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Insects constitute approximately 75% of the world’s recognized fauna, with the

majority of species considered as pests. Entomopathogenic fungi (EPF) are

parasitic microorganisms capable of efficiently infecting insects, rendering

them potent biopesticides. In response to infections, insects have evolved

diverse defense mechanisms, prompting EPF to develop a variety of strategies

to overcome or circumvent host defenses. While the interaction mechanisms

between EPF and insects is well established, recent findings underscore that their

interplay is more intricate than previously thought, especially evident across

different stages of EPF infection. This review primarily focuses on the interplay

between EPF and the insect defense strategies, centered around three infection

stages: (1) Early infection stage: involving the pre-contact detection and

avoidance behavior of EPF in insects, along with the induction of behavioral

responses upon contact with the host cuticle; (2) Penetration and intra-

hemolymph growth stage: involving the initiation of intricate cellular and

humoral immune functions in insects, while symbiotic microbes can further

contribute to host resistance; (3) Host insect’s death stage: involving the ultimate

confrontation between pathogens and insects. Infected insects strive to separate

themselves from the healthy population, while pathogens rely on the infected

insects to spread to new hosts. Also, we discuss a novel pest management

strategy underlying the cooperation between EPF infection and disturbing the

insect immune system. By enhancing our understanding of the intricate interplay

between EPF and the insect, this review provides novel perspectives for EPF-

mediated pest management and developing effective fungal insecticides.
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1 Introduction

Insects constitute the most diverse and abundant clade within

the animal kingdom with over a million known species inhabiting

our planet, comprising approximately 75% of all described animal

species (1, 2). However, nearly half of the known insect species are

herbivorous pests as they directly consume crops and indirectly

contribute to plant disease transmission (3–6). Currently, the most

prevalent method for pest control involves the application of

chemical pesticides (7). Nevertheless, concerns have arisen over

the pesticide residues, prompting the need for more

environmentally friendly and cost-effective pest control strategies

(8, 9). Entomopathogenic fungi (EPF) comprise a specialized group

of parasitic microorganisms with the remarkable ability to infect

and ultimately kill insects and other arthropods. They stand as one

of the most potent natural options for pest control, with over 60% of

naturally occurring insect diseases attributed to EPF (10–12). These

fungi possess several notable characteristics, including

environmental adaptation, abundant strain resources, and limited

resistance development, which position them as viable alternatives

to chemical pesticides in numerous ecosystems (13–16). At present,

around 1,000 species of EPF have been identified, and ongoing

research continues to unveil new taxa within this group (15, 17, 18).

The majority of EPF strains are found in the orders Onygenales,

Entomophthorales, Neozygitales, and most prominently,

Hypocreales (19, 20). Genera such as Beauveria, Metarhizium,

Isaria, Lecanicilium, Nomuraea, Hirsutella, and Paecilomyces

within the Hypocreales have been extensively studied and some

have been developed into commercial EPF agents, particularly

within the Beauveria and Metarhizium genera (21–25).

EPF employ direct penetration of the insect cuticle as their

primary mode of infection, although recent studies have indicated

that EPF can also utilize oral and respiratory routes to infect their

hosts (26, 27). The invasive and developmental processes of EPF can

be delineated into six key stages: attachment of conidia to the host,

germination, appressorium formation and penetration, fungal

growth within the hemolymph, conidia production on host, and

ultimately, transmission and dispersal (28, 29). Recent studies have

revealed that each step of EPF infection entails the intricate

regulation of specific genes, or a combination of various genes,

underscoring the existence of highly sophisticated mechanisms

employed by EPF to eliminate the targeted insects (28, 30, 31). In

the ongoing long-term coevolutionary arms race, insects have

developed an array of defense mechanisms to resist potential

pathogens. The primary line of defense is the cuticular

integument, a robust protective barrier composed of diverse

chemical components including n-alkane, fatty acids, chitin, and

tanned proteins, which effectively safeguard the internal tissues

from the external environment (32, 33). Should EPF breach this

barrier, they encounter the second line of defense: the evolutionary

conserved innate immune system, which can be categorized into

cellular and humoral defenses (34–37).

The complex interaction between EPF and insects signifies a

constant battle within the coevolutionary arms race. While previous

reviews have detailed the interaction mechanisms, recent findings

suggest a greater intricacy, particularly evident across different
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stages of EPF infection. In this review, we primarily emphasize

the interplay between EPF and the insect immune system, focusing

on three particular infection stages: (1) Early infection stage: EPF

conidia adhere to the host surface and initiate pre-penetration.

