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Objective: Osteoarthritis (OA) is themost prevalent joint disease globally, serving

as a primary cause of pain and disability. However, the pathological processes

underlying OA remain incompletely understood. Several studies have noted an

association between cytokines andOA, yet the causal link between them remains

ambiguous. This study aims to identify cytokines potentially causally related to

OA using Mendelian randomization (MR) analysis, informing early clinical

diagnosis and treatment decisions.

Methods: We conducted a genome-wide association study (GWAS) on 12 OA

traits involving 177,517 cases and 649,173 controls from 9 international cohorts.

For discovery MR analysis, we used 103 cytokines from two European

populations as instrumental variables (IVs). Concurrently, another European

population OA GWAS database (36,185 cases and 135,185 controls) was used

to replicate MR analysis, employing the inverse variance weighted (IVW) method

as the primary analytic approach. Additional methods tested included MR Egger,

Weighted median, and Weighted mode. We merged the MR findings through

meta-analysis. Heterogeneity testing, level pleiotropy testing (MR Egger intercept

test and MRPRESSO), and sensitivity analysis via Leave One Out (LOO) were

conducted to verify result robustness. Lastly, reverse MR analysis was performed.

Results: The meta-analysis merger revealed a correlation between CX3CL1 cycle

levels and increased OA risk (OR=1.070, 95% CI: 1.040-1.110; P<0.010). We also

observed associations between MCP4 (OR=0.930, 95% CI: 0.890-0.970; P<0.010)

and CCL25 (OR=0.930, 95% CI: 0.890-0.970; P<0.010) with reduced OA risk. The

sensitivity analysis results corroborate the robustness of these findings.

Conclusion: Our MR analysis indicates a potential causal relationship between

CX3CL1, MCP4, CCL25, and OA risk changes. Further research is warranted to

explore the influence of cytokines on OA development.
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1 Introduction

Osteoarthritis (OA) is a chronic degenerative condition marked

by osteochondral degradation, manifesting as joint pain, stiffness,

swelling, and reduced joint mobility. It predominantly impacts

weight-bearing joints like the knee, hip, and spine (1, 2).

Statistically, OA affects over 520 million individuals globally (3).

with its prevalence escalating alongside population aging,

significantly impairing patient quality of life (4). The etiology of

OA remains elusive, with studies suggesting its association with

factors like genetic variation, mechanical damage, immune

inflammatory response, and metabolic irregularities (5, 6). Given

the uncertain etiology, there is no definitive cure for OA. Currently,

treatments involve general physical therapy to slow disease

progression, non-steroidal anti-inflammatory drugs for symptom

relief, and agents to promote joint cartilage repair. However, these

long-term treatment strategies often yield suboptimal results. Post-

joint replacement surgery, many patients continue to experience

joint symptoms and are at risk of complications like cardiovascular

events and infections (7). Thus, understanding OA’s pathogenesis

and its early prevention are crucial. Presently, research primarily

focuses on cartilage degeneration as a central aspect of OA’s

pathogenesis, yet the underlying causes remain obscure. Clinical

and basic research on cartilage remains pivotal in OA prevention

and treatment (8, 9). However, the acquisition of research

specimens and the associated costs are considerable challenges.

Therefore, identifying biochemical biomarkers for OA prevention

and treatment could represent a significant advancement.

Cytokines are small molecule proteins secreted and synthesized

by immune cells like macrophages, monocytes, and T cells, as well as

by non-immune cells such as fibroblasts and epidermal cells. They

play a critical role in regulating immunity, stimulating cell activation

and proliferation, and promoting hematopoiesis, thus being vital to

human cellular function (10). Cytokines also contribute to diseases

like inflammation, autoimmune disorders, and tumors (11, 12).

