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Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal
inflammation, predominantly manifests as Crohn’s disease (CD) and ulcerative
colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer
development and patients with IBD have an increased risk of various cancers. The
progression from inflammation to carcinogenesis in IBD is a result of the interplay
between immune cells, gut microbiota, and carcinogenic signaling pathways in
epithelial cells. Long-term chronic inflammation can lead to the accumulation of
mutations in epithelial cells and the abnormal activation of carcinogenic signaling
pathways. Furthermore, Immune cells play a pivotal role in both the acute and
chronic phases of IBD, contributing to the transformation from inflammation to
tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal
microbiome. Disruption of the gut microbiota and subsequent immune
dysregulation are central to the pathogenesis of both IBD and colitis
associated colorectal cancer (CAC). The proactive management of
inflammation combined with regular endoscopic and tumor screenings
represents the most direct and effective strategy to prevent the IBD-
associated cancer.
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1 Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory
disorder of unclear etiology and unknown mechanisms, primarily
involving inflammation of the gastrointestinal tract. The two most
common forms are Crohn’s disease (CD) and ulcerative colitis
(UC) (1). Patients with IBD have an increased risk of developing
gastrointestinal tumors. In addition, some extraintestinal
malignancies are also associated with IBD (2). Key risk factors for
tumor development in IBD patients include early onset of IBD
(younger than 15 years), colonic-type CD, familial history of
colorectal cancer (CRC), and IBD-associated complications, such
as foreshortened colon, strictures, inflammatory pseudopolyps,
and primary sclerosing cholangitis (3). And CRC caused by IBD
often presents with more low-differentiated tumors, which are
more aggressive, leading to a poorer prognosis (4). Persistent
hyperactive and uncontrolled inflammation can lead to severe
complications for IBD patients, notably carcinogenesis. Unlike
sporadic CRC, which originates from adenoma transformation,
IBD-associated cancers undergo a progression from inflammation
to dysplasia and then to tumor formation. In IBD, clonal evolution
begins long before evident tumor formation and may be accelerated
by the repetitive cycle of epithelial damage and repair, which is
characteristic of the colitis associated colorectal cancer (CAC) (5).
The pathogenesis of IBD-associated cancer is believed to be a result
of a combination of environmental, genetic, microbial, and
immunological factors (6). This review will delve into the
incidence, mechanisms, and preventive and therapeutic measures
of various tumors in the context of IBD. In addition, this review
rationalizes the seemingly contradictory dual role of some kinds of
immune cells in inflammatory cancers.

2 The risk of cancer associated
with IBD

2.1 Colorectal and anal cancer

Chronic UC is considered a risk factor for CRC. The risk of
developing CRC from long-standing Crohn’s disease related colitis
is believed to be similar to that of UC (7). A retrospective study
conducted in China between 2000 and 2012 documented 642 cases,
revealing the identification of four cases of CRC associated with UC.
The overall cancer risk in this study was found to be 0.64%. In UC-
related CRC patients, the median duration of UC was 15.5 years
with 75% of them being diagnosed at an advanced stage (8). A meta-
analysis involving 31,287 ulcerative colitis patients reported 293
cases of CRC. Using a pooled prevalence analysis from various
studies, the overall prevalence was 0.85%. The risk of CRC at 10
years was 0.02%, increasing to 4.81% at 20 years, and further to
13.91% at 30 years (9). Another meta-analysis, which included 25
studies comprising 8,034 IBD-CRC patients and 810,526 non-IBD
CRC patients, found that the overall survival (OS) for IBD-CRC
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patients was significantly poorer than that for non-IBD patients,
with a hazard ratio (HR) of 1.33. While the OS for ulcerative colitis-
associated CRC was better than that for Crohn’s disease-associated
CRC (HR=0.79). To summarize, IBD-associated CRC patients had
a lower rate of RO resection with a odds ratio (OR) of 0.6 compared
to non-IBD-CRC patients (10).

A retrospective study from New Zealand found that patients
with colon-type CD have a significantly increased risk of developing
CRC. The study collected clinical data from 649 CD patients, of
which 436 had ileocolonic or colon-type CD. Among them, 13 were
diagnosed with CRC, resulting in an overall cancer risk of 2.98%.
The median age at diagnosis of CRC was 58.5 years, and the average
duration of CD before the cancer diagnosis was 20.4 years. Patients
with colon CD have a significantly elevated risk of CRC compared
to the general population (11).

Patients diagnosed with IBD, particularly CD frequently,
often experience perianal complications alongside intestinal
inflammation. A recent meta-analysis revealed a higher incidence
of anal cancer in patients with perianal CD compared to the general
patient population. Notably, perianal involvement accounted for
the majority of cases of anal cancer, representing 46% of the cases
(12). Another meta-analysis highlighted an increased risk of anal
cancer in patients diagnosed with both CD and UC.
The summarized incidence rates (IRs) were 6 (3-11) for CD and
3 (2-4) for UC (13).

In summary, CRC arising from IBD exhibits a higher incidence
and poor prognosis when compared to sporadic CRC, while CRC
originating from colon-type CD appears to have a higher incidence
and worse prognosis than that originating from UC.

2.2 Small bowel cancer

In patients with IBD, particularly CD, there is an increased
incidence of small bowel cancer (SBC), with small bowel
adenocarcinoma being the most common type of SBC (14).

It is typically found in the narrowed or inflamed ileal regions. In
a population-based cohort study from both Sweden and Denmark,
among 168,896 IBD patients (CD: 47,370; UC: 97,515; Unclassified
IBD: 17,011), 237 IBD patients were diagnosed with SBC during the
follow-up period (CD: 24.4 per 100,000 person-years; UC: 5.88 per
100,000 person-years). In contrast, out of a control group of
20,399,257 people, 640 were diagnosed (equating to 2.81 per
100,000 person-years and 3.32 per 100,000 person-years,
respectively). The relative risk of SBC-related mortality is
increased in both CD and UC patients (15).

A comprehensive meta-analysis encompassing 26 studies
revealed a significant association between IBD and a 67%
increased risk of combined gastric, small bowel, and CRCs.
Notably, the predominant increase in risk was observed in SBC,
with gastric cancer being the exception. Furthermore, CD notably
increased the risk for both small and large bowel cancers, while UC
primarily raised the risk for CRC alone (16).
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2.3 Gastric cancer

In the general population, H. pylori infection is a significant risk
factor for gastric cancer. However, several studies have reported a
notably lower prevalence of this infection in IBD patients. This
phenomenon may be attributed to the prolonged use of anti-
inflammatory medications in IBD patients (17, 18).

A Danish study revealed that IBD patients, particularly those
with CD, had an increased risk of CRC, SBC, and both gastric
(incidence ratios (SIRs) =1.2) and extraintestinal (SIRs=1.3)
malignancies (19). And a study from Japan revealed a
significantly increased risk of CRC (SIRs=5.8) and gastric cancer
at (SIRs=1.86) when compared to the general population (20).
However, another study from Japan indicated no discernible
difference in gastric cancer risk between CD patients and the
general population, while the risk for CRC and leukemia was
considerably elevated compared to the general populace (21). But
patients with gastric cancer and CD may experience significantly
reduced survival rates compared to the general population (22). The
link between gastric cancer and IBD remains unclear. Further
research into its incidence and pathogenesis is essential.

