the activity of

T-cells, NK-cells and DCs and can regulate the release of

inflammatory cytokines (212).

The OC TME is deeply influenced by numerous other cytokines

as well, with each having a different impact on progression and

immune activity. Understanding the roles of these cytokines and their

interactions in the TME is crucial for identifying potential targets to

overcome immunoresistance and improve therapeutic outcomes.

Within the intricate landscape of the OC TME, non-immune

elements have emerged as integral contributors to immune evasion,

offering insights into potential therapeutic strategies. Cancer-

associated fibroblasts (CAFs), activated by TGF-b signaling and

governed by aberrant signaling pathways, have been identified as

key orchestrators of immunosuppression. They promote extracellular

matrix remodeling, notably collagen engineering, that physically

hinder immune cell infiltration (213). Furthermore, CAFs engage

metabolic reprogramming, fostering a nutrient-depleted TME

unfavorable for effector T cell function (144). Endothelial cells

within the tumor vasculature also play a pivotal role, participating

in immune evasion by regulating immune cell trafficking and

immune checkpoint molecule expression (214). Notably, autotaxin,

an enzyme produced by various cell types in the TME, generates

lysophosphatidic acid (LPA), which can enhance tumor growth and

impair immune cell function through LPA receptor signaling (215).

Collectively, these non-immune elements underscore once again the

complexity of immune evasion mechanisms while representing

potential targets for therapeutic interventions (216, 217)
7 TME particularities of rare epithelial
OC subtypes

7.1 Clear cell ovarian cancer

Clear-cell ovarian cancer (OCCC) represents the second most

frequent subtype of epithelial ovarian cancer, comprising

approximately 15% of cases (218). Unlike high-grade serous OC,
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OCCC is often associated with endometriosis, and is typically

diagnosed in younger women. It is also characterized by a

tendency to present as localized diseases (219, 220). Molecularly,

OCCC displays distinct profiles compared to other subtypes, with

high rates of ARID1A loss-of-function and PIK3CA activating

mutations, while P53 loss-of-function mutations are observed in

only 20% of cases (221, 222). These molecular characteristics

suggest the presence of a strong immunosuppressive

microenvironment. The PI3K/AKT/mTOR pathway is reported to

promote immune evasion by increasing resistance to cytotoxic T-

cell induced apoptosis, reinforcing Tregs functionality and escaping

death receptor signals via PD-L1 and LAG3 expression (223–226).

Furthermore, endometriosis and ARID1A mutations also

contribute independently to the immunosuppressive environment.

they have been shown to reduce T-cell infiltration and enrich the

TME with PD-L1 expression and various other immunosuppressive

cytokines, including IL2, IL6, IL10, TGFb and TNFa (227–231).

Interestingly, recent studies reported that coexistent PIK3CA/

ARID1A mutations in OCCC are responsible for high levels of IL-

6 and this mechanism may promote cancer growth and as such,

could represent a potential therapeutic target in OCCC (232).

Overall, OCCC appears to be the least infiltrated OC subtype by

CD8+ TILS and, contrary to the others subtypes, it has been

suggested to have a negative impact on survival (44, 231, 233).
7.2 Mucinous ovarian cancer

Mucinous OC (MOC) is known to have a poor response to

platinum-based chemotherapy and advanced diseases are associated

with a dismal prognosis (234). Molecularly, MOC often carries

KRAS mutations, which are commonly associated with P53

mutations and ERBB2 amplifications, resembling the molecular

background of colorectal carcinomas (235). One interesting aspect

of MOC is that around 20% of cases exhibit mismatch repair

deficiency, leading to a very high mutational load, increased

neoantigens levels and potential sensitivity to immune checkpoint

inhibitors (236). However, the immune context of MOC is poorly

understood and limited data are available. In this regard, a recent

study by Meagher et al, investigated the TME of MOC in 23 cases

and reported high heterogeneity across these tumors. They

observed that advanced stages had a higher number of M2-like

macrophages and a higher density of FOXP3 Tregs in the tumor

stroma was associated to poorer prognosis. Overall, MOC were not

found to have an immune competent TME as most of the cases were

classified as “cold” tumors based on T-cell infiltration and PD-L1

expression, which may explain its unfavorable prognosis and

suggests resistance to immunotherapy even though there is no

published clinical data supporting this assumption (237).
7.3 Low-grade ovarian cancer