Insects exploit chemical components, behavioral response, and

ectomicrobiomes to defend against EPF infection. (2) Penetration

and intra-hemolymph growth phase: EPF penetrate the cuticle, and

hyphal bodies grow and produce toxins in the hemolymph. This

stage triggers a strong insect cellular and humoral immune response

in insects. The involvement of symbiotic microorganisms further

complicates the immune interactions. (3) Insect host death phase:

this stage marks the ultimate confrontation between EPF and

insects. Infected insects strive to isolate themselves from the

population to shield it. Meanwhile, EPF secrete antimicrobial

products to limit the growth of competitive microbes in the

carcass. Finally, we propose a novel pest management strategy

that centers around the host-EPF interaction. This involves

modifying the EPF through genetic modification in combination

with the use of chemicals, dsRNA, or microorganisms to defeat the

insect immune system by enhancing EPF virulence.
2 During the early infection stage

2.1 The adhesion of EPF to the host cuticle
and EPF appressorium differentiation

In the initial stage of EPF infection, the success rate and insect

mortality are largely determined by the attachment of single-celled

dispersive forms, such as conidia or blastospores, to the host cuticle

(38, 39) (Figure 1A). Hydrophobins and adhesin proteins on the

spores are thought to serve as successive stages in the attachment

process: a non-specific (passive) adsorption step followed by a

target-specific consolidation phase (40). Different types of fungal

propagules exhibit varying adhesive properties: aerial conidia of B.

bassiana can tightly adhere to hydrophobic surfaces. In contrast,

their blastospores quickly bind to hydrophilic surfaces, and

submerged conidia adhere to both hydrophobic and hydrophilic

surfaces. All the three cell types are infectious, enabling B. bassiana

to interact with a diverse range of substrates and bind to a broad

spectrum of host targets (41, 42). B. bassiana possesses two

hydrophobins, Hyd1 and Hyd2, localized on the surface of aerial

conidia and submerged conidia, but not detected in blastospores.

They are responsible for cell surface hydrophobicity, adhesion, and

virulence (43, 44). Three adhesin genes (Adh1-3) of B. bassiana are

functionally characterized and Adh2 plays a role in conidial

adherence to insect cuticle (45). In Metarhizium anisopliae, two

adhesin genes,Mad1 andMad2 have been characterized, andMad1

mediates spore adhesion to host surfaces (46). Moreover, several

other cell wall proteins are involved in adhesion, for example, the

non-hydrophobic cell-wall protein CWP10 of B. bassiana enhances

conidial adhesion (47). A glycolytic enzyme, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), in M. anisopliae, may also

contribute to the adhesion of conidia to a host (48). In addition to

proteins, the surface of fungal cells contains various carbohydrate

moieties, playing diverse roles in adhesion, for example, the
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negatively charged sugars (sialic acids) on the surface of Aspergillus

fumigatus are central to conidia adhere to basal lamina proteins

(49). Carbohydrates moieties are also the main compounds

commonly recognized by host for triggering immune signaling

cascades (50, 51). However, carbohydrate analysis is complicated

by the complexity of glycan structures and the challenges of

separating and detecting carbohydrates experimentally, more

investment is needed in this part (52).

Following the attachment of EPF conidia to the host cuticle,

appressoria may form at the tips of fungal germ tubes, displaying

apical swelling structures adhering to the host cuticle with diverse

morphologies (e.g., clavate, spherical, or cup-shaped structures)

(53–55) (Figure 1A). However, certain EPF species, like

Metarhizium rileyi, do not undergo appressorium formation, in

which the germ tubes grow along the endocuticle and produce

lateral branches (56). M. anisopliae can occasionally penetrate the

cuticle directly without appressoria formation (57). Recent studies

have also shown that B. bassiana may not always form appressoria

during cuticle penetration (55, 58). To date, a series of key genes

have been identified in appressoria differentiation like Protein

kinase A (PKA) genes in M. anisopliae (MaPKA1) and B.

bassiana (BbMPK1) (59, 60). In addition, a Rho3 homolog in

Magnaporthe grisea (Mgrho3), G-protein coupled receptors

(GPCR) genes and exopolymer galactosaminogalactan (GAG)

biosynthetic genes in Metarhizium species, as well as the histone

lysine methyltransferase ASH1 in Metarhizium robertsii are also

essential for appressorium formulation, development and the

formation of appressorium mucilage (61–64). Many other genes

and pathways involved in regulating fungal sensing and infection of

insects are also under investigation (55).
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2.2 The strategies for insects to avoid

As EPF infect potential hosts, insects have developed strategies

to detect and avoid them, both before coming into contact (pre-

contact) or after contact (post-contact) (65) (Figure 1B). The

odorant binding proteins of arthropods can respond actively to

volatile organic compounds (VOCs) emitted by EPF, which further

alters the insect immune response and induces the repellant effects

on the pathogen and modulating host defense (66, 67). These

abilities vary among insect species and across different

developmental stages. For instance, Japanese beetle (Popillia

japonica) larvae have been observed to avoid soil containing high

concentrations of M. anisopliae (68). The generalist predator

Anthocoris nemorum can detect the presence of B. bassiana and

actively avoid it (69). Social insects, such as termites and ants,

possess the ability to detect EPF and respond with avoidance

behaviors. Reticulitermes flavipes termites can detect M.

anisopliae-dusted termites and demonstrate alarm and

aggregation reactions (70). The termite Macrotermes michaelseni

presents similar ability (71, 72); Coptotermes lacteus displays an

avoidance response by creating short tunnels into substrates

containing M. anisopliae and sealing them off to prevent further

contact with the fungus (73). It is intriguing that EPF can also

release VOCs with attractant properties. For instance, female

Anopheles stephensi mosquitoes are drawn to spores of B.