2.4 Extragastrointestinal cancer

Inflammation is a critical mediator in the process of
carcinogenesis. In addition to its effects on the gastrointestinal
tract, inflammatory bowel disease often presents in
extragastrointestinal organs. Recent research has identified
associations between specific immune-mediated disorders and an
increased risk of cancers in distant organs. One particular study
documented an increased risk of extraintestinal cancers in patients
with CD with an Incidence Rate Ratio (IRR) of 1.43 and in those
with UC with an IRR of 1.15 such as skin malignancies,
hepatobiliary cancers, hematologic malignancies and lung cancer.

For instance, one study found that individuals with Crohn’s
disease exhibit a significantly increased risk of liver cancer with a
HR of 4.01, while those with ulcerative colitis demonstrate an
enhanced risk with an HR of 2.59 (23-25).

Primary sclerosing cholangitis is the classic hepatobiliary
manifestation of inflammatory bowel disease, often exhibiting a
chronic and progressive course. It is characterized by a gradual
fibroinflammatory deterioration of the intrahepatic and/or
extrahepatic bile ducts. Notably, patients diagnosed with this
condition exhibit a considerably heightened risk of malignancy
compared to the general population (26). An epidemiological
study found an association between UC and intrahepatic
cholangiocarcinoma, with an OR of 1.87 (27). A Mendelian
randomization study showed that in East Asia, individuals
diagnosed with IBD exhibited a 1.28-fold increase (p = 0.0065) in
the incidence of hepatocellular liver cancer (HLC) compared to the
general populace. Furthermore, patients suffering from UC
presented with a 1.12-fold (p < 0.0001) elevated incidence of
hepatocellular carcinoma (HCC) and a 1.31-fold (p = 0.0027)
heightened incidence of cholangiocarcinoma (CCA) (28).
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Besides, Some evidence from extensive multicenter studies and
meta-analyses robustly indicates an increased risk of prostate cancer
in patients with IBD, particularly in those with UC. And CD is also
notably associated with an increased risk of renal cancer. But there
doesn’t seem to be a significant correlation between IBD and the
incidence of breast cancer (29-32).

Due to the specific nature of IBD, patients commonly exhibit
chronic intestinal inflammation along with multiple organ
involvement and increasing their risk of developing various
cancers. Thus, it is of great significance to explore the
pathogenesis of IBD-associated cancers. Presently, research
mainly focuses on CAC, while research regarding the
pathogenesis of other IBD-associated cancers remains scarce.
Future studies exploring the pathogenesis of the other IBD-
associated cancers will not only enhance our understanding of the
mechanisms underlying IBD-related cancers but will also help to
unravel how IBD involves extraintestinal organs and the mystery of
its pathogenic origin.

3 The mechanisms of cancer
associated with IBD

3.1 Immune cells

Inflammation is the immune system’s response to injury, with
immune cells participating actively in both acute and chronic
inflammatory phases of IBD. These cells are instrumental in the
progression from chronic inflammation to tumorigenesis. The
immune system comprises a diverse array of cell types, each with
specialized functions that work collaboratively to defend against
external threats. This section will elucidate the types of immune
cells involved in the development of inflammation and their
potential role in oncogenic transformation within the context of
IBD (33).

3.2 Macrophages

Macrophages, integral components of the innate immune system,
primarily arise from monocytes. When stimulated by cytokines and
microbial agents, they undergo functional specialization and
polarization. These polarized macrophages can be broadly
categorized into two distinct types: M1 and M2, each assigned
specific functions (34). M1 macrophages exhibit pronounced
proinflammatory and antimicrobial activities, whereas M2
macrophages exhibit robust phagocytic capabilities, which facilitate
the clearance of debris and apoptotic cells and possess anti-
inflammatory properties (35). But during tumorigenesis,
macrophages also play dual roles, both anti-cancer and pro-tumor.
Specifically, M1 macrophages enhance tumor immunity, while M2
macrophages, a principal constituent of tumor-associated
macrophages (TAMs), promote tumorigenesis and metastasis (36).
Considering that inflammatory carcinogenesis is driven by chronic
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inflammation, and macrophages play dual roles in both inflammation
and cancer, questions have arisen regarding the potentially
contradictory functions of these macrophages in the development
of IBD-associated cancers.

Chronic inflammatory stimulation is a primary contributor to
IBD-associated cancers. Some studies suggest that during the early
stages of CAC development, there is an upregulation of Xanthine
oxidoreductase (XOR). This upregulation may drive the
polarization of M1 macrophage, thereby shaping the tumor
microenvironment to favor CAC progression (37). Low doses of
Diphenyleneiodonium (DPI) mitigate intestinal inflammation by
decreasing macrophage recruitment and suppressing Ml
macrophage activation (38). In the early CAC development,
Dihydroartemisinin (DHA) curtails macrophage activation and
infiltration in the colonic mucosa via the TLR4 signaling pathway,
consequently reducing pro-inflammatory cytokine expression. In
contrast, during the advanced stages of CAC, DHA impedes tumor
growth by inducing tumor cell cycle arrest and apoptosis. And
thalidomide treatment impedes M1 polarization within the
inflammatory microenvironment, reduces DSS-induced colonic
inflammation, facilitates mucosal healing, and curtails the
progression of CAC (39).

M2 macrophages play a crucial role in mitigating intestinal
inflammation. Some researchers have developed colon-
accumulated gold nanoclusters that target and augment M2
macrophages, consequently attenuating the progression from IBD
to CAC through an Nrf2-dependent pathway (40). In the CAC
microenvironment, exosomal miR-93-5p secreted by G-MDSC
facilitates the differentiation of M-MDSC into M2 macrophages,
thereby promoting the development of CAC (41). IL-6 promotes
the polarization of macrophages towards the tumor-promoting M2
phenotype, which, in turn, produces the chemokine CCL-20.
Subsequently, CCL-20 enhances CAC progression by selectively
recruiting CCR-6-expressing B-cells and Yo T-cells (42).

In summary, M1 and M2 macrophages play distinct yet
antagonistic roles during different stages of CAC. In the early
stages of CAC development, which coincide with the early phase
of IBD, persistent overactivation of M1 macrophage and
continuous pro-inflammatory responses lead to tissue damage
and increased risk of carcinogenesis. In the later stages of CAC
development, although M2 macrophage can alleviate inflammation
by promoting tissue repair, they simultaneously foster a tumor
microenvironment conducive to immune cell functional tolerance,
thereby creating favorable conditions for tumor growth (43).
Therefore, there is a dynamic imbalance between M1 and M2
macrophages during the progression of CAC. In the early stages,
M1 macrophages may suppress the function and survival of M2
macrophages through oxidative stress mechanisms. Additionally,
there is competition between them for cytokines and chemokines
(44). However, in the later stages of CAC progression, the
establishment of a tumor immune tolerance microenvironment,
recruitment and activation of Treg cells, and inhibition of M1
macrophages’ anti-tumor immune responses occur. M2
macrophages can also inhibit the function of M1 macrophages by
affecting the STAT3 and PI3K/AKT pathways (45).
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3.3 T cells

3.3.1CD4 and CD8 T cells

T cells, a subset of lymphocytes, can be classified based on their
T-cell receptors (TCRs) into either oy or yd subsets. Notably, the
of T cells constitute the predominant subset of the T cell repertoire
and encompass distinct populations, including CD4 and CD8 T
cells (46). In patients with IBD, activated CD4+ and CD8+ T cells,
present in both the peripheral blood and intestinal mucosa, play a
pivotal role in mediating the inflammatory response (47, 48). It has
been shown that the knockdown of CerS4 in T cells has been
demonstrated to lead to prolonged activation of both T cell
responses and the NF-xB signaling pathway.This, in turn,
contributes to the progression of CAC (49).

