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Tumour microenvironment
influences response
to treatment in
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The poor treatment response of oesophageal adenocarcinoma (OAC) leads to

low survival rates. Its increasing incidence makes finding more effective

treatment a priority. Recent treatment improvements can be attributed to the

inclusion of the tumour microenvironment (TME) and immune infiltrates in

treatment decisions. OAC TME is largely immunosuppressed and reflects

treatment resistance as patients with inflamed TME have better outcomes.

Priming the tumour with the appropriate neoadjuvant chemoradiotherapy

treatment could lead to higher immune infiltrations and higher expression of

immune checkpoints, such as PD-1/PDL-1, CTLA4 or emerging new targets:

LAG-3, TIM-3, TIGIT or ICOS. Multiple trials support the addition of immune

checkpoint inhibitors to the current standard of care. However, results vary,

supporting the need for better response biomarkers based on TME composition.

This review explores what is known about OAC TME, the clinical significance of

the various cell populations infiltrating it and the emerging therapeutical

combination with a focus on immune checkpoints inhibitors.
KEYWORDS

oesophageal adenocarcinoma, tumour microenvironment, immune infiltrate,
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1 Introduction

Oesophageal cancer is the sixth most lethal cancer worldwide (1). Although most

cases are oesophageal squamous cell carcinoma (OSCC), its incidence is decreasing

while the incidence of oesophageal adenocarcinoma (OAC) is rapidly rising worldwide

(2). OAC cases outnumber OSCC in developed countries, which can be attributed to

epidemiological risk factors. Known risks factors include increasing age, male sex,

obesity, gastro-oesophageal reflux disease (GORD), smoking, and diets low in fibre (3).

Over time GORD can lead to Barrett’s oesophagus (BO), a precancerous lesion with
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intestinal and gastric metaplasia composed of columnar and goblets

cells replacing the normal squamous epithelia in the oesophagus.

Symptoms appear at late stages, leading to late-diagnosis and poor

survival. OAC 5-year survival is amongst the lowest (4).

Perioperative chemotherapy or neoadjuvant chemo(radio)therapy

(NAC) with surgery remains the standard of care for curative intent

disease. However, with the advent of immunotherapy therapeutic

options have expanded to include immune checkpoint inhibitors

(ICI) in both the curative and palliative settings (5, 6). Significant

treatment improvement has been made in other cancer types, but

ICI response in OAC is moderate. Only a minority of patients

shows a complete or partial response when treated with

immunotherapy (7). Treatment strategies across cancers are

moving towards personalised medicine. Hence, it is crucial to

stratify patients and identify biomarkers to predict treatment

efficacy and minimize toxicity.

Immunotherapy efficiency relies on the patient’s immune

system, and more specifically on the immune cells surrounding

and infiltrating the tumour. This immune infiltration, together with

other cell populations, composes the tumour micro-environment

(TME). Due to its potential predictive and prognostic value, the

TME is becoming a major research focus to better tailor

therapeutic strategies.

This review will explore the current knowledge concerning the

OAC TME and focus on the clinical importance of considering the

TME to guide therapeutic approaches.
2 OAC TME

Cancer is a genetic disease underpinned by DNAmutations that

allow unregulated cell growth. These DNA mutations can result

in the production of abnormal proteins, known as tumour

antigens, which are eliminated by the host immune system in a

process known as immunosurveillance. Tumours may escape

immunosurveillance through several active mechanisms that

results in the recruitment and modulation of diverse cell

populations within the TME including immune and stromal

cells. Therefore, characterising the TME in OAC is crucial

to enabling informed patient selection to predict treatment

response to standard therapies and ICIs and ultimately improve

patient outcomes (8).
2.1 TME composition and
clinical significance

Tumours evolve to form a complex ecosystem composed of

cancerous cells infiltrated by diverse immune cells, mainly T cells, B
Abbreviations: BO, Barrett’s oesophagus; CAF, cancer-associated fibroblasts;

GORD, gastro-oesophageal reflux disease; ICI, Immune Checkpoint Inhibitor;

NAC, neoadjuvant chemo(radio)therapy; OAC, oesophageal adenocarcinoma;

OS, overall survival; OSCC, Oesophageal Squamous Cell Carcinoma; TME,

tumour microenvironment.
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cells and macrophages, and a rich stroma, mainly constituted of

cancer-associated fibroblasts (CAFs), endothelial cells forming

blood vessels and extracellular matrix components (9, 10).