Increasing evidence indicates that the inflammatory response,

mediated by inflammatory cytokines produced by synovial cells and

chondrocytes in OA, is a key factor in OA pathogenesis. This

response leads to cartilage matrix destruction and chondrogenesis

inhibition (13). Immune cells activation, such as macrophages and

lymphocytes, results in the production of tumor necrosis factor-a
(TNF-a), interleukin-1b (IL-1b), and other inflammatory cytokines

like interleukin-6 (IL-6). These cytokines exacerbate synovial

inflammation, stimulate matrix metalloproteinases and oxidative

stress, leading to chondrocyte apoptosis and cartilage degradation

(14). Additionally, osteolytic cytokines like osteoclast activating

factor (RANKL) play a role in OA development (15). However,

the precise relationship between OA and the elevation of various

cytokines remains unclear. Determining cytokine level alterations

can further clarify their association with OA, providing a

foundation for disease diagnosis and treatment.

Mendelian Randomization (MR) utilizes genome-wide

association studies (GWASs), comprising single nucleotide

polymorphisms (SNPs) from the population as genetic

instrumental variables (IVs) to assess the causal links between

exposure factors and outcomes (16, 17). These genetic variations,
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randomly assigned at conception, allow MR to circumvent

confounding and reverse causal effects. Adhering to the genetic

principle of “single gene single phenotype,”MR yields more reliable

results and is extensively applied in analyzing relationships between

various exposures and diseases (18). Current GWASs data includes

IVs for over 100 cytokines. To date, only 2 MR studies have focused

on OA, with a limited range of cytokines examined (18, 19). The

incidence rate of OA varies across different body parts, and previous

MR studies have not only examined a narrow scope of cytokines but

also lacked detailed OA classifications. Thus, comprehensive

research is necessary to elucidate the causal relationship between

circulating cytokine levels and more specific OA categories,

advancing our understanding of OA pathogenesis.

Therefore, this study conducts a bidirectional MR analysis

based on publicly available GWAS data, employing the most

comprehensive set of cytokine and OA data available. This

approach aims to provide new insights into the causal

relationship between cytokines and OA.
2 Materials and methods

2.1 Study design

This research executed a broad and in-depth bidirectional MR

analysis to explore a possible causal connection between cytokines

and OA. The schematic of our MR analysis and design is depicted in

Figure 1. MR studies must satisfy three criteria: first, the SNPs of the

selected IVs must be significantly associated with cytokines. Second,

these IVs should be independent and free from other confounding

factors. Third, the IVs must influence outcomes exclusively through

the exposure factors and not via alternate biological pathways. As

this study utilizes publicly available GWAS data, no additional

ethical approval was required.
2.2 Source of cytokine data

Cytokine data were sourced from two GWAS datasets (20, 21).

Currently, 41 cytokines are commonly utilized in research

investigating the correlation between cytokines and diseases.

However, the latest GWAS data related to inflammation-related

cytokines provide up to 91 kinds of cytokines. This extensive dataset

offers more opportunities for investigating the association between

inflammatory factors and osteoarthritis. To acquire a broader range

of cytokines, this study initially selected GWAS data of 91

inflammation-related cytokines from 11 cohorts comprising

14,824 European individuals and supplemented this with GWAS

data from 13 out of 41 cytokines from 8,293 European individuals,

as these cytokines did not overlap with the aforementioned 91

cytokines. Additional detailed information about the aggregated

GWAS data can be found in the original paper. In the principal

analysis, cytokines with independent SNPs were isolated using a P-

value threshold of <5×10^-8. Due to the limited number of

cytokines reaching genome-wide significance, the P-value

threshold was subsequently adjusted to <5×10^-6. Linkage
frontiersin.org
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disequilibrium analysis (LDA) was carried out to assure SNP

independence, with criteria set at r^2<0.001 and kb=10,000.
2.3 Source of MR analysis data for
osteoarthritis discovery

Data for OA were extracted from the most comprehensive

GWAS database currently available, featuring 12 OA-related traits

pooled from 9 international cohorts, totaling 826,690 participants

(177,517 OA patients) across Asia, Europe, and European

Americans (Supplementary Table 1) (22). Further information is

detailed in the original publications. MR analysis was conducted on

these OA-related traits, and the P-value threshold for OA-related

SNPs was set at <5×10^-6, with concurrent LDA to ensure SNP

independence (r^2<0.001 and kb=10,000).
2.4 Source of MR analysis data for the
replication of osteoarthritis

To bolster the validity of the study outcomes and mitigate

potential false positives, a supplementary dataset of 181,370

individuals (36,185 OA patients) was procured from the GWAS

database, encompassing five OA traits for replication analyses (23).