CD8 T cells are often considered indispensable in the fight
against tumor growth and are conventionally regarded as the
primary immune effectors for targeting and combating cancer
cells (50), relying on signals from CD4+ T cells (51). Infiltration
and function of CD8 T cells in the tumor microenvironment
determine resistance to tumorigenesis (52). IL-37 has been shown
to increase CAC through CD8 T cell inactivation (53). Dysfunction
in the Atg7 autophagy gene within intestinal epithelial cells (IECs)
results in the significant accumulation of T cells, particularly CD8+
T lymphocytes, in the colonic lamina propria, thereby impeding the
progression of CAC (54). While CD8 T cells typically inhibit tumor
formation, one cannot help but wonder whether there are also
potential drawbacks to the overactivation of CD8 in the specific
context of tumors caused by inflammation in IBD. Interestingly,
studies have indicated that an appendectomy may alleviate
colorectal inflammation in patients with UC by reducing CD8 T
cells infiltration. However, this is concomitantly associated with a
heightened risk of CAC (55).

CD4+ T cells which are closely associated with the development
of IBD-associated inflammation can be further delineated into
regulatory and effector T cells (56). The dysregulated expression
of the tumor suppressor gene p27, may indirectly facilitate the
progression of gastrointestinal epithelial malignancies. This is
postulated to occur through the increased production of
inflammatory mediators from a spontaneously proliferating
subset of CD4+ effector memory T cells (57).

Effector T cells, on the other hand, can be categorized into Thl,
Th2, and Th17 subsets, each secreting pivotal cytokines. Th1 cells
produce cytokines such as TNF-o, IFN-y, and IL-6, which facilitate
the recruitment of macrophages to inflammation sites and are
implicated in the formation of CD granulomas. Th17 cells
produce IL-17, IL-22, and IL-21, and in conjunction with T1
cells, they contribute to the inflammatory cascade in CD,
initiating phenomena like transmural inflammation (58, 59).
Conversely, Th2 cells primarily contribute to UC-associated
inflammatory processes by secreting IL-4, which has implications
in UC’s intestinal mucosal inflammation (60).

In the context of CAC, some studies argue that Th1 and Th2
cells exhibit contrasting roles. While Thl cells seem to provide
protective effects, Th2 cells are associated with tumor promotion
(61, 62). Some other studies have found that patients with active
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IBD exhibit elevated levels of TNF-o. and IFN-vy in the inflamed
colon. TNF-o enhances ETS-1 expression and augments Thl-
mediated mucosal inflammation, contributing to the progression
of CAC through the mediation of CIRBP (63).

Regulatory T (Treg) cells are pivotal in sustaining immune
homeostasis and thwarting autoimmunity. In oncology, an
accumulation of Tregs is typically correlated with an unfavorable
prognosis. However, various subpopulations of Tregs exist, each
potentially exerting distinct effects on tumor progression (64).
Foxp3+ Treg cells modulate and inhibit a wide range of both
innate and adaptive immune responses (65). In the CAC model,
the transient depletion of Foxp3+ Treg cells during tumor
progression results in suppressed tumor growth and
dissemination. This phenomenon is associated with an
augmented presence of CD8 T cells producing IFNYy and
granzyme B (66). STAT6 can facilitate the progression of CAC by
suppressing the function of Foxp3+ Treg cells (67). However,
during inflammation and early dysplasia, there is a notable
expansion of RORyt+ Treg cells. This expansion in IBD is
associated with the activation of Wnt-B-catenin signaling, leading
to the co-expression of numerous pro-inflammatory cytokines that
foster tumorigenesis (68).

3.3.2 NKT cells

NKT cells have been implicated in the pathogenesis of IBD.
Their maturation relies on the thymus, with a significant proportion
deriving from CD4+CD8+ double-positive (DP) thymocytes (69).
These cells display surface markers characteristic of both T cells
(such as TCR and CD3) and NK cells (including NKG2D and
CD161). Based on TCR variances, they can be classified into NKT
type 1 and NKT type 2 cells.

Observations indicate a diminished presence of NKT type 1
cells in both the intestinal tissue and peripheral blood of IBD
patients. Conversely, a notable accumulation of NKT type 2 cells
has been reported in the intestinal tissues of UC patients (70). NKT
type 2 cells may exacerbate UC through secreting IL-13, a cytokine
known to induce apoptosis in intestinal epithelial cells and
compromise the intestinal mucosal barrier. In the lamina propria
of CD patients, NKT type 1 cells can produce pro-inflammatory
cytokines like TNF-o, IFN-v, and IL-13, further contributing to
mucosal barrier disruption (71, 72). Interestingly, some studies
suggest that NKT type 1 cells may provide protection against
colitis in mouse models by secreting IL-9 (73). In summary, NKT
type 1 cells exhibit both protective and pathogenic tendencies in
IBD, while NKT type 2 cells lean more towards promoting intestinal
inflammation (58).

3.3.3 y0T cells

YOT cells can be primarily classified into two subpopulations:
V81 T cells and V382 T cells. In healthy tissues, V31 T cells
constitute the dominant YOT cell subset. However, in the context
of chronic IBD, there is a significant enrichment of V52 T cells.
These cells produce higher levels of cytokines such as IFN-y, TNF-
o, and IL-17 in chronic inflammatory conditions compared to V1
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T cells. This observation underscores the potential role of V&2 T
cells in the pathogenesis of both IBD and CAC (74).

3.4 Neutrophils

During an inflammatory response, neutrophils not only
accumulate but also become activated, leading to the release of
reactive oxygen species (ROS), various cytokines, and other
inflammatory mediators. These components then interact through
specific signaling pathways, orchestrating a cascade of responses
that regulate both anti-inflammatory and pro-inflammatory
mechanisms, maintaining homeostatic balance within the human
body (75).

A growing body of evidence underscores the dual role of
neutrophils. In addition to their well-known pro-inflammatory
functions, certain neutrophil subpopulations demonstrate anti-
inflammatory properties. These neutrophils can self-limit their
chemotaxis through selective cytokine secretion, facilitate the
clearance of pro-inflammatory cells, and significantly contribute
to tissue repair and regeneration processes (76). Specifically, CD177
+ neutrophils enhance bactericidal activity and produce IL-22,
thereby exerting a protective influence in IBD (77). Neutrophils
undergoing apoptosis can modulate their chemotaxis through the
activation of macrophages and the subsequent release of pertinent
cytokines. This process facilitates their own clearance, culminating
in the attenuation and resolution of inflammation (78).