Depending on the proportion, location, and phenotype of the

different cell populations, the TME switches between being pro-

or anti-inflammatory (11). The TME communicates with tumour

cells through cytokines, chemokines, and growth factors, leading to

a dynamic tumour evolution following the environmental cues.

Chronic exposure of the oesophagus to gastric acid reflux

favours a chronically inflamed environment. Recent studies

showed a progressive shift in the immune populations present in

the oesophagus during the evolution from BO to OAC (12, 13).

Immune populations progressively invade BO microenvironment,

however a diminution of the immune infiltrate is noted between a

highly dysplastic oesophagus and OAC. The profiles of released

cytokines and chemokines also support a more inflamed

environment in OAC while immune-stimulating cytokines only

show slight increase during the evolution from BO to OAC. Some

evidence support the important role of CAFs in the development of

BO and progression to OAC (14, 15). These immune changes

contribute to the establishment of a pro-tumorigenic environment

promoting OAC development (16).

Several studies describing the TME in OAC associated clinical

outcomes to the presence or absence of specific cell populations. It is

widely accepted that a higher level of total immune cells, or total

tumour-infiltrating lymphocytes, is linked to longer overall survival

(OS) independently from the chosen therapeutic approach (17–22).

Derks et al. reported OAC had a lower T cell density compared to

gastric tumours (23). It is important to distinguish between

phenotypes of the infiltrating T cell subpopulation. Higher

immunoregulatory T cell infiltrations have been found in non-

responders to NAC, whereas complete responders showed higher

tissue-resident or circulating memory T cells (24, 25). Stein et al.

found contradictory results with a positive correlation between high

regulatory T cell infiltration and OS (26). Effector T cells can also

become ineffective or differentiate to an immunoregulatory

phenotypes with the overexpression of specific surface proteins,

known as immune checkpoints. These include programmed cell

death protein 1 (PD-1), cytotoxic T lymphocyte-associated protein

4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), T-cell

immunoglobulin and mucin domain 3 (TIM-3) or inducible T-

cell costimulator (ICOS) (Figure 1). Several studies linked the high

expression of immune checkpoints with treatment response or OS

(22, 27). The location of the immune infiltrate is also a key

parameter. Patients with a higher T cell infiltration in the tumour

core had a better response to NAC and a significant survival benefit

(19, 25, 26). However, this benefit was not observed in patients with

high T cell infiltration in the tumour invasive margin or in the

tumour periphery. Other studies reported CD8+ T cells located in

the stroma were also a prognostic marker associated with better OS

(21, 22). This emphasises the importance to precisely characterise T

cell infiltration with subpopulation phenotyping while assessing the

spatial distribution of these cells.
Other immune populations play a role in cancer progression

and treatment, but fewer studies described them in OAC. Haddad

et al. reported an enrichment of macrophages with an anti-
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inflammatory phenotype in the TME (21). High anti-inflammatory

macrophage infiltration has been linked to NAC non-responders

and poor survival in small OAC cohorts (24, 28). Derks et al.

reported that contrary to CD8+ T cells being included from the

tumour core, macrophages seemed to be able to infiltrate it quite

homogeneously (23). Mylod et al. reported low levels of infiltrating

NK cells compared to circulating NK cells (29).

Emerging evidence suggests that stromal cells play an important

role. Courrech Staal et al. validated a stroma score in OAC biopsies, a

higher score was associated with better survival (30). Huai et al. found

that OAC stromal cell infiltration was correlated with tumour stage

(31). Activated CAFs correlated with poor OS and favoured OAC

growth and invasion through paracrine communication (32). Sharpe

et al. reported CAFs drive resistance to chemotherapy and found that

blocking CAFs phosphodiesterase type 5 would prevent normal

fibroblasts to differentiate into CAFs (33). Manousopoulou et al.

found many differentially expressed genes between normal fibroblasts

and CAFs in OAC tumours, supporting the pro-oncogenic

phenotype shift happening during stroma remodelling (34).

