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Enhanced CT-based radiomics
model to predict natural killer
cell infiltration and clinical
prognosis in non-small cell
lung cancer
Xiangzhi Meng1†, Haijun Xu2†, Yicheng Liang3†, Mei Liang1,
Weijian Song1, Boxuan Zhou1, Jianwei Shi1, Minjun Du1

and Yushun Gao1*

1Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China, 2Department of Radiology, National Cancer Center/National Clinical Research Center
for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China, 3Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-
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Background: Natural killer (NK) cells are crucial for tumor prognosis; however,

their role in non-small-cell lung cancer (NSCLC) remains unclear. The current

detection methods for NSCLC are inefficient and costly. Therefore, radiomics

represent a promising alternative.

Methods:We analyzed the radiogenomics datasets to extract clinical, radiological,

and transcriptome data. The effect of NK cells on the prognosis of NSCLC was

assessed. Tumors were delineated using a 3D Slicer, and features were extracted

using pyradiomics. A radiomics model was developed and validated using five-fold

cross-validation. A nomogram model was constructed using the selected clinical

variables and a radiomic score (RS). The CIBERSORTx database and gene set

enrichment analysis were used to explore the correlations of NK cell infiltration and

molecular mechanisms.

Results: Higher infiltration of NK cells was correlated with better overall survival

(OS) (P = 0.002). The radiomic model showed an area under the curve of 0.731,

with 0.726 post-validation. The RS differed significantly between high and low

infiltration of NK cells (P < 0.01). The nomogram, using RS and clinical variables,

effectively predicted 3-year OS. NK cell infiltration was correlated with the ICOS

and BTLA genes (P < 0.001) and macrophage M0/M2 levels. The key pathways

included TNF-a signaling via NF-kB and Wnt/b-catenin signaling.
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Conclusions: Our radiomic model accurately predicted NK cell infiltration in

NSCLC. Combined with clinical characteristics, it can predict the prognosis of

patients with NSCLC. Bioinformatic analysis revealed the gene expression and

pathways underlying NK cell infiltration in NSCLC.
KEYWORDS

radiomics, natural killer cell, infiltration, non-small cell lung cancer, prognosis,
nomogram model, bioinformatic analysis
1 Introduction

Lung cancer, which originates primarily from epithelial cells in

the bronchial mucosa or alveoli, is the leading cause of cancer-

related morbidity and is often accompanied by an unfavorable

prognosis. Among its subtypes, non-small cell lung cancer (NSCLC)

is predominant, comprising lung adenocarcinoma and squamous

cell carcinoma (1). Although surgical resection remains the

cornerstone of NSCLC management, its applicability diminishes

in the advanced stages owing to the associated poor prognosis. For

patients with advanced stages of NSCLC when surgery is not viable,

therapeutic efforts focus on prolonging survival and increasing the

quality of life, aiming for sustained survival despite the presence of

tumor (2). Current prognostic markers for lung cancer include

clinicopathological characteristics, laboratory diagnostic markers

such as carcinoembryonic antigen and carbohydrate antigen 125

(3), and CT imaging modalities. However, these markers do not

meet the evolving demands of precision medicine, underscoring the

need to discover novel prognostic biomarkers that can guide

personalized precision interventions.

Natural killer (NK) cells, pivotal for the body’s innate immune

arsenal, possess the capability to eliminate target cells without antigen-

specific stimulation and play instrumental roles in immune clearance

and surveillance. Their role in targeting and eradicating tumor cells has

been well established. For example, in hepatocellular carcinoma,

curtailing antitumor sphingomyelin synthesis in peripheral NK cells

can delineate alterations in the membrane structure of intratumoral

NK cells, paving the way for innovative therapeutic strategies (4).

Furthermore, in breast cancer, the interaction between HLA-G and the

NK cell receptor KIR2DL4 amplifies the susceptibility of HER2-

positive breast cancer cells to trastuzumab, elucidating the

mechanisms underlying the resistance to trastuzumab (5). Studies

have revealed that inhibition of IL6 can potentiate NK cell-mediated

cytotoxicity in osimertinib-resistant EGFR-mutant NSCLC cells (6).

