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A double-edged sword:
interactions of CX3CL1/CX3CR1
and gut microbiota in systemic
lupus erythematosus
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Systemic lupus erythematosus (SLE) is a systemic chronic disease initiated by an

abnormal immune response to self and can affect multiple organs. SLE is

characterized by the production of autoantibodies and the deposition of

immune complexes. In regard to the clinical observations assessed by

rheumatologists, several chemokines and cytokines also contribute to disease

progression. One such chemokine and adhesion molecule is CX3CL1 (otherwise

known as fractalkine). CX3CL1 is involved in cell trafficking and inflammation

through recognition by its receptor, CX3CR1. The CX3CL1 protein consists of a

chemokine domain and a mucin-like stalk that allows it to function both as a

chemoattractant and as an adhesion molecule. In inflammation and specifically

lupus, the literature displays contradictory evidence for the functions of CX3CL1/

CX3CR1 interactions. In addition, the gut microbiota has been shown to play an

important role in the pathogenesis of SLE. This review highlights current studies

that illustrate the interactions of the gut microbiota and CX3CR1 in SLE.
KEYWORDS

systemic lupus erythematosus, lupus, lupus nephritis, CX3CR1, gut microbiota,
autoimmune disease, autoimmunity
1 Introduction

Systemic lupus erythematosus (SLE), also known as lupus, is a chronic autoimmune

disease that can affect multiple organs in the body (1, 2). The disease is caused by an

abnormal autoimmune response (1, 3). Normally, the body’s immune system works to

protect against foreign invaders. In SLE, the immune system becomes hyperactive,

producing antibodies that attack normal tissues and organs, some of which include the

skin, blood, heart, lungs, joints, kidneys, and brain (2, 3). SLE is diagnosed when a patient

meets 4 out of 11 diagnostic criteria, established by the American College of Rheumatology

and the European League Against Rheumatism. It is one of the most heterogeneous diseases

treated by physicians, presenting challenges to the diagnosis as well as establishment of
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proper treatments (4). Lupus is characterized by “on” and “off”

periods known as flares and remission, respectively. These are when

the patient endures periods of illness and periods of wellness,

respectively (3, 5). Phenotypic expression of lupus varies between

individuals from different ethnicities (6), with incidence rates

ranging between 20 and 200 cases per 100,000 persons. There is a

higher prevalence in individuals of African, Asian, and Hispanic

backgrounds or ancestries (2, 6). SLE affects both men and women;

however, the disease is much more frequent among women than

men (6), particularly in women of childbearing age who are

diagnosed nine times more frequently than men (2). In more

economically developed countries, the 5-year survival rate is over

95% in both adults and children; however, in less economically

developed countries, the survival is significantly lower in both

populations (7). Although the cause of SLE is unknown (3), there

are some factors that influence the development and/or severity of

SLE, such as lifestyle, environmental, genetic, epigenetic, hormonal,

and immunoregulatory factors (Figure 1).
2 Roles of CX3CL1/CX3CR1 in SLE

Chemokines are a group of molecules that recruit leukocyte

subsets under homeostatic and pathological conditions (8). The

chemokine ligand superfamily is divided into two subgroups: the

CC chemokine family, which includes 28 members, and the CXC

chemokine family, which includes 16 members. They interact with

chemokine receptors expressed on the cell surface. Chemokine

receptors are G-protein-coupled receptors and can promote target

cells to adhere to the endothelium or direct their movement to their

destination based on the concentration gradient of a given

chemokine (9). Chemokine C-X3-C motif ligand 1, CX3CL1, also

known as fractalkine, binds to its seven transmembrane G-protein-
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coupled receptor CX3CR1 (10). CX3CR1 was discovered, using

fractalkine–alkaline phosphatase fusion protein in 1997, as a

receptor with a high affinity for CX3CL1 that is expressed by and

lymphocytes and monocytes (10).

CX3CL1 is produced by the renal tubular epithelium in humans

(11), and it can be found on leukocytes, blood monocytes,

phagocytes, and T cells in both humans and mice (12).