bassiana and M. anisopliae, as well as other fungal-infected

insects, however, the exact mechanisms involved in this behavior

remain unclear (74); and the VOCs (such as acetic acid) of the

genus Lecanicillium can attract female western flower thrips

Frankliniella occidentalis (75), other VOCs from fungi such as 1-
FIGURE 1

The interaction between EPF and insects during the early infection stage. (A) A schematic diagram of fungal adhesion, pre-penetration, and the
cuticular defense. The surface of EPF conidia is equipped with hydrophobins and other components facilitating adhesion. The appressorium
initiates growth. Antifungal compounds present in the insect cuticle, glandular secretion, and ectomicrobiomes act to inhibit EPF conidial
growth. (B) Strategies employed by insects to prevent and counteract EPF infection prior to establishment. EPF can attract insects through VOCs,
such as acetic acid, 1-octen-3-ol and Chokol K, but insects can detect VOCs from EPF and avoid infection. EPF can also generate toxins to deter
other organisms from consuming the infected insect cadavers in the last stage of infection. Social insects exhibit collective behaviors, like
grooming and self-removal as a means to circumvent EPF infection.
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octen-3-ol and Chokol K are also insect attractive signals (76, 77).

Additionally, certain plant root-associated EPF can alter host plants

traits such as leaf reflectance, attracting herbivorous insects and

promoting the EPF dispersal (78). Many phytopathogenic fungi-

induced VOCs from plants that can attract insects have been

identified (such as methyl salicylate, hexanal and 1-exanol) (79),

but whether endophytic EPF can induce plants to produce insect

attractive VOCs is less studied.

Moreover, grooming behavior serves as an efficient mechanism

for removing conidia after the insect gets in contact with EPF. For

example, over 90% of theM. anisopliae conidia on the body surface

of Reticulitermes speratus can be groomed off by their nestmates

(80). Mutual grooming behavior is highly effective in protecting

Coptotermes formosanus termites fromM. anisopliae infection (81).

Similarly, when Solenopsis invicta and Lasius japonicus are exposed

to fungus, both ant species can benefit through exhibiting grooming

behavior (82, 83).
2.3 In defense against EPF pre-penetration

Upon adherence of EPF, the host cuticle employs various

mechanisms to prevent spore adhesion and germination

(Figure 1A). The inherent hydrophobicity of the insect cuticle

generally makes it an ideal substrate for fungal spore adhesion.

However, certain insects have developed mechanisms to counteract

this trait in order to defend against the adhesion of EPF. For

instance, the cuticular fatty amides found in booklice (Liposcelis

bostrychophila) are able to deter the adhesion of dry EPF conidia by

decreasing hydrophobicity and static charge (84). In addition to

acting as a physical barrier, the insect cuticle plays a vital role in the

molting process. Simple molting can serve as a means to evade

infection. For example, rapid ecdysis observed in aphids and the

diamondback moth (Plutella xylostella) contributes to limiting the

EPF ability to infect the host (85, 86). Nevertheless, certain EPF

have been observed to hinder the molting process of their hosts by

means of oxidative inactivation of host ecdysteroid (87). The

hydrocarbons found on the insect cuticle can serve as a carbon

source for EPF adhesion and germination, including fatty acids and

long chain hydrocarbons. Insects have the ability to alter the

hydrocarbon content to evade EPF infection (88). For example,

Metarhizium is unable to firmly attach to Aedes aegypti due to the

absence of long-chain hydrocarbons in mosquito larvae, which are

probably necessary for fungal development on the host cuticle (89).

However, some insect cuticle components exhibit antimicrobial

properties, including fatty acids, alkaloids, aldehydes, melanin and

antimicrobial peptides (40, 90, 91). Additionally, certain insects

release substances such as formic acid, quinones, terpenes, and

glucanases, as well as proteinase and chitinase inhibitors, from their

epidermal, salivary or poison glands, and these secretions serve to

hinder spore adhesion, germination, or appressorium formation

(92, 93). For instance, the invasive garden ants, Lasius neglectus,

produce formic acid as a poison to cleanse the brood and body

surfaces, inhibiting the growth of Metarhizium brunneum (94, 95).

Tribolium castaneum produces cuticular secretions containing

benzoquinone to inhibit the germination and growth of B.
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bassiana (96). Bedbugs (Cimex lectularius) utilize glandular

aldehyde secretions, specifically (E)-2-hexenal and (E)-2-octenal,

to coat their cuticle and inhibit the growth of M. anisopliae (97).

Besides, the ectomicrobiomes, which are resident antagonistic

microbes residing on the surface of insects, confer colonization

resistance to hosts by producing antimicrobial compounds to

inhibit the germination and growth of fungal conidia (40, 58).