Furthermore, another study demonstrated that the upregulation of

SERPINB4 in NSCLC dampens NK cell-mediated cytotoxicity,

suggesting potential therapeutic avenues for modulating immune

responses against NSCLC (7). These findings emphasize the pivotal

role of NK cells in orchestrating antitumor responses in NSCLC and

other malignancies and highlight novel avenues for NK cell-centric

therapeutic strategies.
02
Evaluation of NK cell infiltration is based predominantly on

flow cytometry using fresh tissue specimens. Although effective, this

technique has challenges, such as real-time detection constraints

and elevated costs. Alternative methodologies include the use of

public databases, such as ImmuCellAI and Cibersortx. However,

these are contingent upon the availability of the corresponding

genomic data and are susceptible to variables, such as specimen

collection methods and antibody specificity. Imaging examinations

continue to be a linchpin in clinical diagnostics because they are

impervious to real-time variables, cost-effective, and widely

accessible. This paved the way for radiomics, a discipline that

uses medical imaging for research.

Recently, the integration of radiomics into medical research has

increased. Radiomics creates models by extracting image features

imperceptible to the human eye. When combined with clinical and

pathological datasets, these models can help design diagnostic and

prognostic frameworks. The spectrum of application of radiomics

includes tumor diagnosis, post-therapeutic evaluations, and

prognostic evaluations (8). Recent studies have demonstrated the

versatility and effectiveness of CT-based radiomics in cancer

diagnosis and treatment. One study (9) found that changes in CT

numbers and tumor volume from cone-beam computed tomography

can predict early response in NSCLC treatment, highlighting

significant differences between responding and non-responding

patients. Further, another study (10) showed that combining CT-

based radiomics features with clinical factors can effectively predict

PD-L1 and CD8+TILs expression levels in esophageal squamous cell

carcinoma, thereby enhancing the accuracy of predictions. Similarly,

a study (11) revealed that CT-based radiomics, when combined with

clinical and morphological factors, can accurately predict PD-L1

expression levels and tumor mutation burden in advanced-stage

NSCLC, which is crucial for guiding immunotherapy. Another

research effort (12) demonstrated the potential of CT-based

radiomics, in conjunction with clinical and radiological parameters,

to effectively differentiate between immune checkpoint inhibitor-

related pneumonitis and radiation pneumonitis in patients with

advanced-stage NSCLC. These studies collectively underscore the

growing importance of radiomics in oncological imaging and

personalized medicine. In NSCLC, radiomic models enriched with

multiregional attributes have been crucial in stratifying survival risks

for patients diagnosed with clinical and pathological stage IA disease
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1334886
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Meng et al. 10.3389/fimmu.2023.1334886
(13). A seminal study by Tong et al. (14) innovatively used machine

learning algorithms to predict the expression levels of CD8 in tumor-

infiltrating immune cells in NSCLC, leveraging PET/CT radiomics

and clinical attributes, offering insights into the nuances of the tumor

microenvironment. However, the radiomic domain has not yet been

explored for the evaluation of NK cell infiltration in NSCLC.

Therefore, this study paved the way for the application of chest CT

images in the construction of a radiomics model. The model is based

on machine learning algorithms and aims to predict the abundance of

NK cell infiltration in NSCLC tissues without invasive methods. By

amalgamating bioinformatic analyses, our endeavor seeks to explore

the molecular intricacies governing NK cell expression in NSCLC and

their interaction with the immune microenvironment, which can

provide novel perspectives for the diagnosis, therapeutic

interventions, and prognostic evaluation of patients with NSCLC.
2 Materials and methods

2.1 Data acquisition

2.1.1 Data analysis
Clinical, follow-up, and transcriptome sequencing data were

sourced from the TCGA-LUAD and TCGA-LUSC datasets within
Frontiers in Immunology 03
The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) and the NSCLC radiogenomics dataset

from The Cancer Imaging Archive (TCIA) database. The TCGA

database contains 1,026 samples of lung adenocarcinoma and

squamous carcinoma. After excluding samples with incomplete

data (11 patients with nonprimary or initial diagnosis, 51 with

absent follow-up data, 257 with missing clinical data, and 12 lacking

RNA sequencing (RNA-seq) data), 695 samples were retained for

the final analysis (Figure 1). The primary variable of interest was the

number of NK cells. After applying the inclusion criteria, 122

samples from the NSCLC radiogenomics dataset were analyzed.