Low-grade OC (LGOC) is a relatively rare epithelial OC

subtype, accounting for less than 10% of. It typically occurs in

younger women and is often diagnosed at an advanced stage.
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Compared to high-grade serous OC, LGOC is generally associated

with more favorable outcomes (238). Their molecular background

is characterized by a low mutational burden and recurrent

mutations in the RAS/RAF pathway (239). However, little is

known regarding about the immune infiltrate in LGOC. Studies

have reported that LGOC tend to have fewer TILS and a lower

number of CD68+ TAMs compared to high-grade tumors (240,

241). In addition, the TAMs associated with LGOC appear to be less

polarized into M2-like macrophages (lower CD163/CD68 ratio)

compared to HGOC (241). Taken together, given the low immune

infiltration in LGOC, it is thought that these tumors may not be

ideal candidates for immunotherapies.
8 Therapeutic implications

8.1 Targeting immune-
checkpoint inhibitors

The principle behind targeting immune checkpoints is to block

the natural inhibitory pathway that cancer cells use to suppress the

activity of T cells, thereby allowing the immune system to maintain

an effective immune response. The first class of ICI approved were

PD-1/PD-L1 inhibitors, which block the interaction between PD-1

receptor on T-cells and the PD-L1 ligand, enabling T cells to remain

active and attack cancer cells (150). In OC, PD-1/PD-L1 inhibitors

monotherapy has shown limited activity, with an objective response

rate (ORR) of approximately 10% and disease stabilization in

around 30% of cases (16, 242, 243). To improve activity,

considering the strong rationale of immunogenic cell death

induced by cytotoxic agents and the close relationship between

angiogenesis and TME, investigators have explored combinations

strategies with chemotherapy and bevacizumab. However, large

phase 3 trials have failed to demonstrated any benefit of PD-1/PD-

L1 inhibitor combinations (Table 2) (14–17).

Despite the challenges in identifying reliable biomarkers for

predicting response to ICI, some studies have shown that patients

with higher PD-L1 expression (based on CPS score) may benefit

more from adding PD-1/PD-L1 inhibitors to the standard

treatment regimen. In the IMAGYN050 trial, patients with ≥5%

expression of PD-L1 on the immune cells, or patients with ≥1%

positive tumor cells, seemed to benefit from adding atezolizumab

(PD-L1 inhibitor) to chemotherapy with bevacizumab (HR=0.64

[0.43-0.96] and HR=0.41 [0.19-0.90]) (15). However, these

corresponded to only 20% and 6% of the overall population.

Conversely, in the JAVELIN 200 and ATALANTE trials, PD-L1

positive patients did not benefit from adding ICI nor did the CD8+/

PD-L1+ positive subgroup (14, 16). Interestingly, in some trials,

patients with OCCC appeared to benefit more from ICI therapy.

Consequently, dedicated trials have tested ICI in this population

and reported encouraging responses with 11-25% ORR and up to

38.5% when associated with bevacizumab (249–251).

Disappointingly, the only randomized trial comparing single-

agent chemotherapy to durvalumab (PD-1 inhibitor) in OCCC

patients, did not show improved outcomes in the ICI arm,

highlighting the need for better biomarkers (249).
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The complexity of the OC TME, including the multiplicity of

immunomodulators, is most likely the reason for these

contradictory results. To overcome these challenges, next-

generation trials are exploring new targets, including other

immunoregulatory checkpoints more suitable for the OC TME.

Combinations of a PD-1 inhibitors with CTLA-4 inhibitors

(nivolumab+ipilimumab) have demonstrated increased activity

compared to monotherapy with a 31.4% ORR, versus 12.2% with

nivolumab alone, at the cost of frequent severe adverse events (245).

Likewise, various large ongoing trials are evaluating the benefits of

adding a CTLA-4 inhibitor to a PD-1/PD-L1 inhibitor plus

chemotherapy. Furthermore, clinical trials with ICI targeting

novel checkpoints like TIM3 and LAG3, are being tested in OC,
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and the results are eagerly awaited (NCT02608268, NCT03099109,

NCT04611126, NCT03538028, NCT03365791).