Surfaces of Drosophila, for instance, were found to be densely

populated with bacterial cells, which can deter fungal spore

germination, and the controlled addition of isolated bacteria in a

gnotobiotic setting significantly delays fungal infection of axenic

flies (98). Out of 155 bacterial isolates from the cuticle of Dalbulus

maidis and Delphacodes kuscheli, 91 were found to inhibit the

growth of B. bassiana (99). Antagonistic interactions against fungi

have also been observed in ectomicrobiomes residing on leaf-

cutting ants (Acromyrmex subterraneus) (100), honeybees (Apis

mellifera) (101), and the oriental fruit moth (Grapholita molesta)

(102). Intriguingly, the beetle Lagria villosa possesses cuticular

organs filled with bacterial symbionts, which protect larvae from

EPF infection through the production of antifungal compounds

(103). Several ant species have the ability to cultivate actinobacteria,

which produce potent antimicrobial compounds, in order to

safeguard conspecifics and brood from EPF pathogens (104, 105).

However, recent research indicates that EPF have evolved strategies

to defend against pathogens, for example, B. bassiana secrets the

defensin-like peptide BbAMP1, which coats fungal spores in order

to target and damage Gram-positive bacterial cells, thus suppressing

the defensive microbiomes on the host surface (106). This

highlights the dynamic and complex interactions between EPF

and insect host defenses. Elucidating the critical chemical

components, proteins, or ectomicrobiomes that play inhibitory or

facilitating roles in EPF infection is essential for the development of

highly effective EPF or synergistic agents.
3 Fungal penetration and growth in
hemolymph and insect
immune responses

3.1 EPF penetration of the insect cuticle
and growth in hemolymph

The appressorium is responsible for generating a narrow

penetration peg. This peg, under the pressure exerted by the

turgor within the appressorium, can generate a downward force

to breach the cuticle. Turgor is generated by the accumulation of

solutes, cell compartmentalization and water uptake (107–109).

Occasionally, the cuticle is slightly distorted at the penetration

site, indicating substantial pressure during penetration (57). The

penetration of the cuticle is not only achieved through mechanical

pressure; it is also facilitated by enzymatic degradation of EPF. The

cuticle mainly consists of a chitin framework, tanned proteins and

lipids, and EPF are capable of producing a variety of extracellular

hydrolytic enzymes that cooperate to degrade the cuticle (110, 111).

The most commonly studied proteolytic enzymes are the subtilisin-
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like serine-protease Pr1 and trypsin-like protease Pr2 in B. bassiana

and M. anisopliae (112). Chitinase genes chit1, chiti2, and chit3 in

M. anisopliae and Bbchit1 in B. bassiana have also been well studied

(113–115). It has been demonstrated that overexpressing the Pr‐like

protease and chitinase in engineered B. bassiana strains

significantly accelerates insect death (116). Moreover, EPF have

evolved expansions of serine proteases and chitinases to facilitate

cuticle degradation (117), and applied research onthese enzymes

has been conducted (118). After successfully penetrating the cuticle,

hyphae can invade the insect hemolymph (Figure 2). Within this

environment, EPF generate hyphal bodies, using available nutrients

for growth and reproduction through the budding process (119).

These hyphal bodies exhibit a distinctive brush-like outermost

structure and are believed to have modified carbohydrate

epitopes, e.g. lower glucan contents compared to other propagules

like submerged conidia and hyphae, which may contribute to their

ability to evade host immune responses (31, 50, 120, 121). For

example, hyphal bodies of M. rileyi induce weaker cellular immune

responses in the body cavity of Helicoverpa armigera caterpillars

compared to M. rileyi conidia (122). Additionally, EPF express a

range of proteins to coat hyphal bodies, camouflaging their cell wall

structures to further evade the host insect immunity (123, 124). An

example of such proteins includes LysM domain-containing

proteins in B. bassiana that bind to chitin in the cell wall to aid

in evading insect immunity (125).
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3.2 Production of insecticidal and
immunosuppressive metabolites by EPF

The primary source of nutrition for EPF growth is derived from

the insect hemolymph, and the most abundant carbohydrate is the

disaccharide trehalose. To access this vital resource, EPF secrete

trehalase to break down trehalose and absorb the resulting glucose,

or alternatively, they may transport trehalose into their cells for

intracellular processing (126, 127). Furthermore, EPF are capable of

secreting a range of insecticidal and immunosuppressive

metabolites, which serve to hasten the death of the host or

interfere with insect immune responses (128) (Figure 2). For

example, B. bassiana produces certain compounds like

beauveric in, beauveriol ides , 2-pyridone tenel l in , and

benzoquinone oosporein, which possess insecticidal and cytotoxic

properties, expediting fungal colonization (129–132). Cyclopeptide

destruxins secreted by EPF such asM. anisopliae have been found to

deactivate prophenoloxidases (PPOs) and suppress antimicrobial

peptide (AMP) gene expression by targeting immunophilins (133,

134). The M35 family of metalloproteases in M. robertsii can

degrade the PPOs of the host, and M. robertsii can directly

degrade the inductive antifungal AMPs and protease inhibitors

present in insects (135, 136). The extracellular laccase encoded by

BbLac2 in the hyphal bodies of B. bassiana can oxidize and

deactivate PPOs, as well as eliminate the reactive oxygen species
FIGURE 2

Schematic representation of the interaction between EPF and the insect immune system during the penetration and intra-hemolymph growth
phase. Appressoria achieve turgidity and generate penetration pegs. EPF deploy extracellular hydrolytic enzymes to breach the cuticle. Hyphal
bodies can produce insecticidal and immunosuppressive metabolites (ISMs), which can deactivate or degrade PPOs, and suppress AMP gene
expression. Hyphal bodies can initiate cellular and humoral responses as well as activating the PPO cascade in the compromised insect.
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(ROS) in the insect hemocoel (137). Furthermore, microRNA-like