The gene expression matrix for NSCLC was uploaded to the

ImmuneCellAI database (http://bioinfo.life.hust.edu.cn/web/

ImmuCellAI/), and immune cell infiltration was computed for

each sample. NK cell infiltration data were categorized into high-

and low-infiltration groups using the survminer package in R, with

the low-infiltration group serving as a reference.
2.1.2 Imaging dataset
Enhanced chest CT images were obtained from the NSCLC

radiogenomics dataset within the TCIA database. Of the 211

samples in this dataset, 63 met the criteria for complete clinical

data, RNA-seq data, and enhanced CT images (Figure 1C).
B

C

A

FIGURE 1

Inclusion and exclusion criteria for patients with NSCLC; (A) Criteria for patients with lung adenocarcinoma (LUAD) in the TCGA database; (B) 122 samples
with clinical and RNA-seq data in the TCIA database; (C) Overlapping samples with clinical data, RNA-seq data, and enhanced CT images (n = 63).
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2.2 Correlation analysis of
imaging histology

2.2.1 Consistency assessment of enhanced chest
CT images

The entire tumor region was delineated by two radiologists

using the 3D Slicer software (version 4.10.2; https://www.slicer.org/)

(15). Both radiologists independently described the lesions layer by

layer, without knowledge of the patient’s clinical details or

diagnostic results. The intraclass correlation coefficient (ICC) was

used to gauge the consistency of the extracted imaging histological

features based on the VOIs delineated by each radiologist. After one

radiologist completed the outline for all cases, another radiologist

randomly selected 10 samples using the “random number table

method” to extract their imaging histological features. Typically, an

ICC ≥0.75 indicated excellent agreement, 0.51–0.74 denoted

moderate agreement, and <0.50 was deemed poor.
2.3 Radiomics feature screening

Feature extraction was performed using the open-source

Python-based pyradiomics package for radiomic analysis of the

shape, size, intensity, morphology, and texture; 107 radiomic

features were extracted and data normalization was performed on

the radiomics feature values. The LASSO algorithm and the

stepwise regression algorithm using the R language “glmnet”

package were used to filter the best subset of features.
2.4 Radiomic model construction

A logistic regression (LR) algorithm was used to construct

models. The LR algorithm transforms linear regression through a

sigmoid function such that the output value of the model is

distributed between 0 and 1. The LR algorithm was fitted to the

histological features using the glm function of the R language to
Frontiers in Immunology 04
build a binary classification model to predict the abundance of NK

cell infiltration.
2.5 Radiomics model evaluation

The efficacy of the LR radiomics model was evaluated with a five-

fold internal cross-validation. Receiver operating characteristic (ROC)

curves were used to evaluate the model’s accuracy (ACC), specificity

(SPE), sensitivity (SEN), positive predictive value (PPV), and negative

predictive value (NPV). Calibration of the imaging histology prediction

model was evaluated by plotting a calibration curve (Hosmer–

Lemeshow) goodness-of-fit test, and the clinical benefit of the

imaging histology prediction model was demonstrated by plotting a

decision curve. The Brier Score (BS) was used to evaluate the overall

performance of the model. The radiomics model construction and

evaluation process are illustrated in Figure 2.
2.6 Nomogram model construction
and evaluation

Through stepwise regression screening of the clinical variables, the

included variables were characterized using Akaike information

criterion (AIC). The model was selected and constructed by choosing

the smallest AIC statistic, and the column line graph nomograms of 1-,

2-, and 3-year survival probabilities of COX regression were plotted.

Radiomics score (Rad_score, RS) of the LR imaging histology

model was merged with the clinical data to obtain the data of patients

with NSCLC with RS, and then the cutoff value of RS was calculated

using the survminer package. The patients were categorized into RS

high-expression (n = 35) and low-expression (n = 28) groups. Finally,

a nomogram prediction model was built using TCGA variables (T

stage, N stage, M stage, KRAS mutation status, and chemotherapy)

combined with the probability value (RS) predicted using the LR

imaging genomics model. Time-dependent ROC, calibration, and

decision curves were used for model evaluation.
FIGURE 2

Flowchart of imaging histology analysis.
frontiersin.org

https://www.slicer.org/
https://doi.org/10.3389/fimmu.2023.1334886
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Meng et al. 10.3389/fimmu.2023.1334886
2.7 Correlation analysis of survival factors

Kaplan–Meier survival curves were used to show changes in

survival rate in different groups, in which the median survival time

indicated the survival time corresponding to a survival rate of 50%.

The R package “survival” was used to analyze the survival of each

variable separately, and the R package “survminer” was used to

summarize and visualize the results of the analysis. One-way and

multifactorial COX regression analyses were performed using the R

packages “survival” and “forestplot.” Prognostic risk factors were

analyzed using univariate COX regression to explore the factors that

influence overall survival (OS), and multivariate COX regression

was used to explore whether a factor has an independent influence

on OS and to explore the role of multiple factors.
2.8 Bioinformatics-related analysis

2.8.1 Analysis of immune cell infiltration
The gene expression matrix of the lung cancer samples was

uploaded to the CIBERSORTx database (https://cibersortx.stanford.

edu/) and the immune cell infiltration of each sample was

calculated. The correlation between the abundance of NK cell

infiltration and the degree of immune cell infiltration was

analyzed using the R package “corrplot.”.