PROC: platinum-resistant OC; PSROC: platinum-sensitive

recurrent OC; CPT: Carboplatin+Paclitaxel; PLD: Pegylated

liposomal doxorubicine; OCCC: clear-cell ovarian cancerAs

previously mentioned, HRD tumors tend to present higher levels

of TILS and neoantigens load, suggesting a potential combination

strategy of ICI with PARP inhibitors (31, 32). Additionally, PARP

inhibitors have shown to induce immunogenic cell death through

the activation of the cytosolic DNA sensor cyclic GMP-AMP

synthetase (cGAS) and stimulator of interferon genes (STING)

pathway (252), further enhancing the potential synergy between

PARP inhibition and immunotherapy. The MEDIOLA trial, which
TABLE 2 Summary of Key Trials Related to PD-1/PD-L1 Inhibitors in Ovarian Cancer.

Study Design Population Experimental arm ORR
(%)

PFS
(months)

OS
(months)

Reference

KEYNOTE-
100

Open-label, single arm,
phase II trial

PROC
N=376

Pembrolizumab 8.0 2.1 17.6 (242)

JAVELIN
100

Randomized, open-label,
phase III trial

Treatment
naïve OC
N=998

CPT
Maintenance Avelumab

30 16.8
(HR=1.43)

NE (17)

CPT + avelumab
Maintenance Avelumab

36 18.1
(HR=1.14)

NE

JAVELIN
200

Randomized, open-label,
phase III trial

PROC
N=566

Avelumab 4 1.9
(HR=1.68)

11.8
(HR=1.14)

(16)

Avelumab + PLD 13 3.7
(HR=0.78)

15.7
(HR=0.89)

IMagyn050 Randomized, double-
blind, phase III trial

Treatment
naïve OC
N=1301

CPT + bevacizumab + atezolizumab NA 19.5
(HR=0.92)
PDL1 + 20.8
(HR=0.80)

NE
PDL1+ NE

(15)

ATALANTE Randomized, double-
blind, phase III trial

PSROC <2
prior lines
N=1301

Carboplatin doublet + bevacizumab
+ atezolizumab

NA 13.5
(HR=0.83)
PDL1 + 15.2
(HR=0.86)

35.5
(HR=0.81)

(14)

NINJA Randomized, open-label,
phase III trial

PROC
N=363

Nivolumab 7.6 2.0
(HR=1.5)

10.1
(HR=1.03)

(244)

NRG
GY003

Randomized, open-label,
phase II trial

Relapsed OC
N=100

Nivolumab + Ipilimumab 6-month
ORR 31.4

3.9
(HR=0.53)

28.1
(HR=0.79)

(245)

MEDIOLA Open label Phase II trial PSROC
Somatic BRCA

mutation
N=66

Olaparib + Durvalumab
Olaparib + Durvalumab

+ Bevacizumab

31.3 5.5 26.1 (246, 247)

77.4 14.7 31.9

TOPACIO Open label, Phase I/
II trial

Relapsed OC
N=62

Niraparib + Pembrolizumab 18 3.4 (148)

DUO-O Randomized, double-
blind, phase III trial

Treatment
naïve OC
N=1104

Carboplatin doublet + bevacizumab
+ durvalumab + placebo

NA 20.6 (248)

Carboplatin doublet + bevacizumab
+ durvalumab + olaparib

NA 24.2

MOCCA Randomized, open-label,
phase II trial

Relapsed
OCCC

<4 prior lines

Durvalumab 10.7 1.9 NA (249)

PEACOCC Open-label, single arm,
phase II trial

Relapsed
OCCC

≥1 prior line

Pembrolizumab 25 3.1 17.8 (250)
NA, Not Reached.
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tested the combination of olaparib and durvalumab, reported

provocative results in the BRCA-mutated population (whilst naïve

of PARP inhibitor) with an impressive 72% ORR (247). However, in

the TOPACIO trial , a similar associat ion combining

pembrolizumab and niraparib, showed a lower ORR of 18% and

65% disease control rate in an heterogenous OC population.

Interestingly, this association appeared particularly effective in the

platinum-refractory and non-HRD populations (148). Finally, the

DUO-O trial, which investigated the addition of durvalumab to

olaparib and bevacizumab reported a significant improvement in

outcomes in the BRCAwt/HRD population as expected with a

PARPi in this context. However, similar to the TOPACIO trial,

the BRCAwt/HRD-negative population also appeared to benefit

from the combination even though PARPi alone have not shown

effectiveness in this scenario (248). Altogether, these results suggest

that combining PARP inhibitors with ICI may be a promising

approach, especially in populations that are not usually candidate

for PARP inhibitors. Nonetheless, the trial was not specifically

designed to explore the benefits of the combination versus PARPi

alone, and further dedicated trials are necessary to confirm these

findings and identify the specific subset of patients that would

derive the greatest benefit from this combination.

