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carrier-free nanoparticles
Heyuan Liu1†, Yinong Huang2*†, Zongfang Li1, Suxia Han3,
Tianya Liu4* and Qian Zhao5*

1National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second
Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 2Shaanxi Institute of Pediatric Diseases, Xi’an
Children’s Hospital, Xi’an, China, 3Department of Radiation Oncology, The First Affiliated Hospital of Xi’an
Jiaotong University, Xi’an, China, 4Institute for Stem Cell and Regenerative Medicine, The Second
Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 5Department of Otorhinolaryngology Head
and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
Background: Cell fate and microenvironmental changes resulting from aberrant

expression of specific proteins in tumors are one of the major causes of

inadequate anti-tumor immune response and poor prognosis in head and

neck cancer (HNC). Eukaryotic initiation factor 3C (eIF3c) has emerged as a

promising therapeutic target for HNC due to its ability to regulate protein

expression levels in tumor cells, but its drug development is difficult to achieve

by targeting traditional protein-protein interactions. siRNA has emerged as a

highly promising modality for drug development targeting eIF3c, while its

application is hindered by challenges pertaining to inadequate stability and

insufficient concentration specifically within tumor sites.

Method: We employed a method to convert flexible siRNAs into stable and

biologically active infinite Auric-sulfhydryl coordination supramolecular siRNAs

(IacsRNAs). Through coordinated self-assembly, we successfully transformed

eIF3C siRNAs into the carrier-free HNC nanotherapeutic agent Iacs-eif3c-RNA.

The efficacy of this agent was evaluated in vivo using HNC xenograft models,

demonstrating promising antitumor effects.

Results: Iacs-eif3c-RNA demonstrated the ability to overcome the

pharmacological obstacle associated with targeting eIF3C, resulting in a

significant reduction in eIF3C expression within tumor tissues, as well as

effective tumor cell proliferating suppression and apoptosis promotion. In

comparison to monotherapy utilizing the chemotherapeutic agent cisplatin,

Iacs-eif3c-RNA exhibited superior anti-tumor efficacy and favorable biosafety.
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Conclusion: The utilization of Iacs-eif3c-RNA as a carrier-free

nanotherapeutic agent presents a promising and innovative approach for

addressing HNC treating challenges. Moreover, this strategy demonstrates

potential for the translation of therapeutic siRNAs into clinical drugs,

extending its applicability to the treatment of other cancers and

various diseases.
KEYWORDS

derivatives of siRNA, automatic assembly system, siRNA clinical translation, carrier-
free nanoparticles, anticancer therapeutics
1 Introduction

Head and neck carcinoma (HNC) is a prevalent category of

cancers, primarily consisting of squamous cell carcinomas, which

account for over 90% of malignant cases (1, 2). A significant majority

of patients, approximately 70%, are diagnosed with intermediate to

advanced stages, resulting in an unsatisfactory 5-year survival rate of

less than half (1, 3, 4). Regrettably, the prognosis for HNC has not

shown notable improvement in recent years, largely attributed to the

constraints imposed by the available treatment modalities (5). The

issue of resistance to primary treatments for HNC, including

chemotherapy (e.g. cisplatin) and immunotherapy, constitutes a

significant determinant of prognosis (6, 7). In light of the

groundbreaking therapeutic advancements facilitated by immune

checkpoint antibodies and other therapies reliant on protein-

protein interactions (PPIs), it is noteworthy that only a minority of

patients with HNC exhibit positive responses (8–10). This

phenomenon can potentially be attributed to the abnormal

expression of certain proteins in tumor cells, which consequently

impairs immune cell functionality, leading to tumor immune evasion

and immunosuppression (11–14). Noteworthily, the investigation of

eukaryotic initiation factor 3c (eIF3C) as a potential antitumor target

in the therapeutic exploration of HNC has been progressively

undertaken (15, 16). eIF3C, a constituent of the largest eukaryotic

translation initiation factor eIF3 complex, plays a crucial role in

regulating transcript-specific translation during development and

exhibits elevated expression levels in various cancer types (15, 17,

18). Suppression of eIF3C results in disruption of translation

initiation complexes and decreased protein expressions, leading to

cell cycle arrest and apoptosis (15, 16, 19). Nevertheless, similar to

other tumor-specific proteins and associated PPIs, inhibiting eIF3C

through direct protein-level regulation poses significant challenges.