2.8.2 Gene set enrichment analysis
To investigate the molecular mechanism of expression differences

between high and low NK cell immune infiltration abundances, the R

package “clusterProfiler” was used to analyze the expression of

hallmarks (h.all.v7.5.1. symbols.gmt), and KEGG (c2.cp.kegg.

v7.5.1.symbols.gmt) gene sets were analyzed for GSEA enrichment.
2.9 Statistical analysis

The log-rank test was used to test the significance of survival

between groups. The Wilcoxon test was used to compare whether

the Rad_score differed between subgroups with high and low levels

of cellular infiltration. Spearman’s rank correlation coefficient was

used to correlate the abundance of immune infiltration by NK cells

with the clinical characteristics of the tumors. P < 0.05 was

considered significant.
3 Results

3.1 Correlation between NK cell immune
infiltration and prognostic implications in
the clinical characteristics of NSCLC

3.1.1 Clinical characteristics correlation
From the TCGA dataset, 695 patients with lung cancer were

included in the analysis. Using the R package “survminer,” a cutoff

value of 0.124 was considered for NK cell infiltration. Based on this,
Frontiers in Immunology 05
the patients were stratified into high expression cohorts of NK high-

expression (n = 287) and low-expression cohorts (n = 408). Significant

distribution disparities were observed between the high and low NK

cell infiltration groups in terms of histology (P < 0.001), sex (P <

0.001), and T stage (P < 0.001) (Table 1). The correlation heatmap

indicated a pronounced association between the primary variable, the

abundance of NK cell infiltration, and histology (P < 0.001), T stage (P

< 0.001), and sex (P < 0.001) (Supplementary Figure S1).

From the NSCLC radiogenomics dataset in the TCIA database,

an overlapping sample set with comprehensive clinical data, RNA-

seq data, and enhanced CT images was obtained (n = 63). Using an

NK cell infiltration abundance cutoff value of 0.0930, patients were

categorized into a high-infiltration group (n = 46) and a low-

infiltration group (n = 17) (Table 2).

3.1.2 Influence of NK cell immune infiltration
abundance on NSCLC patient prognosis

The high-infiltration group had a median survival time of 41.93

months, whereas the low-infiltration group had a median survival

time of 65.1 months. Kaplan–Meier curves revealed a significant

association of high NK cell infiltration abundance with better OS (P

= 0.002) (Figure 3A). Univariate analysis identified high NK cell

immune infiltration as a protective factor for OS (HR = 0.688, 95%

CI 0.54–0.877, P = 0.002) (Figure 3B). Likewise, multifactorial

analysis confirmed that high NK cell infiltration (HR = 0.717,

95%CI 0.558–0.922, P = 0.01) was a protective factor for OS

(Figure 3C). After adjusting for multiple factors, age (P = 0.012),

T stage (T3/T4 vs. T1, P < 0.001), N stage (P < 0.001), and tumor

residue emerged as risk factors for OS (Figure 3D). Subgroup

analysis indicated consistent effects of NK cell immune

infiltration abundance on OS in different covariate subgroups

(interaction test, P > 0.05) (Supplementary Figure S2).
3.2 Construction and evaluation of imaging
histology-related models

3.2.1 Screening and model construction of NK
cell-based chest enhanced CT image
histology features

Feature selection using LASSO regression was shown in Figures

4A, B. After screening, two features with a frequency of occurrence

>900 times were identified: original_gldm_SmallDependence

HighGrayLevelEmphasis and original_gldm_LowGrayLevelEmphasis

(Figure 4C). The results of the consistency evaluation showed that

the median ICC value of the radiomics features was 0.918, and there

were 92 radiomics features with ICC values ≥0.75 (86% of all

features). The ICC values of the two screened imaging histological

features were >0.9 (Figure 4D). Imaging histology equation =

original_gldm_SmallDependenceHighGrayLevelEmphasis × 0.615788

+ original_gldm_LowGrayLevelEmphasis × (−0.3493 + 1.133413).

3.2.2 Assessment of the radiomics model
The ROC curve indicated an area under the curve (AUC) of

0.731 for the model (Figure 5A), with an AUC of 0.726 (Figure 5B)
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after five-fold internal cross-validation. The calibration curve

assessed using the Hosmer–Lemeshow goodness-of-fit test

showed that the predictive probability of the radiomics model for

high and low cellular infiltration abundance closely aligned with the
Frontiers in Immunology 06
TABLE 2 Association of NK cell expression with clinical features in TCIA.