Overall, a multitude of ICI strategies are currently being

explored in OC, and many of these trials consider an all-comer

population. Translational studies to identify biomarkers that can

predict response to ICI will be crucial in optimizing the use of these

strategies in the future.
8.2 Monoclonal antibodies, cancer
vaccines, and T-cell engagers

Cancer vaccines hold great promise in harnessing the patient’s

own immune system to target tumor-associated antigens and induce

specific immune responses against cancer cells. Several approaches

have been tested in OC, showing encouraging activity in early trials.

One strategy involves using cancer-testis/cancer-germline antigens

such as NY-ESO-1, which are proteins aberrantly expressed in OC,

and have demonstrated consistent CD4+ and CD8+ T-cell responses in

OC patients leading to prolonged responses (253, 254). Another

promising strategy involves DC vaccines, which capitalizes on the

critical role of DCs in stimulating both adaptative and innate

immunity. Schematically, DCs are collected from the patient’s blood,

matured in vitro and then loaded with the specific antigen of interest.

The matured, antigen loaded DCs are then injected back into the

patient, stimulating a targeted immune response against the tumor.

For example, vaccination with autologous DCs targeting Mucin 1

(MUC1), a glycoprotein highly expressed in ovarian carcinomas,

resulted in a strong MUC1-specific T cell response and prolonged

survival in patients with advanced OC (255). Similarly, a DC vaccine

targeting folate receptor alpha (FRa) demonstrated a strong cytotoxic

T-cell response (composed of IL-17 producing T cells) and prolonged

remission in patients with heavily pretreated OC (256).

Additionally, monoclonal antibodies have been developed to

mimic tumor antigens in order to induce a self-tumor antigen-

specific response (anti-idiotypic antibody). Abagovomab was one
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such antibody imitating the tumor-associated antigen CA125.

However. despite a sustained immune response and encouraging

antitumor efficacy in early-phase trials, the drug failed to

demonstrate a survival benefit in OC patients in later trials (257).

The next-generation antibody oregovomab was designed to

generate an immune complex with tumoral CA125, which is then

processed by DCs and subsequently responsible for downstream

CA125-specific antitumor immune response (258). Unfortunately,

after an initial efficacy signal in a subset of OC patients with

favorable prognostic characteristics, the phase III clinical trial did

not show any statistical survival difference between oregovomab

maintenance and placebo (259). Nonetheless, the FLORA-5 study

(NCT04498117) is testing oregovomab in combination with

chemotherapy in newly diagnosed OC and might demonstrate

promising results.

Despite the promising results, and even if vaccine therapies are

steadily moving forward, there are still multiple unresolved

challenges. Manufacturing personalized vaccines for each patient

can be time-consuming and costly, limiting their accessibility (260).

In addition, as above-mentioned, DCs are highly plastic and can

acquire an immunosuppressive phenotype over time, potentially

limiting their long-term efficacy. Ongoing research is focused on

developing more efficient and cost-effective methods of vaccine

production and enhancing the stability and potency of dendritic cell

vaccines. As research in this field continues to advance, cancer

vaccines hold the potential to become an integral part of OC

treatment, complementing other therapeutic modalities and

improving patient outcome.

As previously mentioned, T-cell immune activation is mainly

MHC restricted. Therefore, the impairment of antigen presentation

by MHC molecules is an important immune evasion mechanism

and a major limitation for T-cell activity (261, 262). T-cell engaging

bispecific antibodies (bsAbs or BiTEs) are antibodies that have been

designed to target both tumor-associated antigens and a T-cell

molecule (most frequently CD3). This design directs polyclonal T-

cells to the tumor resulting in tumor-specific cytotoxicity (263). As

a result, bsAbs can crosslink cancer cells with T-cells independently

of MHC action, limiting the potential for immune escape. Given the

encouraging results in hematological malignancies, bsAbs are

currently in clinical development for solid tumors. In OC, several

tumors antigens are being tested including WT1 (264), MUC16

(265), claudin 6 (266) and folate receptor alpha (267). Notably, the

toxicity profile of these therapies is of considerable concern due to

the high rates of severe cytokine release syndromes (CRS) and

immune effector cell-associated neurotoxicity (ICANS) (268, 269).
8.3 Adoptive cellular therapies