CX3CL1 has a soluble form and a transmembrane form, which

function to induce chemotaxis and adhesion of CX3CR1
+

leukocytes, respectively (8). CX3CL1/CX3CR1 interaction has an

antiapoptotic effect that sustains the survival of CX3CR1
+

leukocytes (8, 13). CX3CR1 is found on several types of

leukocytes. It has high expression on CD16+ natural killer cells,

and its expression is upregulated by IL-2 in human CD4+ and CD8+

T cells (10).

In healthy individuals, CX3CR1 is required for atherogenesis

and homeostasis of monocytes by promoting cell survival (13). It

was reported that in the absence of the chemokine receptor or its

ligand, fractalkine, there was a significant reduction in Gr1low blood

monocytes levels under both steady-state and inflammatory

conditions. This suggests that the interaction between CX3CL1

and CX3CR1 is an essential survival signal given that their

absence would lead to monocyte death (13). Of note, Ly6G and

Ly6C, previously referred to as Gr1, are markers of myeloid

differentiation. Neutrophils express Ly6G and Ly6C; in addition,

dendritic cells and subpopulations of lymphocytes and monocytes

express Ly6C (14, 15). Gr1+ cells, under steady-state conditions, can

be found in the bloodstream, contributing to immune surveillance

(16). In inflammatory conditions, Gr1 cells have increased

mobilization of Ly6C+ monocytes from bone marrow to

bloodstream (16). This contributes to monocyte recruitment and

migration to the kidney, which leads to kidney injury (17). In this

aspect, the reduction of Gr1low blood monocytes in the absence of
FIGURE 1

Contributing factors and target organs of systemic lupus erythematosus. Environmental, epigenetic, genetic, hormonal, immunoregulatory, and
lifestyle factors work on the immune system. The actions of the different factors affect and may also damage different organs or tissues.
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CX3CL1 and CX3CR1 interaction may be beneficial, although it is

unclear if the decrease of monocytes in blood is partly due to

increased recruitment to tissues. The latter, obviously, suggests a

protective role of CX3CL1 and CX3CR1 interaction in blocking the

mobilization of Gr1low monocytes from the blood to the kidney.

Therefore, in the context of lupus, the absence of CX3CL1/CX3CR1

interaction may facilitate migration of Gr1+ inflammatory

monocytes to the kidney, causing injury.

However, studies reported that an antagonist of CX3CL1

delayed the onset and slowed the progression of lupus nephritis

in MRL/lpr mice (18), suggesting a detrimental role for CX3CL1/

CX3CR1 interaction in lupus. On the other hand, we demonstrated

that the treatment of Lactobacillus spp. attenuated splenomegaly

and renal lymphadenopathy via a CX3CR1-dependent mechanism

(19), suggesting that CX3CR1 may be used as a target for

therapeutics. Moreover, CX3CR1 may locally prevent profibrotic

macrophage retention, thus reducing kidney fibrosis (20).

Additionally, CX3CL1 acts as a chemoattractant and adhesion

molecule in glomerulonephritis (21). Table 1 illustrates a

dichotomy in the literature concerning CX3CL1/CX3CR1

activation. These studies taken together show that the CX3CL1/

CX3CR1 interaction can be considered to be a “double-edged

sword” due to its involvement of both the pathogenesis and

protection of renal diseases. Notably, some studies were

performed in lupus-like mouse models and further research is

needed for human lupus nephritis.
Frontiers in Immunology 03
3 Roles of gut microbiota in SLE

It has been recognized that a healthy gut microbiome contributes to

the health of the host (30). Microbiota is the microorganisms’ entire

population that colonizes a specific space, which includes archaea,

bacteria, fungi, protozoans, and viruses (31). These microbes occupy

different organs or systems such as the gut, mouth, skin, and vagina (32).

The microbiota engages in many features of normal host physiology,

from nutritional status to stress and behavioral responses. Moreover,

they can contribute to many diseases and affect different organs (31).

The immune system and bacteria have a meticulous relationship that

maintains a balance to control inflammation (19). Gut microbiota

dysbiosis has been reported in numerous autoimmune diseases (33),

including antiphospholipid syndrome (APS) (34), inflammatory bowel

disease (IBD) (35), rheumatoid arthritis (RA) (36), SLE (33), Sjogren’s

syndrome (SS) (37), and systemic sclerosis (SSC) (38). Figure 2

illustrates different bacteria altered in autoimmune diseases.