Variables Total
(n

= 63)

Low
(n

= 17)

High
(n

= 46)

P

Age, n (%) 0.116

<66 18 (29) 2 (12) 16 (35)

≥66 45 (71) 15 (88) 30 (65)

Gender, n (%) 0.333

Female 16 (25) 6 (35) 10 (22)

Male 47 (75) 11 (65) 36 (78)

Histology, n (%) 0.741

Adenocarcinoma 49 (78) 14 (82) 35 (76)

Squamous
cell carcinoma

14 (22) 3 (18) 11 (24)

T_stage, n (%) 0.519

Tis/T1 31 (49) 10 (59) 21 (46)

T2/T3/T4 32 (51) 7 (41) 25 (54)

N_stage, n (%) 1

N0 51 (81) 14 (82) 37 (80)

N1/N2 12 (19) 3 (18) 9 (20)

M_stage, n (%) 1

M0 60 (95) 16 (94) 44 (96)

M1 3 (5) 1 (6) 2 (4)

Chemotherapy, n (%) 1

No 46 (73) 13 (76) 33 (72)

Yes 17 (27) 4 (24) 13 (28)

Radiotherapy, n (%) 1

No 57 (90) 16 (94) 41 (89)

Yes 6 (10) 1 (6) 5 (11)

KRAS_mutation_status, n (%) 0.24

Mutant 12 (19) 1 (6) 11 (24)

Unknown 10 (16) 4 (24) 6 (13)

Wildtype 41 (65) 12 (71) 29 (63)

EGFR_mutation_status, n (%) 0.27

Mutant 13 (21) 5 (29) 8 (17)

Unknown 10 (16) 4 (24) 6 (13)

Wildtype 40 (63) 8 (47) 32 (70)

Smoking_status, n (%) 0.098

Nonsmoker 9 (14) 5 (29) 4 (9)

Former 36 (57) 7 (41) 29 (63)

Current 18 (29) 5 (29) 13 (28)
front
TABLE 1 Association of NK cell expression with clinical features
in TCGA.

Variables Total
(n = 695)

Low
(n = 408)

High
(n

= 287)

P

Age, n (%) 0.338

<66 297 (43) 181 (44) 116 (40)

≥66 398 (57) 227 (56) 171 (60)

Gender, n (%) <0.001

Female 262 (38) 126 (31) 136 (47)

Male 433 (62) 282 (69) 151 (53)

Histology, n (%) <0.001

Adenocarcinoma 320 (46) 162 (40) 158 (55)

Squamous
cell carcinoma

375 (54) 246 (60) 129 (45)

T_stage, n (%) <0.001

T1 184 (26) 84 (21) 100 (35)

T2 404 (58) 250 (61) 154 (54)

T3/T4 107 (15) 74 (18) 33 (11)

N_stage, n (%) 0.846

N0 456 (66) 266 (65) 190 (66)

N1/N2/N3 239 (34) 142 (35) 97 (34)

M_stage, n (%) 0.326

M0 556 (80) 332 (81) 224 (78)

M1/MX 139 (20) 76 (19) 63 (22)

Chemotherapy, n (%) 0.841

NO 486 (70) 287 (70) 199 (69)

YES 209 (30) 121 (30) 88 (31)

Radiotherapy, n (%) 1

NO 629 (91) 369 (90) 260 (91)

YES 66 (9) 39 (10) 27 (9)

Residual_tumor, n (%) 0.855

R0 666 (96) 390 (96) 276 (96)

R1/R2 29 (4) 18 (4) 11 (4)

Smoking_status, n (%) 0.056

Nonsmoker 56 (8) 32 (8) 24 (8)

Current 191 (27) 126 (31) 65 (23)

Former 448 (64) 250 (61) 198 (69)
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actual outcomes (Figure 5C). Decision curve analysis revealed the

substantial clinical utility of the model. For the training set, the

threshold was set at 0.818, yielding an accuracy of 0.635, a

sensitivity of 0.522, a specificity of 0.941, and a BS of 0.175. The

five-fold cross-validation resulted in an accuracy of 0.667, a

sensitivity of 0.609, a specificity of 0.824, and a BS of

0.184 (Figure 5D).
3.3 Radiomics model prediction and
evaluation of NK cell infiltration abundance