RNA is even utilized by EPF to silence the expression of the

immune genes of insects, for example, B. bassiana exports a

microRNA-like RNA (bba-milR1) that can silence expression of

the mosquito Toll receptor ligand Spätzle 4 (Spz4), which finally

attenuated mosquito immune responses (138). In summary, EPF

appear to have evolved effector mechanisms akin to those found in

phytopathogens, which serve to disrupt host immunity. Further

research in this area is warranted to gain a deeper understanding of

these interactions.
3.3 Insect immune responses during
EPF infection

The insect cuticle serves crucial functions in wound healing and

it can also produce immune responses (139). During the EPF

penetration, the cuticle triggers a hemostatic response to

minimize hemolymph leakage, while simultaneously initiating

immune reactions, such as melanization (140) (Figure 2).

Cuticular melanization is initiated by the PPO activation cascade

and involves the conversion of phenolic substrates into black-brown

pigments by the phenoloxidase (PO) enzyme (141, 142). In this

reaction, ROS and toxic intermediates produced during melanin

synthesis can encircle and neutralize pathogens, forming nodules

through hemocyte aggregation (143, 144). Furthermore, end-

product melanin pigments are important structural and protective

elements of the cuticle. The accumulation of melanin in the insect

cuticle aids in wound healing and acts as a barrier and toxin to

retard cuticular penetration (145, 146). Moreover, hemocytes may

migrate to the penetration sites to assist in wound repair and release

AMPs by penetrating the basement membrane (33, 147).

When EPF successfully penetrate the cuticle and enter the

hemocoel, the insect innate immune springs into action. Through

a combination of humoral and cellular responses, along with the

PPO cascade, the different layers of the immune system work

together to combat the infection (Figure 2). This coordinated

effort is initiated by the recognition of microbe-associated

molecular patterns (MAMPs) by pathogen recognition receptors

(PRRs) present in the hemocoel (148–150). As described before, the

PPO the cascade is initiated through the interaction of MAMPs

with hemocyte-bound PRRs in the hemocoel. Then PO converts

phenolic substrates, facilitating the biosynthesis of microbicidal

pigment and melanin with the cooperation of hemocytes (142,

151). Mutants with lower PPO activity in Drosophila and

mosquitoes experience higher mortality when exposed to

Metarhizium and Beauveria pathogens, underscoring the

importance of melanization in defending EPF (152, 153).

Humoral immunity in insects engages the fat body in the

biosynthesis of antimicrobial effectors such as AMPs and

lysozyme (148, 154). These effectors are produced through the

activation of Toll and Immune Deficiency (IMD) signaling

pathways and are subsequently secreted into the body cavity to

combat the invading microbes. Several antifungal peptides have

been characterized, such as termicin from termites (155),

drosomycin, metchnikowin, Baramicin A and thanatin from
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Drosophila (156–158), heliomycin from Heliothis virescens (159),

gallerimycin from Galleria mellonella larvae (160), cecropins from

Hyalophora cecropia (161). Mutations in certain genes of the Toll

pathway lead to increased sensitivity to EPF infection (162, 163).

Moreover, in Drosophila, Toll-dependent AMP responses require

the Toll ligand Spätzle, indicating that the cellular immune response

interacts with the humoral immunity (164).

Notably, the activation of Toll in the fat body and the

overexpression of AMPs can lead to reduced glycogen and

triglyceride storage in this tissue, negatively affecting the body

growth. This suggests that insect immunity places an energy

burden on the host (165, 166). However, EPF have evolved

strategies to suppress PPO and AMP activities, as discussed above

in 3.2 section. The outcome of pathogen-mediated suppression of

the immune system’s excessive activation appears to allow insects to

conserve energy for growth and development. However, the

premise for this hypothesis is contingent on the host insect’s

ability to successfully withstand pathogen invasion and

proliferation through the restrained immune response.
3.4 The insect microbiome regulates the
immune interactions between EPF
and host

Microbes inhabit various parts of the insect body, including

their cuticular surfaces, digestive tissues or cells (endosymbionts),

and tract (gut microbiota). Many studies have reported that gut

bacteria are essential for host physiology including growth and

development, and the establishment and maintenance of the innate

immune system (167–172). Interactions between the insect immune

system and their EPF may have an impact on the structure of the

microbiome, ultimately influencing whether infections are

suppressed or promoted. For example, B. bassiana can interact

with gut microbiota, resulting in EPF-infected mosquitoes

containing gut microbiota dying significantly faster than those

lacking microbiota, while also increasing the gut microbiota load

(173). Similar results have also been observed in Dendroctonus

valens (174). Conversely, the microbiota can suppress EPF

infection. For example, the endosymbiotic bacterium Wolbachia

in Drosophila confers a nonspecific resistance to insect pathogens

including B. bassiana (175). Burkholderia bacterial species

inhabiting the midgut crypts of the Southern chinch bug (Blissus

insularis) can produce antifungal compounds to resist EPF (176).