Besides their contribution to the inflammatory processes in
IBD, research indicates that neutrophils release free radicals and
carcinogenic entities, including N-nitroso compounds. This
secretion heightens the susceptibility to cancer among IBD
patients (79, 80).

3.5 Innate lymphoid cells

Innate lymphoid cells (ILCs) play a pivotal role in modulating
intestinal inflammation and the pathogenesis of IBD. Derived from
common lymphoid progenitors (CLPs), ILCs are classified into
three primary groups: Group 1, which includes NK cells and ILC1;
Group 2, represented by ILC2; and Group 3, encompassing
ILC3 (81).

3.5.1 NK cells

In IBD patients, there is an observed elevation in the number of
NK cells within the lamina propria. These cells may contribute to
the pathogenesis of IBD by secreting interferon gamma, thereby
promoting the differentiation of T1 cells from naive CD4+ T cells.
Furthermore, the excessive presence of interferon gamma has a
detrimental impact on tight junctions in the intestinal mucosal
barrier (82), which is a crucial event that exacerbates chronic
inflammation in IBD and subsequently triggers the development
of CAC. Contrarily, several studies employing animal models of
colitis have demonstrated a protective role of NK cells against the
development of colitis. This protection is mediated via the
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inhibition of NKG2A receptor and direct cell-cell interactions,
resulting in the attenuation of pro-inflammatory activities
exhibited by neutrophils, including the secretion of cytokine and
ROS (83).

3.5.2 ILC1 cells

ILC1 cells possess the capability to secrete interferon gamma
and express the transcription factor, T-bet. Under the influence of
IL-12, ILC1 cells can differentiate from ILC3 cells, specifically the
RORYt(+) ILC3 subtype. Notably, there is a reported upsurge in the
prevalence of ILCI cells within the inflamed intestine of Crohn’s
disease patients (84). Similarly, a heightened frequency of ILC1 has
been observed in the dysplastic intestinal tissue of ulcerative colitis
patients. An analysis leveraging publicly available single-cell RNA
sequencing (scRNA-seq) data for CD and CRC revealed a
significant enrichment of CD-inducible genes. This enrichment
was notably observed in ILC1, which are known to promote the
development of CRC through their pro-inflammatory functions.
Furthermore, a significant enrichment of these genes was identified
in IBD-associated tumors (85). Collectively, these findings
underscore a potential role for ILC1 in sustained intestinal
inflammation and carcinogenesis (86).

3.5.3 ILC2 cells

In IBD patients, an increased presence of ILC2 cells has been
observed within diseased tissues (86). These cells are proficient in
secreting IL-13 and IL-5, acting as principal contributors of T2
cytokines (82). ILC2 cells appear to play a crucial role in
maintaining the structural integrity of the intestinal mucosal
barrier. Notably, IL-13, produced by these cells, appears to
facilitate the differentiation of intestinal stem cells into goblet and
Tuft cells, which are essential for rectifying intestinal damage (87).
IL-33, which can be released from compromised epithelial cells,
appears to be significant for ILC2 cells in the pathogenesis of IBD
(88). However, there is a discrepancy in findings across various
studies. One study indicated that a deficiency in IL-33 hindered the
differentiation of ILC2 and Th17 cells, thereby attenuating cytokine
levels, such as IL-6 and IL-1. This, in turn, protected mice from
DSS-induced colitis, with the study also pointing out that external
introduction of IL-33 worsened colitis (89). Conversely, another
research found that IL-33 offered protection against DSS-induced
colitis by bolstering the proliferation of ILC2 and Treg cells (90).
Consequently, the precise mechanistic role of ILC2 cells in the
pathogenesis of IBD requires further elucidation. Given the
suggested involvement of IL-33 in the progression from colorectal
adenomas to CRC, it becomes imperative to investigate the role of
ILC2 cells in the development of CAC (91).

3.5.4 ILC3 cells

ILC3 cells predominantly segregate into two subtypes: NKp44
+ILC3s and NKp44-ILC3. Within the intestinal lamina propria, the
majority of the ILC cell population is comprised of NKp44+ILC3s
cells. Notably, research has indicated a reduced frequency of these
cells in the affected intestinal tissues of IBD patients. Functionally,
these cells can produce IL-22, a cytokine that fortifies the integrity
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of the intestinal mucosal barrier and stimulates the production of
antimicrobial agents (92). However, the enhancement of the STAT3
signaling cascade by IL-22 in epithelial cells augments proliferation,
implicating its potential role in CRC progression. In patients with
CD, NKp44+ICL3 cells in affected intestinal tissues seem to produce
decreased amounts of IL-22 while retaining the capability to
produce IFN-vy. By secreting GM-CSF, these cells also amplify the
recruitment of pro-inflammatory monocytes (82, 86). While their
involvement in the pathogenesis of IBD and CAC is evident, the
exact roles of these cells require more comprehensive investigations.

The prevailing view suggests that the tumor microenvironment
should lean towards immune suppression. So how to activate the
immune responses within the tumor is crucial for the efficacy of
immunotherapies. However, since inflammation is also a form of
immune response, the hyperactivation of the immune system often
aids the progression of inflammation-associated cancers. Current
researches indicated that in the early stages of inflammation-to-
cancer transformation, the damage to epithelial cells caused by
inflammation is the primary driving force. But after tumour
formation, it tends to shift the microenvironment towards
immune suppression to evade immune cell attack. This also
clarifies some apparent contradictions in the role of immune cells
with dual functions in the mechanisms of inflammation-associated
tumor development (Figure 1). Therefore, future explorations using
multi-omics technologies to investigate the crosstalk between these
immune cells and to identify key cellular subgroups in IBD-related
tumors as potential therapeutic targets are of
paramount importance.

4 Signaling pathway

Unlike the occurrence of sporadic cancers, the development of
tumors in IBD follows the inflammation-dysplasia-cancer sequence.
The persistent stimulation of epithelial cell proliferation in an
inflammatory environment is considered crucial in the etiology of
tumors in individuals with IBD, This underscores the pivotal
relationship between chronic inflammation and tumorigenesis in
these conditions (93).

Cancers developed against the backdrop of IBD exhibit distinct
molecular characteristics depending on their locations. For
instance, patients with Crohn’s disease face an increased risk of
adenocarcinoma and neuroendocrine tumors in small bowel.
Most patients with IBD-SBC have active moderate to severe IBD.
Unlike IBD-associated colorectal adenocarcinoma, IBD-SBC does
not exhibit evidence of microsatellite instability in tumors,
highlighting the heterogeneity in molecular features of cancers
associated with IBD (94). A connection between IBD and
Hepatocellular Carcinoma (HCC) is also recognized; although
the precise mechanisms remain to be elucidated. Current
understanding suggests associations with molecules such as
CXCL2, MMP9, SPP1, and SRC, underscoring the need for
further investigative studies to clarify these relationships (95).