We assessed the variability between the imaging histology of the

LR model imaging. The output of the LR imaging histology model

predicted the likelihood of NK cell infiltration, termed the

Rad_score (RS). The findings indicated a notable difference in the

RS distribution between the groups with high and low NK cell

infiltration (P < 0.01); the group with elevated NK cell infiltration
Frontiers in Immunology 07
exh ib i t ed h i ghe r RS va lue s . F i gu r e 5E pre s en t s a

visual representation.
3.4 Integrated model construction and
clinical characteristics
correlation assessment

To improve the prognostic capability of our model, we

integrated clinically relevant factors. A nomogram predictive

model was constructed using the RS with clinical variables

(Figure 6A). Subsequent model evaluation revealed that the ROC

curves demonstrated robust predictive efficacy for 1-, 2-, and 3-year

OS (AUC values of 0.83, 0.86, and 0.83, respectively) (Figure 6B).

The calibration plots for the model indicated that the curves for

each time point were closely aligned diagonally, suggesting a

minimal prediction error (Figure 6C). Furthermore, the decision

curves revealed that the 1-, 2-, and 3-year OS for patients fell within
B

C D

A

FIGURE 3

Effect of NK cell immune infiltration abundance on the prognosis of patients with non-small cell lung cancer; (A) KM curve, median survival
time, and point-in-time survival rate; (B) univariate COX regression; (C) multivariate COX regression; (D) adjusted multivariate
COX regression.
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a threshold range of 0.05–0.55, underscoring the high clinical utility

of the model (Figures 6D–F).
3.5 Immune molecular mechanisms linked
to NK cell infiltration in NSCLC

3.5.1 Correlation between NK cell immune
infiltration abundance and immune genes

Analysis using Spearman’s rank correlation coefficient

revealed a positive association between the abundance of NK

cell immune infiltration and immune genes (16). Specifically, the

abundance of NK cell immune infiltration was significantly

positively correlated with the ICOS and BTLA genes (P < 0.001)

(Figure 7B). Furthermore, our examination of immune cell

infiltration in lung cancer indicated that NK cell infiltration was

positively associated with the infiltration levels of M0 and M2

macrophages (Figure 7A).
Frontiers in Immunology 08
3.5.2 Enrichment analysis of differentially
expressed genes in NK cell immune
infiltration subgroups

Among the hallmark gene sets, the GSEA highlighted the top 20

pathways. The genes differentially expressed between high and low

NK cell immune infiltration subgroups were predominantly

enriched in pathways such as TNF-a signaling via NF-kB, Wnt/

b-catenin signaling, and p53 pathway (Figure 7C). In the context of

the KEGG gene set, GSEA highlighted the 20 main pathways, with

differentially expressed genes between the two subgroups

significantly enriched in the p53 signaling pathway, Wnt signaling

pathway, and cell cycel pathways (Figure 7D).
4 Discussion

Once metastasis occurs in NSCLC, with a 5-year relative

survival rate of only 5%, the prognosis of NSCLC is poor (17, 18).
B

C

D

A

FIGURE 4

Selection of Imaging Histology Features and Model Development. (A, B) Feature selection using LASSO regression. (C) Selected features, two
exceeding a value of 900. (D) Significance of the two retained features in the logistic regression (LR) model.
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Therefore, new prognostic predictors for the precise treatment of

NSCLC are urgently needed. In this study, we analyzed the

association between the histological characteristics of NSCLC and

NK cells in a tumor microenvironment. This study aimed to predict

NK cell infiltration in NSCLC noninvasively to improve prognosis

prediction for patients. The predictive probability of the LR

radiomics model for the abundance of NK cells agreed with the
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true value, and the model predictive value of RS positively

correlated with the infiltration of NK cells. The nomogram

model, which was established by combining clinical features (T,

N, and M stages) with the RS of the radiomics model, showed a

good predictive ability for patient prognosis.

In this study, to exclude the impact of clinical factors on the

expression of NK cells and the prognosis of lung cancer, we
B

C D E

A

FIGURE 5

Construction and evaluation of the imaging histology model (A) ROC curve representation of the histological imaging model. (B) ROC curve after
five-fold internal cross-validation. (C) Calibration curve of the model. (D) Hosmer–Lemeshow goodness-of-fit assessment. (E) Distribution of Rad
scores between the high and low cellular infiltration groups.
B C

D E F

A

FIGURE 6

Nomogram model evaluation and clinical relevance (A) The comprehensive nomogram predictive model. (B) ROC curves illustrating the model’s
predictive capacity for 1-, 2-, and 3-year overall survival (OS). (C) Calibration plot of the model. (D–F) Decision Curve Analysis (DCA) for 1,2,3-year
OS, highlighting the high clinical utility of the model within the threshold range of 0.05–0.55.
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employed a multivariate Cox regression analysis. After adjusting for

the influence of 10 clinical demographic confounders, we found that

NK cell expression remains a protective factor in the prognosis of

lung cancer (OR: 0.717, 95% CI: 0.558-0.922, p=0.01). Additionally,

through subgroup analysis and interaction tests, it was observed

that there is no interaction between NK cell expression and the

clinical demographic characteristics above in terms of the prognosis

of lung cancer.