Similar to the primary study, a P-value threshold of <5×10^-6 was

used to isolate cytokine SNPs, and LDA was performed to ascertain

SNP independence, with criteria set at r^2<0.001 and kb=10,000.
2.5 Statistical analysis

Upon extracting SNP data for cytokines, we initially calculated

the F-statistic for cytokines to assess the strength of the IVs (F>10

denotes sufficient strength) (24). All bidirectional MR analyses were
Frontiers in Immunology 03
conducted using the “TwoSampleMR” software package, with

inverse variance weighting (IVW) as the primary, more precise,

and unbiased method. Additionally, MR Egger, weighted median,

and weighted mode analyses were employed to rule out potential

confounders (25). For MR analysis outcomes, the false discovery

rate (FDR) corrected p-values were computed using the Benjamin

Hochberg method. A p-value below 0.05 post-FDR adjustment

indicated a significant correlation. The findings from Discovery

and replication MR analyses were then combined for a meta-

analysis, integrating at least two reliably identified cytokine types.

A merged P-value under 0.05 was deemed significant, with

interpretations based on odds ratios (ORs).
2.6 Sensitivity analysis

To determine result robustness, we conducted heterogeneity

testing, level pleiotropy testing, and Leave One Out (LOO)

sensitivity analysis. Initially, MR-PRESSO was used to detect

horizontal pleiotropy. If detected, outliers were removed for a

subsequent MR reanalysis. If absent, the Cochran Q test was

applied, with a Q value over 0.05 indicating no heterogeneity.

LOO analysis was used to evaluate each SNP’s impact and

identify any outliers. All MR analyses were performed using the

“TwoSampleMR” and “MRPRESSO” software packages in R

software (version 4.2.0) (26, 27).
3 Results

3.1 Discovery on the risk of osteoarthritis

Upon eliminating redundant cytokines, the analysis

incorporated a total of 103 unique cytokines from diversified
FIGURE 1

Study design and workflow of this study.
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sources (Supplementary Table 2). Utilizing a significance criterion

of P<5×10^-6, the study identified 1677 SNPs associated with the

103 cytokines. These SNPs exhibited an F-statistic range spanning

from 18 to 1510, thereby confirming the statistical potency and

reliability of the selected cytokines as instrumental variables (IVs) in

the MR analysis (Supplementary Table 3). In an expansive MR

analysis that focused on the 103 cytokines and 12 distinct OA traits,

the Inverse Variance Weighted (IVW) method elucidated potential

causal associations between 35 cytokines and the 12 specific OA

characteristics (Supplementary Table 4; Figure 2). Post-FDR

adjustment, negative correlations with varying OA traits were

observed for higher levels of CCL19 [KneeHipOA, 0.953 (0.921-

0.987), P=0.047], CD6 [TJR, 0.955 (0.925-0.985), P=0.039; TKR,

0.938 (0.893-0.984), P=0.048], CXCL9 [ThumbOA, 0.848 (0.760-

0.946) were found.), P=0.047] DNER [ThumbOA, 0.877 (0.793

0.970), P=0.047], LTA [KneeHipOA, 0.927 (0.889 0.966), P=0.024;