Classical signaling pathways, including NF-xB, PI3K/AKT, and
STATS3, are crucially involved in the manifestation of inflammation
and the onset of CAC. Their significance in understanding IBD-
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In the early stages of tumorigenesis, there is an increase in pro-inflammatory cells, including M1 macrophages, CD8 T cells, Thl, Th17, neutrophils,
V82 T cells, and RORyt+ Treg cells. Concurrently, there is a decrease in suppressive cells, such as M2 macrophages, Th2 and Foxp3+ Treg. This
imbalance results in excessive pro-inflammatory cytokine secretion, heightened inflammation, damage to epithelial cells, and the subsequent
mutation of normal epithelial cells, ultimately leading to dysplasia and inflammation-associated carcinogenesis. Conversely, after the establishment
of the tumor microenvironment, immunosuppressive cells, namely M2 macrophages, Foxp3+ Treg, and Th2, become dominant, facilitating tumor

immune evasion and progression to advanced stages

related oncological developments. The roles of these pathways in
CAC will be discussed in detail below.

4.1 NF-xB

Nuclear Factor-kappa B (NF-kB) is a pivotal transcription factor
involved in numerous physiological processes, including
inflammation, stress response, cellular differentiation, proliferation,
and apoptosis, and is significantly correlated with tumor initiation and
progression. This underlines its substantial impact on cellular and
molecular biology and its critical role in understanding and addressing
various pathological conditions.

NF-xB plays an instrumental role in augmenting the
production of pro-inflammatory cytokines, adhesion molecules,
and chemotactic factors and in modulating the activity and
development of immune cells. It induces the maturation of
dendritic cells and the formation of memory T cells, influences
macrophages to release abundant pro-inflammatory agents and
polarize to M1 phenotype, and directs neutrophils to anti-
apoptotic states and inflammatory sites. These roles highlight the
significant implications of NF-xB in immunological responses,
inflammatory processes, and potential therapeutic interventions
for inflammatory diseases (96, 97).

Pro-inflammatory agents, such as TNF-o,, IL-1, and IL-6, which
are encoded by the NF-kB signaling pathway, play a crucial role in
both the pathogenesis of inflammation-induced tissue damage and
the promotion of tumorigenesis. Specifically, TNF-o. can induce
cellular transformation by stimulating the generation of reactive
oxygen species and facilitating DNA damage, These findings
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illuminate the pathway’s significant implications in tumorogenesis
and inflammatory conditions (98). In patients with IBD and CRC,
there is an upregulation of PIK3R3 in intestinal epithelial cells. This
heightened PIK3R3 expression triggers the activation of the NF-kB
pathway, resulting in a subsequent decrease in ZO-1 expression,
Consequently, this molecular cascade increases the susceptibility of
IBD patients to cancer development (99). Mice lacking RNF138
exhibit a marked increase in NF-kB signaling and demonstrate a
heightened susceptibility to the transition from colitis to invasive
malignant tumors (100). The interplay between the gut microbiota
and intestinal epithelial cells play a crucial role in carcinogenesis
associated with IBD. Fusobacterium nucleatum activates the Toll-
like receptor 4 signaling pathway leading to MYD88, resulting in the
activation of NF-xB and increased expression of miR21. This
elevates the risk of CAC onset in patients and is linked to a less
favorabler prognosis (101). Besides its the expression of the NF-kB
pathway in epithelial cells, its role in macrophages is also significant
in CAC. MiR-148a directly targets several established upstream
regulators of NF-kB and STAT3 signaling pathways, including
GP130, IKKa, IKKB, ILIR1, and TNFR2. This modulates the
activation of NF-xB and STAT3 in macrophages and colonic
tissues, thereby influencing the onset of colitis and colitis-
associated tumorigenesis (102).

4.2 PI3K/AKT

PI3K, a phosphoinositide kinase, is involved in various cellular
signaling pathways. Serine/threonine-protein kinase B (AKT) is a
member of the AGC kinase family and is regulated by growth
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factors. The product of PI3K activation interacts with the pleckstrin
homology domain of AKT, leading to its translocation to the plasma
membrane and subsequent activation through phosphorylation by
upstream kinases such as PDKI1. AKT plays a role in numerous
cellular functions, including survival, proliferation, growth,
glucose metabolism, apoptosis, angiogenesis, transcription, and
migration (103).

The activation of the PI3K/AKT signaling cascade augments the
synthesis and secretion of the pro-inflammatory cytokine TNF-a,
inducing a cytokine disequilibrium and manifesting as
inflammatory responses via a series of molecular interactions
(104). Studies indicate that the PI3K/AKT signaling pathway
synergizes with the Wnt pathway to amplify [3-catenin signaling
during inflammatory responses. In the progression from UC to
CAC, the PI3K-induced and AKT-mediated [3-catenin signaling is
pivotal for the activation of progenitor cells. These elements can be
identified as biomarkers for aberrant colon developmental
transitions. Notably, not only in the colon epithelial cells, but also
the activation of the Wnt/B-Catenin pathway in T-effector cells,
particularly T17 and Treg cells, contributes to CAC development as
well (105). Reducing PI3K/AKT signaling pathways can lead to a
decrease in colonic immune cell infiltration, significantly inhibiting
the occurrence of colitis and intestinal tumors (106).

4.3 STAT3

STAT3 serves as a pivotal transcription factor involved in
inflammation and cellular growth, with a crucial role in
modulating cell apoptosis. In patients with CAC, there is a
significant increase in the activation levels of STAT3. With the
activation of STAT3, anti-apoptotic genes including BCL2 and
BCL-XL are activated. This means tumor invasion, metastasis,
and poor prognosis in CAC (107).

Key inflammatory mediators, encoded by NF-xB target genes
and prominently exemplified by IL-6 and IL-22, which have a
central position in orchestrating diverse immune responses
throughout IBD pathogenesis (108). And Located in the
cytoplasm, STAT3 responds to inflammatory cytokines,
particularly IL-6 and IL-22 (109). A wealth of studies underscores
the indispensability of IL-6 and STAT3 for intestinal epithelial cell
viability and CAC progression. Upon IL-22 and IL-6 stimulation in
epithelial cells, the activation of the STAT3 pathway not only
enhances cell viability but also suppresses suppressing apoptosis,
underscoring its significance in the transition from IBD to cancer
(110, 111). Their inhibition curtails tumor emergence in CAC (112,
113). The Notch pathway is considered a downstream effector of the
IL-6/STATS3 axis. It is pivotal in regulating the self-renewal and
differentiation of normal cells across various tissues, also guides the
self-renewal and tumorigenic potentials of human cancer stem
cells (114).

The signaling pathways leading to CAC predominantly target
the NF-«B, PI3K/AKT, and STAT3 pathways, which are critically
associated with both inflammation and cancer. Therefore,
therapeutic agents targeting these pathways merit clinical
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validation for their efficacy in CAC treatment. Given the
challenges in acquiring clinical samples of CAC, current
mechanistic studies are largely confined to cellular and animal
models. In the future, collecting samples from CAC patients at
various stages, from inflammation to dysplasia and then to cancer,
and conducting single-cell sequencing will be crucial to elucidate
the molecular mechanisms that distinguish development of CAC
from that of sporadic CRC. This approach could potentially
uncover novel signaling pathways and cellular roles in the
inflammation-to-cancer transition.