Gut microbiota in Delia antiqua assists in inhibiting B. bassiana

infection, and the removal of the microbiota diminishes larval

resistance to fungal infection (177). These effects are due to

various EPF metabolites produced during growth in the

hemolymph, which modify the expression of a wide range of host

insect immune genes (67, 178, 179). The microbes on the cuticle can

also shield the host from EPF infection, which has been discussed

above in section 2.3.

Interestingly, as mentioned above, in different insects, the

interaction between gut microbiota and EPF can have completely

opposite effects. The majority of documented instances suggests

that the surface microbiota on insects plays a protective role in
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shielding insects from EPF infections. This effect is likely due to the

direct contact between surface microbiota and EPF, leading to more

intense competition for nutrients and space between them. In contrast,

gut bacteria and EPF have a greater spatial separation (as most EPF

initiate infection from the surface) (54). However, it is important to

note that these inferences require further investigation.
4 The battle between insects and EPF
post infection

When the host’s nutrients are depleted and the insect is on the

brink of death, the EPF must emerge from the insect to generate and

disseminate its conidia. The fungi swiftly transition back to mycelial

growth, initiating cuticular penetration once again. Only the hyphae

that have successfully breached the insect cuticle are able to generate

dispersal conidia, and the genes employed during the host invasion

phase are subsequently repurposed for the process, enabling a swift

and resource-efficient transformation (28, 31). An illustrative

example is BbMPK1, known for its crucial role in virulence, as

well as in the adhesion and differentiation of appressoria, and

penetration of the insect cuticle (180). When mutant conidia

lacking BbMPK1 are injected into the hemocoel, they can

generate growing hyphae, but they are incapable of emerging

from the surface of insect cadavers (180). Similar factors involved

in both inward and outward cuticular penetration have also been

explored inM. acridum (MaPls1 gene) (181). This genetic versatility

enables a swift and efficient adaptation to new hosts. Conidia

regenerated on the host surface are primarily dispersed by non-

biological means, such as water and wind (182). The hydrophobic

nature of EPF conidia serve not only for promoting the attachment

to the insect cuticle, but also for facilitating dispersion via water

(183). Additionally, some Metarhizium species can produce and

accumulate the mycotoxin swainsonine, which protect the insect

cadavers from being consumed by birds or other animals (184)

(Figure 1B). Moreover, other EPF species can behaviorally

manipulate infected hosts to ensure dispersal. This phenomenon

is exemplified by the enticement of male houseflies (Musca

domestica) by the cadavers of female flies that have previously

been infected with Entomophthora mascae (185). Additionally,

insect carcasses serve as a nutritional source for the insect or

environmental microbiome, typically, only a few other microbes

can proliferate from carcasses, and the fungal spores will be laden

within the remains of the insect. This suggests that EPF can

suppress the competitive proliferation of other microbes in insects

or the environment, thus gaining an edge in assimilating host

nutrients. For instance, oosporein released from B. bassiana have

been suggested to participate in inhibiting the growth of bacteria

originating from insect cadavers (131), and B. bassiana can also be

induced to produce iron-chelating 2-pyridones to outcompete other

antagonistic microbes (132). The isolation of other microbes with

insecticidal activity from the insect carcasses may facilitate the

development of synergistic mixtures.
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Conversely, various strategies have evolved for infected insects

to prevent the further spread of EPF, particularly among social

group-living insects. For example, EPF infected individuals distance

themselves from the nest to avoid disease transmission among

nestmates. Ant workers ofMyrmica rubra infected byM. brunneum

are attracted to light, they display a decrease in their attraction

towards nestmates or colony odor, and ultimately they withdraw

from the nest, possibly because the EPF impair the olfactory system

of the infected ants (186). Carpenter ants (Camponotus aethiops)

infected by M. brunneum reduce social interactions and contact

with brood, spending most of their time outside the nest until death

(187). Sick honey bee workers (Apis mellifera) engage in altruistic

self-removal, removing themselves from their colony to prevent

disease transmission (188). Clearly, this disease-preventing strategy

in social insects is detrimental to the dissemination of EPF, but it

remains unclear how EPF responds to the defense strategies of

social insects. The reasons behind this lack of understanding are

uncertain, whether it is due to our limited information or because

EPF have not yet evolved effective strategies remains unclear.