KneeOA, 0.918 (0.872 0.966), P=0.017], MIP1A [HandOA, 0.928

(0.876 0.983), P=0.040; ThumbOA, 0.896 (0.831 0.966), P=0.045],

TNFB [AllOA.0.976 (0.959 0.993), P=0.047; HandOA, 0.921 (0.821

78-0.966), P=0.026; SpineOA, 0.948 (0.909-0.988), P=0.048],

TRAIL [AllOA, 0.975 (0.957-0.994), P=0.046], and UPA [TKR,
Frontiers in Immunology 04
0.908 (0.848 0.971), P=0.048]. Conversely, significant positive

correlations with OA risk were found for elevated levels of

FLT3LG [HandOA, 1.091 (1.029 1.156), P=0.043], IL10RB [THR,

1.060 (1.014 1.109), P=0.049], RANTES [ThumbOA, 1.164 (1.072

1.264), P=0.030], and TRANSCE [TJR, 1.059 (1.016 1.104),

P=0.047; TKR, 1.084 (1.024 1.148), A significant correlation was

observed between OA risk with diverse characteristics and a P-value

of 0.044 (Figures 2, 3). The consistency of MR Egger, Weighted

Median, and Weighted Mode methods with the IVW trend in MR

analysis underscores the reliability of these results.

In the sensitivity analysis, no SNP pleiotropy was detected in the

level pleiotropy and MR-PRESSO analysis (Supplementary

Table 5), indicating the robustness of our instrumental variables.

Additionally, the heterogeneity test revealed no heterogeneity in the

MR results (Supplementary Table 6), further supporting the

reliability of our findings. The LOO method also did not identify

any significant bias points (Supplementary Figure 1).

In the MR analysis assessing potential causal relationships

between 12 OA traits and cytokines, no such relationships were

established post-FDR correction (Supplementary Table 7). This

outcome underscores the complexity of the relationship between
FIGURE 2

Heatmap of Different MR Analysis Methods for Cytokines and the Risk of Osteoarthritis.
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OA and cytokines. Overall, our results are reliable and suggest that

multiple cytokines may be causally linked to OA.
3.2 Replication results of the risk
of osteoarthritis

As with discovery analysis, we extracted a GWAS data of 5 OA

traits from the database, including 1649 sufficiently robust SPNs (F>10)

related to 103 cytokines (Supplementary Tables 1, 8). MR analysis

found that CD5 [SR, 0.909 (0.829 0.995), P=0.039], CCL25 [SR, 0.931

(0.881 0.984), P=0.012], IL0RA [HD_ken, 0.842 (0.725 0.979),

P=0.025], GROa [HD_hipkeen, 0.931 (0.876 0.990), P=0.023], MCP1

[HD, 0.915 (0.893 0.999), P=0.047], MCP4 [HD, 0.924 (0.857 0.997),

P=0.041] were associated with different features of OAA. There is a

causal relationship, while CASP8 [SR, 1.137 (1.015-1.273), P=0.027],

CATCK [HD_ken, 1.133 (1.016-1.263), P=0.025] CXCL9

[HD_hipkeen, 1.249 (1.046 1.492), P=0.014], GDNF [SR, 1.111

(1.027 1.202), P=0.009], TNFB [HD, 1.081 (1.021 1.144), P=0.007;

HD_hipkeen, 1.103 (1.027 1.184), P=0.007; HD_ken, 1.117 (1.025

1.217), P=0.012], CX3CL1 [SR, 1.107 (1.003 1.224), P=0.044], and

CXCL9 [HD_hipkeen, 1.213 (1.072 1.373), P=0.002; HD, 1.164 (1.054

1.285), P=0.003] indicated increased OA risk. However, post-

correction, no significant causal relationships were established among

all cytokines (Figure 4). Horizontal pleiotropy testing andMR-PRESSO

did not show heterogeneity or pleiotropy (Supplementary Tables 9, 10),

and the homogeneity test of MR results also indicated no heterogeneity

(Supplementary Table 11). LOO analysis further confirmed the

robustness of these findings (Supplementary Figure 2). Reverse MR
Frontiers in Immunology 05
analysis did not demonstrate causal relationships between different OA

traits and the aforementioned cytokines (Supplementary Table 12).
3.3 Combined results of osteoarthritis risk
from the meta-analysis