5 Microbiota

The human and animal gut microbiome encompasses a diverse
array of microorganisms, including bacteria, archaea, fungi, viruses,
and multicellular parasites (115). The intestinal bacteria is
predominantly composed of four bacterial phyla: Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria (116). The
human gut microbiome is increasingly recognized for its role in
IBD, It is primarily characterized by an increase in pathogenic
bacteria coupled with a decrease in beneficial bacterial populations
(Figure 2) (117, 118).

A study from Canada used 16S sequencing to compare the gut
microbiota among individuals with CD (n=20), UC (n=19), and
healthy controls (n=23). It was observed that microbial diversity in
patients with IBD was significantly reduced compared to that in the
healthy control group. And the microbial abundance of
Actinobacillus, Eggerthella, Clostridium III, Calcitonella faecalis,
and Streptococcus was significantly elevated, whereas the
abundance of Gemmiger, Lachnospira, and Sporobacterium was
significant decrease in all disease groups (119). A systematic
review which included 48 studies in the analysis revealed elevated
levels of Actinomyces, Veillonella, and Escherichia coli in patients
and a diminished abundance of beneficial microbiota such as
Eubacterium rectale and Akkermansia (120).

Perturbations in the gut microbiota, along with concomitant
immune dysregulation, play a central role in the pathogenesis of
both IBD and CAC (121). In the initial stages of colitis-associated
cancers, the gut microbiota employs lipopolysaccharide (LPS) to
modulate monocyte-like macrophage (MLM) accumulation via a
chemokine-dependent pathway. This process subsequently fosters a
precancerous inflammatory environment by the pro- inflammatory
immune cells activation that facilitates tumorigenesis (122).
Notably, Akkermansia can alleviate colitis and curtail both IBD
and CAC, potentially through the diminution of macrophages and
CD8+ cytotoxic T lymphocyte (CTL) infiltration in the colon (123).
A study recruited 144 age and gender-matched controls along with
41 patients with ulcerative colitis for gut microbiota testing from the
Faroe Islands which have the highest incidence of IBD globally. In
both groups, the Akkermansia genus was absent, shedding
additional light on the potential susceptibility to inflammatory
diseases in this high-risk population (124).

Short-chain fatty acids (SCFAs), especially butyrates, negatively
regulate the inflammatory signaling pathway mediated by NLRP3
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Patients with IBD experience a decrease in gut microbiota diversity accompanied by a reduction in probiotics and an increase in pathogenic bacteria,

which contributes to the onset and progression of colitis-associated cancer.

to inhibit the activation of macrophages and the secretion of pro-
inflammatory mediators such as IL-18 and IL-1PB, reducing
intestinal inflammation levels and limiting CAC development.
The abundance of beneficial bacteria, including B. fragilis,
Clostridium butyricum, Faecalibacterium, Christensenellaceae,
Methanobrevibacter, and Oscillospira which promotes the
secretion of SCFAs significantly exhibited a significant decrease in
the intestine of IBD patients during the CAC development process
(125-130).

Considering these findings, the future development of therapies
targeting opportunistic pathogenic or pro-inflammatory intestinal
bacteria, or increasing the number of beneficial bacteria and
metabolites like butyrates, represents a promising strategy for
managing IBD. Such approaches could effectively alleviate colitis
symptoms and prevent CAC in IBD patients.

6 Prevention of cancer associated
with IBD

In contrast to sporadic CRC, tumors associated with IBD
typically evolve from inflammation to dysplasia, eventually leading
to carcinoma. This progression is driven by continuous inflammatory
stimuli (131). Consequently, the primary treatment strategies involve
inflammation control and routine colonoscopic monitoring (132,
133). Current pharmacological interventions for IBD-associated
cancer include traditional medications such as 5-aminosalicylic acid
(5-ASA) and thiopurines, biopharmaceuticals, small molecule
inhibitors, and some novel therapeutic approaches (Figure 3).
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6.1 Conventional treatment

6.1.1 5-ASA

5-ASA compounds, such as mesalazine, are frequently
employed in managing inflammation in patients with IBD.
Beyond its anti-inflammatory efficacy, 5-ASA has its potential in
oncogenesis inhibition, particularly as it seems to decrease
colorectal cancer incidence among long-term users (134).
Microsatellite instability (MSI) is an early occurrence in the
development of CAC and can be detected in chronically inflamed
mucosa. Inhibiting MSI within the UC environment may aid in
preventing CAC (135). The observed effect can be attributed to 5-
ASA reducing IL-6-induced MSI, which contributes to its antitumor
activity (136). This finding aligns with previous research on 5-ASA
both in vitro and in vivo (137, 138). A meta-analysis that compiled 9
studies showed a protective association in UC patients between the
use of 5-aminosalicylic acid and CRC (OR=0.51) (139). Intrestingly,
patients with UC experience more substantial benefits from 5-ASA
compared to those with CD (140). 5-ASA does not provide a
protective effect against small bowel adenocarcinoma in Crohn’s
disease (141). 5-ASA may exhibit antitumor properties against
colorectal tumors in IBD patients, but their protective efficacy
against the progression to CRC in individuals with low-grade
dysplasia appears to be constrained (57). Consistent with this
study, another study indicates that the use of 5-ASA in IBD
patients in the two years prior to a diagnosis of CAC does not
have a preventive effect on CAC which suggests that the use of 5-
ASA may not offer significant protection once dysplastic growth has
already occurred in the later stages of the disease (142). In
conclusion, current evidence suggests that the use of mesalazine
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Traditional drugs for controlling IBD inflammation are believed to also prevent IBD from developing into CAC. However, the use of these drugs also
carries the potential risk of causing other malignant tumors. Consequently, reasonable use of these drugs, combined with regular colonoscopy

tumor screenings, is the most effective prevention measure.

as a chemopreventive treatment to reduce the risk of CAC in
patients with UC is feasible and generally associated with
relatively minor side effects. Furthermore, due to its mechanism
of action, which involves inhibiting the synthesis of inflammatory
mediators, reducing leukocyte activity, and enhancing the mucosal
barrier, the effectiveness of this intervention appears to be enhanced
when applied in the earlier stages of inflammation (143, 144).

6.1.2 Thiopurines

Rapid induction and ensuring the maintenance of remission are
fundamental to IBD treatment. In cases where remission is difficult
to maintain with monotherapy of 5-ASA, it may be necessary to
use immunomodulators (IMs) such as thiopurines for long-
term remission (145). Moreover, thiopurines also have a
chemopreventive effect on CAC. It works by inhibiting the
activity of leukocytes (particularly T-cells) in the immune system,
thereby slowing down the inflammatory response. Their primary
mechanism of action involves inhibiting DNA synthesis and cell
division, which effectively suppresses the proliferation and activity
of immune cells (146). Local administration of thiopurine can
alleviate colitis and enhance autophagy, reducing dysplasia and
CAC induced by AOM/DSS in wild-type mice (147). And the
present meta-analysis indicates that thiopurines have a
chemopreventive effect on colorectal tumors in IBD patients,
displaying a tendency towards diminishing the progression of
these tumors (148). In patients with IBD, particularly those with
an extended disease duration (>8 years), the use of thiopurine is
correlated with a decreased risk of colorectal tumors, advanced
neoplasia, and CRC (149). Medications such as IMs are pivotal for
controlling inflammation in IBD, but they also potentially increase
the risk of cancer (150). A study revealed a slightly increased risk of
nonmelanoma skin cancers in IBD patients undergoing thiopurine
treatment (151). In a long-term follow-up study of 19,486 IBD
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patients in France, those treated with thiopurines had a reduced risk
(HR=0.28) of CRC in IBD patients compared to those who had
never been treated with thiopurines. However, the risk of
lymphoproliferative malignancies increased (HR=52.5) (152). In
summary, thiopurines play a crucial role in the maintenance of
remission and reduction of colorectal cancer risk in the treatment of
IBD. However, they may also elevate the risk of certain specific
cancer types, necessitating careful consideration and vigilant
monitoring in clinical practice.