A study of lupus nephritis linked disease activity to a gut

commensal. Fecal microbiota of SLE patients was tested for

pathobionts using 16S ribosomal RNA (rRNA) analyses, and it was

found that SLE patients possessed a microbiome that had a decrease in

species richness diversity as well as a reduction in taxonomic complexity

(44). Ruminococcus (Blautia) gnavus was found to be significantly

higher in SLE patients than in healthy individuals (44). R. gnavus was

further investigated in a longitudinal analyses of lupus gut microbiota to

study microbiota resilience and disease activity. R. gnavus was found to

be expanded during high disease activity, and it was detected in almost

half of patients during lupus nephritis disease flares. After whole-

genome sequence analysis of R. gnavus, it was found that there were 34

genes that help adapt and expand within a host with inflammation (53).

This rationalizes that these bacteria that are found expanded during

disease flares possess the necessary tools to withstand inflammation.

Toll-like receptor (TLR) 7.1 transgenic (Tg) C57BL/6 mice were

cohoused with wild-type littermates (WTLs). This revealed an

enrichment of Lactobacillus, Desulfovibrio, and Rikenellaceae in

TLR7.1 Tg mice. When WTL mice were colonized with microbiota

containing these pathobionts from TLR7.1 Tg mice, they showed an

increase in leaky gut with translocation of pathobionts (54). Thus, the

enrichment of these bacterial communities exacerbates SLE

pathogenesis. Moreover, fecal transfer from dysbiotic gut microbiota

of triple congenic (TC) lupus-prone mice into germ-free congenic

C57BL/6 mice induced autoimmune phenotypes when TC donor mice

exhibited autoimmunity (55). Again, this shows the significance of how

the gut microbiota affects SLE pathogenesis.

The role of gut microbiota in renal pathogenesis of SLE has not been

widely investigated.We found that the gut microbiota ofMRL/lpr lupus-

prone mice has significant depletion of Lactobacillales as disease

develops. A weekly treatment of a mixture of five Lactobacillus strains

(Lactobacillus gasseri, L. johnsonii, L. oris, L. reuteri, and L. rhamnosus)

attenuated lupus-like clinical signs, including splenomegaly and

lymphadenopathy, and prolonged survival (19). Individually, the

different strains did not have an effect, but the mixture of Lactobacillus

spp. acted synergistically to attenuate lupus-like disease. Mechanistically,

the mixture of Lactobacillus spp. increased the percentages of the effector

memory T cells in the spleen and mesenteric lymph nodes while
TABLE 1 Roles of CX3CL1/CX3CR1 in the kidney as pathogenesis
promoters or regulators.

Promotion
of Pathogenesis

Regulation of Pathogenesis

CX3CR1 facilitates macrophage
movement to the kidney and
supports ischemic acute renal
failure in mice (22).

Through a CX3CR1-dependent
mechanism, Lactobacillus spp. treatment
attenuated splenomegaly and renal
lymphadenopathy in murine lupus (19).

CX3CL1 expression recruits
CX3CR1

+ cells and prolong
glomerulonephritis (21).

The presence of CX3CR1 potentially
reduces kidney fibrosis (20).

CX3CR1 antagonism delays the
onset and ameliorates the
progression of lupus nephritis in
mice (18).

The CX3CR1-dependent adhesion
mechanism protects against kidney damage
during sepsis, via Ly6Chigh monocytes (23).

Systemic activation of CX3CL1/
CX3CR1 contributes to chronic
kidney disease-associated
cardiovascular disease (24).

Loss of function of CX3CR1 leads to
exacerbation of chronic kidney disease
compared to patients that do not have this
loss of function (25).

The aortic CX3CL1/CX3CR1 axis
is upregulated in chronic kidney
disease in mice (26).

Cx3cr1 deficiency exacerbated
glomerulonephritis in MRL/lpr mice (27).

Kidney damage by hypertension
leads to upregulation of CX3CL1
and CX3CR1 (28).