Moreover, the stroma is the environment favouring angiogenesis, a

crucial phenomenon for cancer oxygenation, growth and later

invasion to distant sites (10). Endothelial cells appeared to be an

indicator of good pathological response to chemotherapy (35).

Lymph node and distant site metastases worsen the prognosis.

Lower levels of immune cells, specifically CD8+ T cells, have been
Frontiers in Immunology 03
associated with higher lymph node invasion (17, 18, 21, 36).

Macrophages tend to have an immunoregulatory phenotype in

nodal-spread OAC (28). Dos Santos Cunha et al. also observed

mast cells and NK cells in metastasised OAC were favourable

prognostic factors. These findings support the hypothesis that

immune surveillance failure participates in cancer invasion.
2.2 Immune classification of the TME and
clinical significance

First initiated by Galon et al., the Immunoscore was described for

colorectal cancer and was validated as a reliable biomarker of

immunotherapy response (37, 38). The use of the Immunoscore

has been extended beyond colorectal cancer and appears to be a

strong prognostic factor for other solid cancer types, including OAC

(39–41). The initial Immunoscore relied on the density of CD8+

effectors and CD3+CD45RO+ memory T cells presence in the

tumour core and invasive margin. The Immunoscore was

established as a prognostic factor for OSCC (42). However, when

applied to OAC, Conroy et al. noticed a higher expression of CD8+

and CD45RO+ T cells in the stromal compared to the tumoural

regions and failed to demonstrate an association with survival (16).

Patient classification in different immune groups can be tailored for a

specific cancer type by considering additional immune populations
FIGURE 1

T cell immune checkpoints.
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associated with treatment response and survival. It appears that OAC

immune stratification requires further markers.

Recent studies focused on defining OAC immune groups.

Naeini et al. identified four immune clusters based on

proportions of immune cells in the TME (8). The immune hot

group was enriched in immune cell infiltrate and associated with the

best OS, while the immune suppressed group was enriched in

macrophages but depleted of lymphocytes and associated with the

worst OS. The immune moderate group with moderate levels of

lymphocytes and depleted of other immune cells and the immune

cold group lacking all immune cells showed moderate OS. More

studies found several immune clusters in OAC patients and support

that inflamed TME correlated with better outcomes (41, 43).

Establishing an OAC-specific immune score chart combining

several immune features of the TME would be highly informative to

predict treatment response and adjust the regimen administered to

patients (44).
3 Treatment evolution in OAC and
modulation of the TME

3.1 First generation of treatment for OAC
and its impact on the TME

The TME is dynamic and evolves with tumour progression or

via administration of cytotoxic therapies. Few studies have

investigated the effect of cytotoxic therapies on the OAC TME.

Understanding how both chemotherapy and radiotherapy regimens

effect the different TME profiles of OAC will allow better treatment

selection based on the patient’s TME profile. Previous studies have

found no difference in infiltrating T cell subpopulations between

patients who underwent different NAC treatments or surgery alone

(18, 21, 43). However, Soeratram et al. found an increase of CD8+ T

cell density in inflamed post-NAC tumours (22). Furthermore, two

recent studies found a higher T cell infiltrate after therapy where

there was a poor pathological response. Croft et al. performed a

single cell analysis comparing treatment-naive and NAC-treated

OAC samples (35). The most notable proportion changes in the

TME profiles were a reduction of the NK and T cell populations,

and an increase of B cells, endothelial cells and fibroblast

populations. However, poor pathological responders kept a higher

proportion of NK and T cells compared to good responders. This

result was supported by Koemans et al. showing that pathological

non-responders had a higher CD8+ T cell infiltration which was

associated with worse OS, whilst no association between T cell

infiltration and survival could be found for good and moderate

responders (45).