Adoptive cell therapy, including chimeric antigen receptor

(CAR) T-cell therapy, is an innovative approach in cancer

immunotherapy that involves the infusion of autologous immune

cells that have been stimulated and expanded ex-vivo to target

cancer cells. This approach aims to harness the patient’s preexisting

antitumor response and enhance it, through the use of genetically

modified immune cells.
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The first trials, few decades ago, used TILS transfer in heavily

pretreated diseases and showed encouraging activity and prolonged

survival (270). More recently, the combination of ACT with PD-1/

PD-L1 inhibitors has shown improved T-cell expansion and

increased T-cell reactivity in OC patients, leading to promising

antitumor activity even though it was tested only in a very limited

number of patients (271).

Unlike autologous TILS infusion, CAR-T cells have been

genetically engineered to target a specific tumor antigen, allowing

an increased immune response with minimal off-tumor effect (272).

Importantly, CAR-T cells are not MHC restricted and, as such, exert

a highly efficient and specific tumor cytoxicity. In the context of OC,

several potential antigens have been proposed as targets for CAR-T

cell therapy due to their high expression levels and specificity. The

most promising targets in OC are Mucin 16 (MUC16), mesothelin

(MSLN), Folate receptor 1 (FOLR1) and tumor-associated

glycoprotein 72 (TAG72) and have achieved promising responses

both in vitro and in vivo (273–276). Clinical trials are actively

recruiting patients with OC to test the safety and efficacy of these

therapies (277). Finally, next-generation CAR cell therapies are also

exploring the use of engineered NK cells, which are thought to limit

systemic toxicity while enhancing the antitumor activity (278).

Although cellular immunotherapies come with important

limitations including off-target toxicity and challenges in

accessibility and manufacturing, they also hold great promise in

OC treatment. Given the strong spontaneous antitumor response

observed in vivo, they represent a potential breakthrough in the field

of OC treatment.
9 Conclusions

In conclusion, despite preclinical data continue supporting the

use of immunotherapy combinations, ICI is not yet firmly

established in OC therapeutic landscape. This review aimed to

summarize the potent immune evasion mechanisms deployed, the

exceptional diversity of the immune cells and ligands recruited,

presenting the OC TME both hindered by obstacles and a field of

great opportunity. However, certain critical elements deeply

intertwined into these pathways, such as extracellular matrix

modeling, fibroblast recruitment, hypoxia, and metabolic

reprogramming, as well as host factors, were intentionally

overlooked in this work. These aspects gave been extensively

covered by other works. For example, Yang et al., provided an

extensive review of the immune and non-immune cellular

components of the TME and how they can be targeted beyond

immune-checkpoint blockade (279). Works by Kandalaft et al. and

Colombo and colleagues, focused on the most promising strategies

to target the TME considering the immunosuppressive context of

OC and the potential future biomarkers (280, 281). Finally, Baci and

colleagues reviewed the complex innate immune response in the

OC TME and how it might either support or limit cancer

progression and treatment sensitivity (282).

OC TME is a complex and dynamic landscape that plays a critical

role in promoting tumor progression, invasion, dissemination, and

treatment resistance. The immune cells and components within the
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TME possess both antitumor effects and immunosuppressive actions,

creating a delicate balance that allows cancer cells to evade immune

surveillance and continue to thrive. Understanding the interactions

and polarization of these immune cells is essential for developing

effective immunotherapeutic strategies. While there has been

significant progress in understanding various features of the TME,

such as extracellular matrix remodelling, cancer-associated

fibroblasts, and metabolic reprogramming, there are still many

unsolved enigmas and challenges to address. Cutting-edge

techniques like single-cell sequencing and spatial molecular assays

hold promise for unravelling the complexities of the TME and its

interactions. In OC, it is likely to think that histological subtypes and

molecular backgrounds be critical features to consider in the

interpretation of results.

Immunotherapeutic approaches in ovarian cancer continue to

show promise, and next-generation inhibitors, innovative

combinations, vaccines, and cellular therapies offer exciting

opportunities. However, finding the right target, tailoring

therapies to individual patients’ immune characteristics, and

carefully considering endpoints and potential toxicity will be

critical for the success of these treatments.
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