6.2 Biopharmaceuticals

The emergence of biologics, targeting mechanisms like
leukocyte trafficking inhibition (anti-integrin antibodies) or
inflammatory cytokine blockade (anti-tumor necrosis factor, anti-
interleukin 12/23), has revolutionized our capacity to attain clinical
remission and endoscopic healing, consequently reducing the onset
of IBD-associated complications (153). A study utilizing a multi-
center database in the United States (Explorys), encompassing
225,090 patients with Crohn’s Disease and 188,420 patients with
Ulcerative Colitis, indicated that those treated with anti-TNF
medications had a lower risk of developing CAC. The ORs for
CD and UC were 0.69 and 0.78, respectively (154).

The activation of NF-xB pathway is crucial for the progression
of CAC. The specific factors that directly induce NF-xB activation
during the progression of CAC remain unclear. One potential
mediator in the epithelial cells of patients with IBD is TNF-a,
which is significantly elevated in the inflamed intestinal
environment (155). And TNFR2 signaling in intestinal epithelial
cells may directly contribute to the development of persistent CAC.
This suggests that maintenance therapy with anti-TNF-o
monoclonal antibodies can not only effectively control
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inflammation but also potentially halt the progression of CAC in
long-term IBD (156). Under normal conditions, TNF-a. plays a
crucial role in immune system development and host defense
against infectious agents. However, its role under pathological
conditions is markedly different. In addition to causing
dysregulation of the immune response, TNF-o can also
contribute to inflammation or carcinogenesis, thus presenting a
dual aspect to its function and its relation to NF-xB (157). The
activation of the classical IKK-f/NF-kB pathway leads to increased
transcription of genes including inflammatory mediators (COX-2,
iNOS, TNF, and IL-6), proteases, and apoptosis inhibitors (BCL-
XL, cIAPs, GADD458, BFL1, and SOD2) (158-160). Studies have
confirmed the involvement of these molecules in colitis-associated
carcinogenesis. Infliximab’s mechanism in cancer prevention may
be through the reduction of inflammatory mediators or the
induction of apoptosis (161). Chronically elevated levels of TNF-
o in tissues can also promote cancer growth, invasion, and
metastasis (162).

In addition to cytokines, various growth and angiogenic factors,
as well as matrix-degrading proteases like matrix metalloproteinases
(MMP)-2, MMP-3, and MMP-9, play significant roles in
tumorigenesis, invasion, and metastasis (163). Matrix
metalloproteinases, which can be released by pro-inflammatory
cytokines such as TNF-o and IL-1B, are crucial in tissue
remodeling and destruction. Notably, MMP-9 is the most highly
expressed protease in colonic inflammatory tissues (164). In
experiments, involving mice treated with infliximab, there was a
significant reduction in the expression and activity of MMP-9 and
MMP-11, as well as B-catenin. This reduction led to decreased
tumor occurrence in the AOM/DSS animal model (165).

Considering the therapeutic efficacy and drug resistance, a
combination therapy approach is proposed. Combining
Infliximab with immunosuppressants (such as thiopurine or
methotrexate) can improve the pharmacokinetics of Infliximab.
Although combination therapy represents a compromise treatment
strategy, which can improve the pharmacokinetics, it still carries
some risk of cancer development. A meta-analysis that included
four observational studies, involving a total of 261,689 patients,
showcased an increased risk of lymphoma in IBD patients
administered with anti-TNFo. agents, either as monotherapy or in
conjunction with thiopurines (166). Additionally, the combination
of Infliximab and azathioprine increases the risk of infections and
malignant tumors. New biologics, such as Vedolizumab and
Adalimumab, also elevate the risk of skin cancer when used
together (167).

But some studies present alternative perspectives, several
studies suggest that anti-TNFo therapy does not correlate with an
increased malignancy risk in IBD patients. It is important to note
that these studies do not provide information on malignancy risk
beyond a treatment duration of one year, leaving potential long-
term risks undetermined (168). For all cases of malignancies 'during
treatment, it is essential to adopt a multidisciplinary approach
involving gastroenterologists, dermatologists or oncology
specialists, for direct and open communication about balancing
IBD treatment with malignancy management (169).
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6.3 Small molecule drugs

The JAK/STAT pathway has been demonstrated to be involved in
the pathogenesis of IBD. Blocking this pathway can inhibit various
pro-inflammatory cytokines, reducing intestinal inflammation.
Tofacitinib, an orally administered small molecule drug, primarily
inhibits JAK1 and JAK3. Clinical studies have confirmed that
tofacitinib can induce and maintain remission in UC (170).

Studies have shown that polymorphonuclear cells (PMN)-
derived reactive oxygen species (ROS) from oxidative bursts play
a crucial role in inducing MSI in colorectal cells. Furthermore,
PMN-derived cytokines, including IL-8, IL-6, and TNF-q,
contribute to mucosal frameshift mutations (171). while JAK
inhibitors can reduce mutations in intestinal epithelial cells by
decreasing the release of cytokines from these cells (172).
Therefore, both the removal of ROS and inhibition of cytokine
signaling pathways by JAK inhibitors may prevent cancer
progression in UC. PMNs not only produce ROS but also secrete
a range of cytokines (e.g., IL-8, IL-6, and TNF-a.), chemokines, and
growth factors (173). These cytokines are elevated in both active UC
and Crohn’s disease. In patients with CAC, IL-6 can alter DNA
methylation through DNMT1-induced hypermethylation of the
SOCS3 promoter, leading to subsequent STAT3 hyperactivation
(174, 175). The use of JAK inhibitors may inhibit these mutations
and thereby reduce the risk of CAC.

The JAK inhibitor tofacitinib eliminates Microsatellite
instability (MSI) induced by IL-6 or neutrophils, potentially
delaying or preventing the progression of cancer in cases of colitis
(171). Tofacitinib, while capable of inhibiting the development of
CAQC, also presents certain risks. In a clinical study, 598 patients
received tofacitinib induction therapy for 8 weeks, while 541
patients were administered a placebo.The results indicates
tofacitinib increased the overall rate of infections, the incidence of
herpes zoster, and the occurrence of non-melanoma skin cancer in
IBD patients (176). In another meta-analysis that included 82
studies and 66,159 patients who were treated with JAK inhibitors,
researchers found that the risk of herpes zoster infection increased
in patients with immune-mediated diseases treated with JAK
inhibitors. However, there was no increase in the risk of
malignant tumors and other complications (177). There is a need
for large-scale, long-term cohort studies to adequately assess the
impact of these medications on the risk of CAC.