Fewer studies investigated other components of OAC TME

following NAC. Cao et al. noticed the correlation between

macrophage pro- and anti-inflammatory phenotype ratio and

survival is diminished after therapy (28). NAC appears to also

greatly impact CAFs based on the high number of differentially
Frontiers in Immunology 04
expressed genes identified by Croft et al. between pre- and post-

treatment samples (35).

NAC also appears to influence immune checkpoint expression.

Conflicting results support the complexity of OAC response to

treatment. Several studies found immune checkpoints, such as PD-

1, CTLA-4, TIGIT, TIM-3, LAG-3 or ICOS, to be significantly

upregulated in infiltrating T cells following NAC (46, 47). An OAC

cell line study validated ex-vivo also suggested increased expression

of several immune checkpoint expression following radiotherapy

(48). Soeratram et al. found increased stromal PD-L1+ T cells after

NAC, suggesting that PD-1/PD-L1 blockade may be the

recommended therapeutic strategy following chemoradiotherapy

(22). In contrast, Galvin et al. demonstrated a significant reduction

of intra-tumoural PD-1 expression following NAC (49).

These findings on OAC TME modulation combined with

previous evidence in other cancer types, support the potential role

of chemo(radio)therapy in switching cold tumours to hot through

triggering an immune response from dying tumour cells or new

neoantigen generation (46, 50). This could prime tumours to be

more responsive to immunotherapy.
3.2 Immunotherapy landscape in OAC

ICI is now an established therapy aimed at preventing the

inhibition of the anti-tumour immune response (44). The earliest

trials investigating ICIs in OAC focused on treating advanced/

metastatic oesophageal or gastro-oesophageal cancers with anti-

PD-1, or anti-PD-L1 monoclonal antibodies (6, 51, 52) and have

been summarised in a previous review (7). Results varied, but

overall, in the advanced/palliative setting ICI appears to improve

patient survival compared to chemotherapy alone. CheckMate-577

is the largest adjuvant phase III study to date and investigated

adjuvant nivolumab in patients with residual disease post CRT and

surgery (6). Although disease-free survival rates were improved in

OAC patients, pathological response was poor. Furthermore,

various trials have incorporated PD-1 blockade in different lines

of therapy and have found that patients expressing high levels of

PD-1 have improved outcomes (NCT04802876) (53). These results

suggest that an immune inflamed TME in OAC is necessary to

derive benefit from immunotherapy. Thus, more trials incorporated

PD-1 blockade in therapeutic protocols, even in the neoadjuvant or

adjuvant setting (Keynote-585 (NCT03221426), NCT02918162)

(54, 55). In the neoadjuvant setting results are conflicting.

Several trials investigated the feasibility of combining

chemotherapy with anti-PD-L1 antibodies. Gemstone-303

(NCT03802591) noted a modest but significant improvement in

OS and PFS when patients underwent PD-L1 blockade combined

with chemotherapy (56). MATTERHORN (NCT04592913) reports

more patients with a pathological complete response when anti-PD-

L1 antibodies were added to chemotherapy compared to

chemotherapy alone (57). DANTE (NCT03421288) showed

beneficial effects of the addition of PD-L1 blockade to
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chemotherapy on pathological regression, especially for patients

with higher PD-L1 expression (58). Finally, the addition of anti-PD-

L1 antibodies did not increase the number of responders in the

PERFECT trial (NCT03087864) (59). In the PERFECT trial, a

biological sub-study was performed and suggested TME features

could be used as response biomarkers (59). Good pathological

responders had low expression of genes linked to ICI resistance

and were found to have higher OS and PFS after PD-L1 blockade

compared to chemotherapy-alone in good responders. Focusing on

the non-responders, two subgroups were identified, with either high

infiltration of CD8+ T cells presenting an exhausted phenotypes or

with very low CD8+ T cell levels. These results were found in a

small patient cohort (n=40) but showed the role of the TME in ICI

response. Arbore et al. also reported a subset of CD8+ T cells were

correlated with a better response rate to PD-1 blockade, confirming

the potential of TME features as predictors of ICI response (24).