Several challenges remain in the contemporary field of NSCLC

management. Despite the increased adoption of molecular targeted

therapies and immunotherapies, a subset of patients, especially
Frontiers in Immunology 10
those with advanced disease stages, exhibit limited therapeutic

responses (19). Despite their potential, the emergence of

innovative diagnostic modalities faces barriers, such as high costs

and intricate technical demands that limit their widespread

adoption (20). Existing therapeutic regimens have yet to mitigate

the associated adverse effects and complications, compromising

patients’ quality of life.

NK cells play a role in many physiologic and pathologic

processes in NSCLC. For example, NK cells in MHC class I-

deficient lung adenocarcinoma displayed impaired cytotoxic

activity towards tumor cells, associated with alterations in the
B

C D

A

FIGURE 7

Mechanisms associated with the expression of NK cell immune infiltration abundance. (A) Correlation between NK cell immune infiltration
abundance and correlation between NK cell immune infiltration abundance and immune cell abundance. (B) Correlation analysis of the main variable
NK cell immune infiltration abundance and immune genes. (C) Top 20 significantly enriched pathways from the hallmark enrichment analysis results.
(D) Top 20 significantly enriched pathways from the KEGG enrichment analysis results. *P < 0.05; **P < 0.01; ***P < 0.001.
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expression of natural cytotoxicity receptors and ligands required for

target cell recognition (21). NK cells produce cytokines, such as

IFN-g and TNF-a, which have anti-tumor effects. These cytokines

can enhance the immune response by recruiting and activating

other immune cells, including T cells, to the tumor site (22–24). NK

cells interact with dendritic cells, macrophages, and T cells,

modulating the immune response. And they can also shape the

tumor microenvironment, influencing the efficacy of other

immunotherapeutic strategies (25–27).

Recent advances in NSCLC research have highlighted the role of

NK cells. These preliminary findings underscore the therapeutic

potential of NK cells for NSCLC immunotherapy (28). To capitalize

on the recognition of innate tumor antigens and cytotoxic

capabilities of NK cells, ongoing research has aimed to improve

their antitumor efficacy (29). Evidence suggests that specific

methodologies can enhance NK cell activity and enhance tumor

cell recognition (30). The intricate interplay between NK and lung

cancer cells has emerged as a key research focus. Studies have shown

that NK cells exert their cytotoxic effects by recognizing and

engaging with specific receptors (31). The ability of the lung

cancer microenvironment to modulate NK cell functionality and

potentially attenuate its antitumor responses is a subject of intense

scrutiny. Certain microenvironmental factors may impede NK cell

functionality, diminishing their antitumor effects (32). Determining

inhibitory mechanisms and strategizing countermeasures are

critical research avenues.

In immunotherapeutic strategies, NK cells also play an

important role. Many tumors, including NSCLC, exploit

inhibitory pathways to escape NK cell-mediated killing (33, 34).

New therapies aim to block these inhibitory signals (like KIRs,

NKG2A) to enhance NK cell activity (35, 36). Strategies that boost

activating signals on NK cells can enhance their ability to target

NSCLC cells (37). This includes the use of antibodies that engage

activating receptors like NKG2D or the use of cytokines like IL-15

to stimulate NK cell activity. NK cell activity and related markers

are being explored as potential biomarkers to predict response to

immunotherapy in NSCLC (38, 39).

In our study, we identified a positive association between NK

cell infiltration and the expression of the ICOS (Inducible T-cell

COStimulator) and BTLA (B and T Lymphocyte Attenuator) genes.

A pronounced correlation was also observed between M0 and M2

macrophage infiltration. ICOS is a co-stimulatory molecule found

on T cells. It plays a crucial role in T cell activation and survival.

ICOS is part of the CD28 superfamily and interacts with its ligand,

ICOSL, found on antigen-presenting cells (40–42). BTLA is an

immune checkpoint molecule expressed on T cells, B cells, and to a

lesser extent on NK cells and macrophages (43). It negatively

regulates immune responses by binding to its ligand, HVEM

(Herpesvirus Entry Mediator) (44–46).