CX3CR1 polymorphism may be
involved in the pathogenesis of
end-stage renal disease (29).
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decreasing the percentages of the central memory T cells and double-

negative T cells. The mentioned outcomes suggest that in order to

attenuate lymphadenopathy and splenomegaly, Lactobacillus spp. may

act on T cells (19). Further investigations will determine if the above

results can be replicated in human SLE patients. Furthermore,

Lactobacillus spp. may increase FOXP3-negative Tr1 cells in the

spleen and mesenteric lymph nodes to control inflammation (19). The

treatment of Lactobacillus reversed a “leaky” gut, which the MRL/lpr

mice possessed. The treatment also promoted an anti-inflammatory

environment by decreasing IL-6 and increasing IL-10 production in the

gut. In the circulation, IL-10 was increased whereas IgG2a was decreased

(the latter of which is believed to be a major immune deposit in the

MRL/lpr kidney). Furthermore, T cells showed a Treg-Th17 balance

toward the Treg phenotype in the kidney (2).

In another study, fecal microbiota transplantation from untreated

active SLE female patients vs. healthy female patients to germ-free (GF)

mice was investigated (56). SLE patients’ fecal microbiota caused GFmice

to develop a series of lupus-like phenotypic features, including

imbalanced cytokines, upregulation of SLE-related genes, autoimmune

antibodies, and altered distribution of immune cells in mucosal and

peripheral immune response. Importantly, these results depict a causal

role of aberrant gut microbiota in influencing the pathogenesis of SLE
Frontiers in Immunology 04
(56). A 12-week investigation of the safety and efficacy of fecal microbiota

transplantation to treat SLE patients was also explored (57). SLE patients

were treated with oral encapsulated fecal microbiome from healthy

donors. Upon completion of this study, it was concluded that fecal

microbiota transplantation is safe and effective for SLE patients. Also, they

found that fecalmicrobiota transplantation alters the gutmicrobiome and

modifies the short-chain fatty acid metabolic profile in SLE patients (57).

There was a decrease in the Firmicutes/Bacteroidetes ratio in SLE

patients (47). This balance between the two phyla in the human gut

microbiota is dependent on the individual’s physiology. This ratio is

important because dysbiosis of these two phyla in the intestines is

associated with SLE (47). Another study has shown that the frequency

of Synergistetes positivity correlated with the Firmicutes/Bacteroidetes

ratio in healthy individuals but reduced in SLE patients’ fecal samples

with an increase in anti-double stranded DNA (dsDNA) titers (52).

This may suggest a protective role that the intestinal bacterium

Synergistetes has on humoral immunity. Notably, many studies,

including ours, have used 16S rRNA sequencing that can only be

accurate at the genus level. Genus-level microbiota evaluation is likely

insufficient to ideally link mechanisms of pathobionts to SLE disease.

Metagenomic shotgun sequencing, which can reach species and even

the strain level, will be more useful.
FIGURE 2

Phylogenetic tree of bacteria and autoimmune diseases. Each taxonomy level has a different color. Autoimmune disease and where in the body the
bacteria is found are located under the studied bacterium. Autoimmune disease in “red” indicates the bacteria contributes to its pathogenesis and
autoimmune disease in “blue” indicates the bacteria contributes to its attenuation.
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4 Interaction of CX3CR1 and gut
microbiota in SLE
CX3CR1
+ cells are present in tissues lining the intestine, and

phagocytes expressing CX3CR1 can clear pathogenic bacteria from

the gut lumen (58). When the chemokine is absent, the integrity of the

intestinal barrier is compromised (12). This phenomenon results in an

altered microbiome as well as endotoxemia and aggravation of the gut

and liver inflammation (59, 60). This suggests that in SLE, CX3CR1

may play a protective role in clearing pathogenic gut bacteria and, in its

absence, the gut lining may be compromised, which will cause a leaky

gut and bacteria to interact with peripheral organs, consequently

causing inflammation.