Concerning other major immune checkpoint of interest, CTLA-

4, a phase-II trial (NCT01585987) completed in 2015 compared the

efficacy of ipilimumab to the best standard of care for advanced

gastro-oesophageal junction cancers. However, the results did not

show benefit in OS or PFS for patients treated with ipilimumab (60).

Since, the administration of anti-CTLA-4 antibodies has been

investigated in combination with anti-PD-1 or anti-PD-L1

therapies. Checkmate-649 (NCT02872116) did not demonstrate

better survival with nivolumab/ipilimumab combination (61).

However, Checkmate-648 used the same treatment combination

on OSCC patients and found improved OS compared to

chemotherapy alone (62). A combination of durvalumab and

tremelimumab treatment showed encouraging results in a small

cohort of patients (n=114) by a phase I/II trial (NCT02340975)

(63). However, targeting CTLA-4 does not appear to be the most

beneficial approach for OAC patients.

A recent trial (NCT05187338) is looking at a triplex checkpoint

inhibitor combination therapy with ipilimumab, pembrolizumab

and durvalumab for a range of solid tumours. It will surely be

interesting to compare how patients with oesophageal cancer

respond to this combination therapy and the range of

adverse effects.

The PERFECT study showed high number of CD8+ T cells

with a high expression of exhaustion markers, such as PD-1, TIM-

3 or LAG-3 in non-responders (59). This suggests that

patients responding moderately or not at all to the current
Frontiers in Immunology 05
immunotherapy options may benefit from a new generation of

immunotherapies, targeting different immune checkpoints, such as

TIM-3, LAG-3, TIGIT or ICOS (16, 44, 64). Trials focussing on dual

blockade combinations (LAG-3/PD-1, TIM-3/PD-1 or TIGIT/

CTLA-4) are still at early stages of completion and feasibility,

tolerability and safety exploration (Table 1). These mainly phase I

or II trials represent the first step to a better understanding of TME

response to these immune checkpoints in oesophageal cancers.

Immune checkpoints play a major role in cancer immune

evasion. Blocking the signals is one approach to promoting T-cell

activity. Another approach is to inject checkpoint-deficient

polyclonal T cells to replenish the effector population capable of

targeting and killing tumour cells. Rapa Therapeutics is currently

conducting a phase-I/II trial in several solid tumours, including

oesophageal tumours, adding RAPA-201 cells to the standard of

care chemotherapy protocols (NCT05144698). However, new

targets are required as some ICI seem to decrease immune

checkpoint expression on cells, which may contribute to

developing ICI resistance (46). Trials attempt to assess the

feasibility, safety and benefits from CLDN18.2 blockade

(NCT03653507) (65), or RTK inhibitors added to PD-1 blockade

(NCT04662710) (66).
4 Discussion and future perspectives

Despite tremendous results in other cancers, the mechanisms of

immunotherapy response in OAC remain to be better understood in

order to improve survival. There is growing evidence that the TME

plays a critical role in treatment response and patient survival,

particularly the infiltrating immune populations or stromal cells.

OAC tumours are highly heterogeneous and surrounded by a largely

immunosuppressive TME. However, individual study findings are

conflicting due to the variability of the different study designs (sample

collection, processing, used markers) or patient cohorts

(demographics, stages). Efforts need to be directed towards better

defining cell populations with multiple markers in large patient

cohorts. Recent spatial technologies will provide additional details

concerning the location and organisation of the immune infiltrate.

Incorporating these insights with deep learning algorithms will lead

to a better and more refined patient stratification. Grouping patients

based on their tumour immune profiles appears to be a promising
TABLE 1 Selected immunotherapy trials in Oesophageal cancers.