Through meta-analysis, we ultimately found a positive causal

relationship between CX3CL1 and OA (OR=1.070,95% CI: 1.040-

1.110; P<0.010), while MCP4 (OR=0.930,95% CI: 0.890-0.970;

P<0.010) and CCL25 (OR=0.930,95% CI: 0.890-0.970; P<0.010)

demonstrated negative causal relationships with OA (Figure 5).
4 Discussion

OA is a highly complex degenerative disease, with its

pathogenesis being multifaceted and intricate. Increasing evidence

underscores the significance of cytokines in the onset and progression

of OA. However, the causal link and mechanism of action between

cytokines and OA remain largely undefined. Our study utilized the

most comprehensive set of cytokine type SNPs with identified sites

and the largest OA GWAS database for discovery MR, supplemented

by ample OA GWAS data for replication MR, to assess the causal

impact of cytokines on OA. Collectively, the integration of MR

analysis and meta-analysis highlighted a causal relationship

between three distinct cytokines and OA.

Research indicates significant correlations between CCL19, CD6,

CXCL9, DNER, LTA, MIP1A, TNFB, TRAIL, UPA, FLT3LG,
FIGURE 3

Forest map of cytokines and the risk of osteoarthritis.
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IL10RB, RANTES, TRANSCE, and OA or bone metabolism (28–40).

Our genetic MR analysis corroborated the causal association between

these cytokines and OA. The meta-analysis integrated evidence

suggesting a causal link between elevated levels of CCL25 and

MCP4 and reduced OA risk. Conversely, an increase in CX3CL1

levels correlates with heightened OA risk.

CCL25 (TECK) is a key small molecular weight chemokine and

a vital component of the inflammatory system. Typically, CCL25

interacts with its receptor CCR9, contributing to cell migration and

metastasis, and it plays a role in recruiting inflammatory factors,

thereby enhancing the inflammatory response. Moreover, CCL25 is

involved in the chemotaxis of T lymphocytes, participating in a

variety of physiological and pathological processes, including

immune cell development, differentiation, and allergic diseases. It

is recognized as a surface marker of homing lymphocytes (41).

However, the relationship between CCL25 and OA has not been

extensively reported. In research on porcine mesenchymal stem

cells (MSCs) and their migration and chondrogenesis induced by

CCL25, it was observed that CCL25 notably influenced MSC

chemotaxis without causing significant cell death, even at higher

concentrations. Studies suggest that certain concentrations of

CCL25 may promote cartilage repair (42). In experiments

involving intra-articular CCL25 injections in guinea pig knee OA,

CCL25 not only effectively delayed OA progression and reduced

cartilage damage (as indicated by lower Mankin scores) but also

significantly increased MSC migration, suggesting that high CCL25

levels might be beneficial in preventing or treating OA (43).

Additionally, a study on the chemotactic potential of CCL25 on

human mesenchymal progenitor cells from subchondral cortical

sponge bone in normal, rheumatoid arthritis (RA), and OA synovial

fluid (SF) showed that CCL25 could enhance subchondral

progenitor cell migration and induce cartilage tissue repair (44).

Our genetic MR analysis investigated the causal relationship
Frontiers in Immunology 06
between CCL25 and OA, aligning with these findings. The results

indicate that CCL25 may exert a protective effect against OA.

However, reverse MR analysis did not establish a direct causal

link between OA and CCL25.