ICOS and BTLA are associated with a variety of immune cells

such as NK cells, M0 andM2 macrophages (47, 48). Firstly, NK cells

typically do not express ICOS under normal physiological

conditions. However, certain conditions, like chronic viral

infections or certain cancer microenvironments, might induce

ICOS expression on NK cells, potentially altering their function

(49). NK cells can express BTLA. The engagement of BTLA on NK
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cells generally leads to an inhibitory signal, potentially reducing

their cytotoxic function (50). The expression and functional impact

of BTLA on NK cells can vary depending on the disease context and

the microenvironment (50).

M0 Macrophages are considered to be in a resting state and can

polarize into either M1 (pro-inflammatory) or M2 (anti-

inflammatory) phenotypes based on the microenvironment (51,

52). M2 macrophages are associated with tissue repair, wound

healing, and immune regulation (51). The role of ICOS and BTLA

in M2 macrophages is less clear. However, given that BTLA is an

inhibitory molecule, its expression in the macrophage context could

be associated with the suppressive functions of M2macrophages (53).

Gene enrichment analysis revealed that genes associated with

NK cell immune infiltration were predominantly aligned with the

p53 and Wnt signaling pathways. Thus, these insights will serve as a

foundation for subsequent genomic and transcriptional regulation

studies centered on NK cells.

By examining the gene expression profiles and signaling cascades

of NK cells, we aim to elucidate the molecular dynamics of the

participation of NK cells in NSCLC, informing the development of

innovative therapeutic paradigms. In recent years, radiomics

technology has become an important direction in NSCLC research.

Radiomics analyzes medical imaging data using high-throughput

methods that can reveal the microscopic and macroscopic features of

tumors, thus contributing to a better understanding and treatment of

NSCLC (54). First, histological imaging techniques have been effective

in aiding the early diagnosis and staging of NSCLC (55). By analyzing

specific imaging markers in CT or MRI, researchers can more

accurately determine the size, location, and aggressiveness of a

tumor, which can help develop more targeted treatment plans (56).

Furthermore, histological imaging can predict the prognosis of a

patient by analyzing the morphology and textural characteristics of

the tumor. However, radiomics technology has certain shortcomings

that limit its application in clinical practice (57). With the continuous

development of multiomics technology, imaging histology technology

is expected to further improve its application value in NSCLC research

and treatment when combined with other bioinformatics methods. For

example, by combining genomic and proteomic data, imaging

genomics can provide a more comprehensive and in-depth tumor

analysis, which can help to discover new therapeutic targets and

strategies (56). Currently, there are no reports on radiomics and NK

cells. Here, the radiomics model based on the features

original_gldm_SmallDependenceHighGrayLevelEmphasis and

original_gldm_LowGrayLevelEmphasis had a positive effect on NK

cell infiltration in NSCLC and patient prognosis predictive effect, and

the predicted probability of high and low NK cell infiltration

abundance agreed with the true value. To the best of our knowledge,

this is the first radiomics study to predict NK cell infiltration and

patient prognosis in NSCLC. The present study fills a gap in imaging

histology in NSCLC research and could facilitate the prediction of NK

cell infiltration levels in NSCLC. The study also explored the genes,

immune infiltration, and pathways associated with the abundance of

NK cell infiltration by combining bioinformatics technology, which

provides a new way to understand the molecular mechanism behind

the imaging histology model in a more detailed and

comprehensive manner.
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Although the image histology model constructed in this study

worked well, it had some shortcomings. First, data for this study

were obtained from public databases with non-uniform image

parameters. Second, the sample size was limited and needs to be

further validated using a large-sample multicenter study. Finally,

this study used a manual explanation of VOIs, which is also affected

by subjective factors.
5 Conclusions

The radiomics model constructed in this study using machine

learning algorithms based on enhanced CT images has good stability

and diagnostic efficacy and can accurately predict the infiltration of NK

cells in NSCLC. Furthermore, the comprehensive model established by

combining relevant clinical characteristics can predict the prognosis of

patients with NSCLC. Moreover, we explored the potential gene

expression and regulation of the pathway underlying NK cell

infiltration in NSCLC by combining bioinformatic technology, which

provides a new strategy to assist in clinical decision-making and guide

individualized precision diagnosis and treatment of NSCLC. In the

near future, the combination of multicenter data and well-established

mechanistic studies could present novel opportunities for the treatment

of patients with NSCLC.
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