Using the MRL/lpr lupus nephritis model, we observed the

enhancement of gut mucosal barrier with Lactobacillales treatment

that resulted in less bacteria translocation across the intestinal

epithelium (2). This led to reduced activation and migration of

CX3CR1
+ antigen-presenting cells to lymph nodes. Furthermore, the

Lactobacillales treatment significantly reduced Cx3cr1 in the
Frontiers in Immunology 05
mesenteric lymph node, which would suggest that the treatment may

reduce the migration of antigen-presenting cells to the mesenteric

lymph node (2).

We have demonstrated that Cx3cr1-deficient mice have a

noticeably different gut microbiota from Cx3cr1+/+ mice (27). The

gut microbiota of Cx3cr1-deficient mice was corrected with

Lactobacillus administration, and consequently, glomerulonephritis

was reversed (27). This suggests that CX3CR1 plays an important

role in glomerulonephritis in MRL/lprmice through a gut microbiota-

dependent mechanism. We demonstrated that the treatment of

Lactobacil lus spp. attenuated splenomegaly and renal

lymphadenopathy via a CX3CR1-dependent mechanism (19),

suggesting that CX3CR1 may be used as a target for therapeutics.

In C57BL/6 mice, the depletion of the gut microbiota via broad-

spectrum antibiotics, which was reversible by fecal transplantation,

decreased the levels of CX3CR1 in macrophages and bone marrow

monocytes (61). This suggests that the gutmicrobiota plays a role in the

inductionofCX3CR1 in addition to activationof downstreampathways.

Figure 3 illustrates different mechanisms of action for CX3CR1

as it interacts with CX3CL1 and the gut microbiota in SLE.
FIGURE 3

Proposed mechanisms of action of CX3CR1 and gut microbiota in SLE. The top right section shows CX3CR1 interaction with membrane-bound and
soluble CX3CL1 on different immune cells. The top left section illustrates the intracellular mechanism of action once CX3CR1 is activated. The
bottom right section expresses the consequences of the absence of CX3CR1. The bottom left section displays the effects of excessive activation
of CX3CR1.
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CX3CR1 has not been studied in context with the gut

microbiota in human SLE. We speculate that a single loss-of-

function nucleotide polymorphism of CX3CR1 in humans may

result in an exacerbation of lupus nephritis. Further investigation of

CX3CR1 is needed in order to replicate the mentioned findings in

human SLE patients.
5 Conclusion and future directions

While the cause of SLE remains unknown, there are factors that

can influence its severity, including environmental, epigenetic,

genetic, hormonal, immunoregulatory, and lifestyle factors. When

SLE is in the “on” phase of the disease, it may affect the kidney,

lungs, joints, heart, skin, and/or brain. We and others have

established that the gut microbiota is a causative factor in SLE

instead of the result. Indeed, immune cells help maintain the gut

barrier and protect against pathogens entering the body. The

CX3CR1 receptor helps maintain the integrity of the gut barrier

(12). The data are more in support of its protective properties in

SLE. Finally, the gut microbiota and CX3CR1 interact to influence

one another in various pathways.

The pathways by which the gut microbiota and CX3CR1

interact are not well studied. Investigations suggest that the gut

microbial dysbiosis causing a leaky gut activates CX3CR1-

expressing cells, which subsequently increase inflammation, thus

causing aggregated spleen and/or kidney inflammation. It was

reported that a single loss-of-function nucleotide polymorphism

of CX3CR1 leads to exacerbation of chronic kidney disease

compared to patients that do not have this loss of function (25).

An altered gut microbiome may lead to lupus nephritis, and when

combined with the loss of function of CX3CR1, it may increase the

risk of renal failure.

The contradictions in Table 1 are pronounced studies that

ought to be investigated further for a better understanding of

CX3CL1/CX3CR1 interactions, particularly on how they can be

used therapeutically. A potential treatment of the leaky gut in lupus

is to agonize CX3CR1 in antigen-presenting cells, which may

activate these cells to clear any bacteria leaking from the gut.
Frontiers in Immunology 06
Future investigations may shed light on whether CX3CR1 is a

friend or foe in SLE. This may be addressed by blocking CX3CR1

or its ligand, CX3CL1, and assess disease progression. Another way

to investigate the role of CX3CR1 is to have a conditional knockout

in an SLE model and dissect the mechanism of action of CX3CR1 in

a cell- or tissue-specific manner.
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