MCP-4 is a chemokine known for its affinity to CCR3, and it has

been implicated in autoimmune diseases like RA as well as allergic

conditions (45, 46). It mediates the migration of eosinophils,

basophils, macrophages, and lymphocytes in allergic diseases and

possesses marked chemotactic activity for monocytes and T

lymphocytes in inflammatory contexts (47). To date, no studies

explicitly delineate the role of MCP-4 in OA. However, a study on

MCP-4 expression in cartilage tissue, using OA and normal human

articular cartilage as controls, revealed that MCP-4 expression was

significantly elevated in OA cartilage compared to the normative

cohort (48). Additionally, body mass index (BMI), known to be

positively correlated with OA risk, has been linked to MCP-4. A

Japanese study involving 39 overweight individuals showed that

serum MCP-4 levels positively correlated with BMI, waist

circumference, waist-to-hip ratio, and hypersensitive C-reactive

protein (49). Another study focusing on severely obese patients

confirmed that MCP-4 serum levels were elevated compared to

those in normal-weight individuals and positively correlated with

BMI (50). Our MR analysis indicates a causal relationship between

elevated MCP-4 expression and reduced OA risk. However, the

connection between MCP4 and OA pathogenesis remains

unexplored. Our MR results suggest a causal link between high

MCP4 expression and a reduced risk of OA. Yet, reverse MR did not

identify a causal relationship between OA and MCP4. Given these

conflicting findings, further research, particularly focusing on

underlying mechanisms, is essential to clarify MCP4’s potential

role in OA development.

CX3CL1, the sole member of the CX3C class of chemokines,

exerts chemotactic effects on T cells and monocytes and is involved
FIGURE 4

Forest Map of MR Analysis of Cytokines and Risk of Osteoarthritis (replication).
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in various signaling pathways, such as p38MAPK and Akt. These

pathways play a crucial role in mediating inflammatory diseases

(51–53). Studies focusing on OA and related pain behaviors in mice

have demonstrated that CX3CL1 is intricately linked to OA and

varying pain intensities (54). In research on degenerative joint

disease-related pain in cats, CX3CL1 levels were found to be

upregulated in both the dorsal root ganglia affected by the disease

and the spinal cord in cats displaying clinical signs of OA pain,

compared to those without (55). A study examining the methylation
Frontiers in Immunology 07
genes in articular cartilage from OA patients identified CX3CL1 as a

differentially elevated gene. Notably, its expression level increased

exclusively in the OA group, distinguishing it from the control and

RA groups (56), suggesting a potential genetic association with OA.

Furthermore, an investigation into the expression levels of CX3CL1

in the serum and synovial fluid of 193 knee OA patients revealed

not only elevated levels in OA patients but also a positive

correlation with the degree of physical pain and disability (57).

Our MR analysis, backed by a sufficient number of SNPs, indicates a
FIGURE 5

Forest Map of combined results of osteoarthritis risk from the meta-analysis.
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positive causal relationship between CX3CL1 and OA. Additionally,

the study design effectively excluded the influence of horizontal

pleiotropy, reverse causal relationships, and confounding factors.

Previously, MR studies investigating the causal relationship

between cytokines and OA identified links with MIP-1B, TNFB,

and RANTS (58), aligning with our MR analysis results. Another

study found a causal relationship between MCSF and VEGF and

OA (19),yet these associations were not replicated in our MR and

replication MR analyses. Our study, with its extensive OA sample

size and the broadest range of cytokines to date in GWAS, also

included discovery MR analysis, replication MR analysis, and meta-

analysis, ensuring robust results. Notably, our analysis revealed a

causal relationship between MCP4 and OA, a finding

unprecedented in existing literature. This novel association

warrants further investigation to validate MCP4 as a potential

biomarker for OA prevention and treatment.

Despite these advancements, our research has limitations. First,

the replication analysis for OA with 12 traits did not yield sufficient

OA GWAS features. Additionally, akin to other studies (59–61), the

paucity of SNPs led us to set a P-value threshold of <5×10^-6,

potentially introducing false positives. However, the F-statistic for

SNPs IV in our MR analysis exceeded 10, attesting to the robustness

of our results. Finally, while we identified three cytokines potentially

causally related to OA, their roles in affecting OA survival or disease

progression merit further investigation.
5 Conclusion

Our MR analysis, with ample samples and a comprehensive

range of cytokines, uncovered a potential causal relationship

between CX3CL1, MCP4, and CCL25 and OA risk alterations.

These findings, particularly regarding the novel cytokine markers,

necessitate additional research to elucidate their mechanisms. The

insights gained may significantly contribute to OA prevention and

treatment strategies.
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