Besides, behavioral changes in non-social insects to avoid further

EPF infection will also be a subject of future investigation.
5 Synergy between EPF infection
and disruption of insect
defensive strategies

In light of our understanding of EPF infection mechanisms and

insect anti-EPF defensive strategies, emerging practical evidence

suggests that the EPF-mediated disruption of insect immune

responses can amplify EPF virulence, offering a promising

perspective for refining pest management tactics (Table 1). These

synergistic approaches could be broadly categorized into four aspects

corresponding to EPF infection: 1) Artificially enhancing EPF

attachment or penetration capability through various methods. For

example, anoil-in-glycerol formulationenhances the lethal infectionof

M. anisopliae conidia to the Red Palm Weevil (Rhynchophorus

ferrugineus) by promoting adhesion (189); 2) Suppressing or evading

host insect immunity through RNAi or specific chemicals. For

example, ingestion of bacteria expressing immune-suppressive

double-stranded RNAs (dsRNAs) leads to significantly increased

mortality in the leaf beetle Plagiodera versicolora following B.

bassiana infection (207). Similar results have been achieved by

modifying either EPF or the insect host plant to successfully deliver

dsRNA targeting crucial immune genes of the insect (200). 3)

Disrupting the detection abilities of social insects to facilitate EPF

dispersal. This can be accomplished by genetically modifying EPF to

make the pathogens less recognizable to insects, thus avoiding social

immunity. Alternatively, disrupting communication in social insects

(e.g., usingpesticides ordsRNAcan increaseEPFdisseminationwithin

populations) (208, 209). While applications in this area are currently

limited, the hypothesis holds significant potential andwarrants further

exploration.4)Thedevelopmentofmixedmicrobial formulationswith
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synergistic effect alongside EPF, such as (Bacillus thuringiensis +

Metarhizium species) pesticides, can offset the limitations of

individual pesticides and enhance the control efficiency of EPF in

field applications (210, 213). These combined agents present a more

socially acceptable strategy compared to genetically modified strains,

as they entail lower safety risks.
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6 Concluding remarks

Overall, this review primarily delves into the interplay between EPF

infection and insect defenses, emphasizing three pivotal infection stages.

While our comprehension of the immunological interaction between

insects and EPF is extensive, there are still some specific pathways that
TABLE 1 The methods to increase EPF infection by disrupting insect defenses.

Categories EPF species Content References

Enhancing EPF virulence through
formulations and genetic engineering

M. anisopliae
An oil-in-glycerol formulation enhances the adhesion of M.
anisopliae conidia

(189)

M. brunneum
A Pickering emulsion leads to a two-fold more increase in adhesion of M.
brunneum conidia

(190)

B. bassiana A diatomaceous earth can increase B. bassiana conidia attachment (191)

Metharizium and
Beauveria species

Biopolymer-based formulations improve fungal spore delivery, persistence,
and adherence to target insects

(192)

B. bassiana
Expression of a hybrid protease in B. bassiana significantly increased fungal
virulence by accelerating cuticular penetration

(193)

B. bassiana
Overexpressing both protease and chitinase in B. bassiana increased its
virulence by accelerating cuticular penetration

(194)

M. acridum
Overexpression of a trehalase (ATM1) accelerated the growth of M. acridum
in the hemocoel of locusts and improve virulence

(195)

M. acridum
Transferring an esterase gene (Mest1) from the generalist M. robertsii to the
locust specialist M. acridum enabled the latter to expand its host range

(116, 196)

Suppressing or evading host insect immunity
through genetically engineering and RNAi

Isaria fumosorosea
I. fumosorosea with Toll-like receptor 7 targeted dsRNA is more virulent than
wild fungus against white fly (Bemisia tabaci)

(197, 198)

M. robertsii
M. robertsii expressing dspr1A (cuticle-degrading protease Pr1A) and
dsBjaIT (the scorpion neurotoxin) exhibited an increased virulence

(199)

M. anisopliae
DsRNA-expressed M. anisopliae targeting Apolipophorin-D and Relish
exhibited higher virulence

(200, 201)

M. brunneum
DsRNA-expressed M. brunneum targeting insect metalloprotease inhibitor
presented an enhanced virulence

(202)

B. bassiana
The spray of dsRNA targeting insect immune genes and GNBP1 enhanced
the virulence of B. bassiana in aphid control

(203, 204)

B. bassiana
B. bassiana expressing immunosuppressive microRNAs suppressed insect
immunity and increased its virulence

(205)

Lecanicillium
attenuatum

L. attenuatum expressing dsRNAs targeting insect immune genes including
PPO showed an enhanced virulence

(206)

B. bassiana
Combining B. bassiana with immune suppressive dsRNAs expressing bacteria
facilitated the fungal infection

(207)

Disrupting the detection abilities of social
insects to facilitate EPF dispersal

B. bassiana
Expressing a fire ant neuropeptide in B. bassiana increased fungal virulence
and disrupted the ant’s removal behavior

(208)

M. anisopliae
Upregulating the expression of locust’s OBPs impairs the insect immune
responses and alters avoidance behavior

(66)

M. anisopliae
Silencing Phosphofructokinase gene disturbed termite social behaviors and
weakened its immunity against fungal infections

(209)

Mixed microbial formulations

M. robertsii
The synergistic effect between the EPF M. robertsii and the bacterium
Bacillus thuringiensis

(210, 211)