6.4 Probiotics

The role of probiotics in preventing the inflammation-to-cancer
transition in IBD is a significant area of study. Probiotics have been
shown to influence the growth of beneficial gut bacteria that can
modulate immune responses against cancerous growth. Thus, the
application of probiotics opens new possibilities for therapeutic
strategies in cancer prevention (178).

As the most common probiotic, Lactobacillus plays a pivotal
role in maintaining the ecological balance of the intestinal flora and
exerts a beneficial anti-inflammatory effect in IBD and CAC. Acting
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symbiotically with the host, it helps maintain the immune
microenvironment of the intestinal mucosa, limiting the over-
activation of inflammatory signals and aiding patients in
managing the inflammatory response in the gut. Anti-tumor
effects were observed with Lactobacillus bulgaricus; its
administration in an AOM/DSS-induced CAC mouse model
suppressed mean tumor size and total tumor volume, significantly
reducing pro-inflammatory cytokines, including IL-6, TNF-o, IL-
1B, IL-17, and IL-23 (179). Similarly, a specific polysaccharide-
peptidoglycan complex (PSPG) from Lactobacillus casei Shirota was
shown to limit tumor growth by inhibiting the IL-6/STAT3
signaling pathway (180). The antiproliferative effect of
Lactobacillus helveticus NS8 on colon cells was more pronounced
in the early stages of CAC, indicating its significant role in
preventing tumorigenesis (181). Moreover, the fecal microbiota
transplantation of B. fragilis has been proven effective in
improving protection of intestinal epithelial damage caused by
chronic inflammation and in preventing the development of
colon tumors (125).

Due to the unique characteristics of different subspecies,
the anti-inflammatory principles and functional components
vary among them. Therefore, combining different strains of
Lactobacillus to develop more effective probiotics, or using
Lactobacillus in conjunction with other probiotics, could be a
potent adjunctive therapeutic strategy for patients with IBD and
related diseases. Recent research in this area has been extensive,
yielding promising results. For instance, a probiotic combination of
Lactobacillus acidophilus, Bifidobacterium bifidum, and
Lactobacillus rhamnosus demonstrated potential chemopreventive
effects by inhibiting tumor growth in AOM/DSS-induced CAC
mice (182).

In addition to probiotics, the study of synbiotics, which
combine probiotics and prebiotics or include the addition of
vitamins and trace elements, has also garnered significant interest.
Synbiotics enhance the physiological bacterial activity of probiotics
and selectively and rapidly increase their population, making the
function of probiotics more significant and long-lasting (183). A
synbiotic comprising Lactobacillus 505 and Cudrania tricuspidata
leaf extract has been reported to inhibit CAC development and
reduce the incidence of colon tumors while significantly down-
regulating pro-inflammatory cytokines, up-regulating tight
junctions (TJs), and increasing pro-apoptotic factors such as p53,
p21, and Bax in damaged colonic mucosa, thus demonstrating its
therapeutic value in CAC (184).

Although probiotics has shown numerous anti-inflammatory
effects in mice, its clinical efficacy is still limited by challenges such
as low viability and bioavailability during gastrointestinal transit.
Research on Ligilactobacillus salivarius has led to the development
of a new probiotic encapsulation method using layer-by-layer (LbL)
approach, significantly enhancing its potential to alleviate colitis
(185). Advanced gas shear technology and ion diffusion have been
used to prepare colon-targeted core-shell hydrogel microspheres,
extending the local residence time of the drug and potentially
enhancing the bioavailability of probiotics (186). Therefore,
developing effective methods for probiotics packaging is
equally important.
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6.5 Other approachs

Beyond traditional medications, in recent years, exosomes
derived from plants have been discovered to possess the
capability to deliver drugs specifically to the intestinal tract,
offering substantial potential in treating intestinal diseases. These
exosomes boast numerous advantages, including excellent
biocompatibility, non-toxicity, low immunogenicity, targeted
delivery, an extended duration of drug action, high production
capacity, and the ability to cross the blood-brain barrier (187).
Studies indicate that for conditions like IBD and CAC, a variety of
chemical and nucleic acid drugs can be efficiently transported to the
site of intestinal inflammation via plant-sourced exosomes, helping
to reduce inflammation or inhibit gene expression (188, 189). Such
as nanoparticles derived from edible ginger, GDNPs 2, which
reduce acute colitis, enhance intestinal repair, and prevent
chronic colitis and CAC (190). In experiments, the nonsteroidal
antiinflammatory drugs (NSAIDs) aspirin can also exert its
protective effect against CAC through the immunomodulatory
actions on macrophages and CD8+ T cells (191). Apart from
drug-related treatments, regular and repeated colonoscopy with
biopsies is considered the most effective method, with annual
monitoring recommended for high-risk patients. Specifically,
these high-risk individuals include those with extensive colitis
with severe active inflammation, first-degree relatives diagnosed
with CRC before the age of 50, those with concomitant Primary
Sclerosing Cholangitis, and patients found with dysplasia within the
past 5 years (192).

To summarize, optimized inflammation management, coupled
with regular endoscopic monitoring and neoplastic screening are
effective in preventing IBD-associated malignancies. But academic
discussions still lack a definitive consensus regarding the potential
cancer risks associated with the prolonged usage of these drugs. It is
encouraging to note that, in addition to traditional therapies, there
are now emerging novel drugs and treatment approaches that have
shown promising efficacy in the prevention of CAC. And
delineating and balancing their role in preventing IBD-associated
malignancies is a critical matter that demands immediate attention.
There is a urgent call for broader prospective and experimental
research in this field.

7 Conclusion

Chronic inflammation resulting from IBD increases the annual
incidence of various tumors in patients, encompassing both
gastrointestinal and extragastrointestinal malignancies. The
transformation from inflammation induced by IBD to
carcinogenesis results from interplay among immune cells, gut
microecology, and signaling pathways. Notably, various immune
cells, exhibit dual roles during the various stages of inflammation
and tumor development. In the initial inflammatory stage, these
cells such as M1 macrophages, Thl cells, and CD8 cells, exacerbate
inflammation, which is counteracted by the anti-inflammatory
actions of M2 macrophages,Th2 and Foxp3+ Treg cells. However,
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once the tumor microenvironment is established, these pro-
inflammatory cells that initially promoted inflammation now act
to suppress tumor cell viability by enhancing tumor immunity.
Conversely, the anti-inflammatory cells then facilitate tumor
immune evasion and progression. In addition, during the
interactions among immune cells, changes in the gut microbiota
of IBD patients, along with the activation of certain cancer signaling
pathways in intestinal epithelial cells, also have been pivotal in the
development of IBD-associated cancers. The protective effect of 5-
ASA against CAC appears well-proved, though its early use during
the initial stages of inflammation is crucial. The impact of other
drugs, including IMs and anti-TNFo, as well as other novel drugs,
needs better assessment of their impact on decreasing CAC risk and
side-effects in long-term use through large prospective cohort
studies. Furthermore, future research should focus on a deeper
understanding of the key pathogenic pathways and molecular
mechanisms of inflammatory-cancer transformation in IBD
patients to facilitate the development of new treatment methods
and targets.
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