Clinical
Trial

Identifier

Phase Completion
date

Indications (population, N) Arms Target Sponsor

NCT03044613 I January, 2024 Gastroesophageal cancer - stage II/
III, N=32

(A) Nivolumab + Relatlimab prior
surgery
(B) Nivolumab prior to
neoadjuvant chemoradiation
and surgery

LAG-3/
PD-1

Bristol-
Myers Squibb

(Continued)
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approach for advising the appropriate treatment or priming regimen

for the tumour (8, 43). To date, patients with an immune enriched

TME have better outcomes supporting the crucial role of the immune

infiltrate. The second wave of blockade targeting LAG-3, TIM-3,

TIGIT or ICOS will contribute to explore the anti-tumour immune

response further.
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TABLE 1 Continued

Clinical
Trial

Identifier

Phase Completion
date

Indications (population, N) Arms Target Sponsor

NCT05342636 I/II November
8, 2024

Advanced OSCC failed 1 line of
therapy without prior PD1/PDL1
treatment, N=120

(A) Prembrolizumab +
chemotherapy
(B) Favezelimab/Pembrolizumab +
chemotherapy
(C) MK-4380 (anti-ILT4)/
Pembrolizumab + chemotherapy

LAG-3/
PD-1

Merck

NCT04785820 II June 30, 2025 Advanced or Metastatic
OSCC, N=210

(A) Lomvastomig (dual anti-TIM-
3/PD-1)
(B) Tobemstomig (dual anti-LAG-
3/PD-1)
(C) Nivolumab (anti -PD-1)

TIM-3/PD-
1 and LAG-
3/PD-1

Hoffmann-La Roche

NCT03708328 I April 30, 2024 OSCC, N=134 Dose escalation of Lomvastomig TIM-3/
PD-1

Hoffmann-La Roche

NCT03652077 I August 18, 2021 Various solid tumours (including
Oesophageal cancer), N=40

Dose escalation of INCAGN02390 TIM-3 Incyte Corporation

NCT05834543 I/II June, 2024 Advanced OSCC, N=75 (A) TQB2618 injection (anti-
TIM3) + Penpulimab injection
(anti-PD1) + chemotherapy
(B) Penpulimab injection +
chemotherapy
(C) TQB2618 injection +
Penpulimab + TQB3617capsules

TIM-3/
PD-1

Chia Tai Tianqing
Pharmaceutical
Group Co., Ltd.

NCT04540211 III February 13, 2023 Unresectable locally advanced,
unresectable recurrent or metastatic
Oesophageal cancer, N=461

(A) Atezolizumba + Tiragolumab +
chemotherapy
(B) Atezolizumab + chemotherapy

TIGIT/
CTLA-4

Hoffmann-La Roche

NCT03281369 I/II August 24, 2024 Locally advanced unresectable or
metastatic G/GEJ cancer, N=410

(A) Atezolizumab + Tiragolumab +
chemotherapy
(B) Atezolizumab + chemotherapy
(C) chemotherapy (D)
Atezolizumab + Tiragolumab

TIGIT/
CTLA-4

Hoffmann-La Roche

NCT03784326 II December
31, 2024

Oesophageal or Gastroesophageal
Junction adenocarcinoma - stage II/
III, N=40

(A) Atezolizumab + chemotherapy
(B) Atezolizumab + Tiragolumab
+ chemotherapy

TIGIT/
CTLA-4

M.D. Anderson
Cancer Center

NCT04543617 III March 31, 2027 Unresectable OSCC, N=760 (A) Tiragolumab + Atezolizumab
(B) Atezolizumab + placebo
(C) double placebo

TIGIT/
CTLA-4

Hoffmann-La Roche

NCT05743504 I/II May 31, 2025 Resectable locally advanced
OSCC, N=32

Tiragolumab and Atezolizumab
with CCRT before surgery

TIGIT/
CTLA-4

National Taiwan
University Hospital

NCT05007106 II February 22, 2027 Various solid tumours (including
Oesophageal neoplasms), N=610

Pembrolizumab/Vibostolimab
+ chemotherapy

TIGIT/
PD-1

Merck

NCT03829501 I/II April, 2024 Various solid tumour (including
EC), N=280

KY1044 monotherapy dose
escalation and KY1044 and
atezolizumab dose escalation

ICOS/
PD-L1

Sanofi
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