B. bassiana A mixture of B. thuringiensis and B. bassiana blastospores (212)

B. bassiana and
Metarhizium

species

The combination treatments of B. bassiana, Metarhizium species, and
B. thuringeinsis

(213, 214)
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remain elusive. Moreover, the interaction between host-pathogen

transcends mere immunological interplay, which encompasses pre-

contact communication and the dispersal of EPF post-infection. Their

interaction in these stages exhibits awider array offorms, often involving

more species and even producing important ecological or epizootic

consequences.A comprehensiveunderstandingof the intricate interplay

not only provides molecular insights into fungus-insect interactions but

also holds promise for the development of cost-effective and

environmentally-friendly pest management strategies.
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Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing
components of an arms race between a host and pathogen. Proc Natl Acad Sci (2015)
112(28):E3651-60. doi: 10.1073/pnas.1504552112

97. Ulrich KR, Feldlaufer MF, Kramer M, St. Leger RJ. Inhibition of the
entomopathogenic fungus Metarhizium anisopliae sensu lato in vitro by the bed bug
defensive secretions (E)-2-hexenal and (E)-2-octenal. BioControl (2015) 60(4):517–26.
doi: 10.1007/s10526-015-9667-2

98. Hong S, Sun Y, Sun D, Wang C. Microbiome assembly on Drosophila body
surfaces benefits the flies to combat fungal infections. iScience (2022) 25(6):104408.
doi: 10.1016/j.isci.2022.104408

99. Toledo AV, Alippi AM, de Remes Lenicov AMM. Growth Inhibition of
Beauveria bassiana by bacteria isolated from the cuticular surface of the corn
leafhopper, Dalbulus maidis and the planthopper, Delphacodes kuscheli, two
important vectors of maize pathogens. J Insect Sci (2011) 11(29):1–13. doi: 10.1673/
031.011.0129
Frontiers in Immunology 11
100. Mattoso TC, Moreira DDO, Samuels RI. Symbiotic bacteria on the cuticle of the
leaf-cutting ant Acromyrmex subterraneus subterraneus protect workers from attack by
entomopathogenic fungi. Biol Lett (2011) 8(3):461–4. doi: 10.1098/rsbl.2011.0963

101. Miller DL, Smith EA, Newton ILG. A bacterial symbiont protects honey bees
from fungal disease. MBio (2021) 12(3):e0050321. doi: 10.1128/mBio.00503-21

102. Wang X, Yang X, Zhou F, Tian ZQ, Cheng J, Michaud JP, et al. Symbiotic
bacteria on the cuticle protect the oriental fruit moth Grapholita molesta from fungal
infection. Biol Control: Theory Appl Pest Manage (2022) 169:104895. doi: 10.1016/
j.biocontrol.2022.104895

103. Janke RS, Kaftan F, Niehs SP, Scherlach K, Rodrigues A, Svatos ̌ A, et al.
Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting
stages. ISME J (2022) 16(12):2691–701. doi: 10.1038/s41396-022-01311-x

104. Little AEF, Murakami T, Mueller UG, Currie CR. Defending against parasites:
fungus-growing ants combine specialized behaviours and microbial symbionts to
protect their fungus gardens. Biol Lett (2006) 2(1):12–6. doi: 10.1098/rsbl.2005.0371

105. Folgarait P, Gorosito N, Poulsen M, Currie CR. Preliminary in vitro insights
into the use of natural fungal pathogens of leaf-cutting ants as biocontrol agents. Curr
Microbiol (2011) 63(3):250–8. doi: 10.1007/s00284-011-9944-y

106. Hong S, Sun Y, Chen H, Wang C. Suppression of the insect cuticular
microbiomes by a fungal defensin to facilitate parasite infection. ISME J (2023) 17
(1):1–11. doi: 10.1038/s41396-022-01323-7

107. Thines E, Weber RW, Talbot NJ. MAP kinase and protein kinase a-dependent
mobilization of triacylglycerol and glycogen during appressorium turgor generation by
Magnaporthe grisea. Plant Cell (2000) 12(9):1703–18. doi: 10.1105/tpc.12.9.1703

108. Wang C, St. Leger RJ. The Metarhizium anisopliae perilipin homolog MPL1
regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem
(2007) 282(29):21110–5. doi: 10.1074/jbc.M609592200

109. Hallsworth JE, Magan N. Culture age, temperature, and pH affect the polyol
and trehalose contents of fungal propagules. Appl Environ Microbiol (1996) 62
(7):2435–42. doi: 10.1128/aem.62.7.2435-2442.1996

110. Schrank A, Vainstein MH. Metarhizium anisopliae enzymes and toxins.
Toxicon (2010) 56(7):1267–74. doi: 10.1016/j.toxicon.2010.03.008

111. Lee SJ, Lee MR, Kim S, Kim JC, Park SE, Shin TY, et al. Conidiogenesis-related
DNA photolyase gene in Beauveria bassiana. J Invertebr Pathol (2018) 153:85–91.
doi: 10.1016/j.jip.2018.02.013
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