In the past few years, there has been a rise in cancer therapeutic

approaches that focus on addressing aberrant target protein levels in

tumor cells (20–22). Among these approaches, small interfering

RNAs (siRNAs) have shown potential in rectifying the expression of

specific genes, thereby offering a promising avenue for tumor

therapy (23–26). Unlike peptides and protein-based drugs, which

possess intricate interfaces connecting multiple protein structural
02
features, siRNAs directly suppress targets on the pre-expression

level, thereby impeding the development of tumor-promoting PPIs

(27, 28). Moreover, the therapeutic strategies involving siRNA

exhibit the capability to reach intracellular targets, a feat that

proves challenging for drugs based on PPIs (29). Therefore, it is

promising to show beneficial effects in anti-tumor immunity by

reducing the levels of proteins involved in immune escape through

siRNAs. Nevertheless, siRNAs suffer from inadequate stabilization,

susceptibility to degradation, absence of tumor targeting, and

confront obstacles in terms of applicability (25, 26). Naked

siRNAs, in particular, are subject to ineffective depletion due to

endonuclease degradation, nonspecific uptake by macrophages,

charge repulsion, and other physiological barriers, resulting in

insufficient concentration at the tumor site (26, 30, 31).

Consequently, there is a pressing necessity to devise a strategy for

transforming therapeutic siRNAs into viable clinical drugs to

address the treatment of HNC.

Herein, we present a comprehensive approach to transform

flexible siRNAs into stable and biologically active infinite Auric-

sulfhydryl coordination supramolecular siRNA (IacsRNA), using a

mild and straightforward chemical pathway, building upon prior

research (32, 33). By employing this methodology, we successfully

converted eIF3C siRNAs into an HNC therapeutic agent, exhibiting

anti-tumor efficacy both in cellular and animal models. Specifically,

Iacs-eif3c-RNA precursors, prepared by the reaction of mercapto-

modified eIF3C siRNA with gold, was binding with each other to

assemble into carrier-free nano-particles driven by gold-thioether

coordination, called Iacs-eif3c-RNA (Figure 1). Through a

xenograft murine model of head and neck squamous cell

carcinoma (HNSCC), it is successfully demonstrated that Iacs-

eif3c-RNA effectively overcame the pharmacological barrier

associated with eIF3C, significantly reduced the expression level

of eIF3C in tumor tissues and exhibited inhibitory effects on tumor

growth in vivo. Furthermore, it is revealed that in HNSCC xenograft

mouse models constructed with cisplatin-resistant cell line, Iacs-

eif3c-RNA demonstrated superior anti-tumor efficacy and

remarkable biosafety compared to cisplatin. This work provides a

novel and effective carrier-free nucleic acid nanotherapeutic agent

for the treatment of HNC, and proposes a promising approach for
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https://doi.org/10.3389/fimmu.2023.1343428
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1343428
the translation of therapeutic siRNAs into potential clinical drugs

for the management of cancer and other ailments.
2 Results

2.1 Evaluation of siRNA eIF3C silencing
target gene

In order to clear the eIF3C siRNA interference effect on eIF3C

expression in head and neck carcinoma, eIF3C siRNA (siRNA-

eIF3C) and the negative control siRNA (siRNA-NC) encapsulated

in liposome were used to infect the human FaDu cell line and 5-8F

cell line, both of which are from HNC. Compared with those of

negative control, the gene expression of eIF3C was decreased

remarkably in both FaDu and 5-8F cells (Figures 2A, B), and the

protein expression of eIF3C was inhibited significantly in FaDu cells

(Figure 2C) after eIF3C siRNA treatment. These results indicated
Frontiers in Immunology 03
that ability of eIF3C siRNA to interfere with target gene expression

implying eIF3C siRNA could be used to prepare Iacs-eif3c-RNA by

reacting with HAuCl4.
2.2 Design and synthesis of Iacs-eif3c-RNA

In the combination reaction, ionized HAuCl4 (Au3+) banded

with the thiol group of thiol-siRNA eIF3C (eIF3C siRNA-SH) to

produce Iacs-eif3c-RNA precursor, then the precursor connected to

each other through auric-sulfhydryl coordination to form Iacs-

eif3c-RNA, eventually (Figure 3A).

In order to determine whether polymer precursors were

formed, FT-IR and UV-vis spectroscopy of above reactions were

implemented. A prominent increased absorption peak appeared at

1200 cm-1 in FT-IR, belong to fingerprint, indicated the change of

molecular structure implying the form of Iacs-eif3c-RNA precursor

(Figure 3B). In UV-vis, an absorption peak at 330 nm was found in
B CA

FIGURE 2

The expression of eIF3C in 5-8F and FaDu cells decreased after siRNA-eIF3C treatment. (A) The expression of eIF3C mRNA in 5-8F cells. (B) The
expression of eIF3C mRNA in FaDu cells. (C) The expression of eIF3C protein in FaDu cells. The data were presented as mean ± s.d. **, p<0.01.
FIGURE 1

Fabrication and therapeutic mechanism of Iacs-eif3c-RNA.
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the compound of HAuCl4 and mercapto modified siRNA,

demonstrated that Iacs-eif3c-RNA precursor was obtained

successfully for the characteristic peak of Au+-SR absorption

appearance (Figure 3C). In order to sure the Iacs-eif3c-RNA

made of above precursor was taken shape, dynamic light

scattering and transmission electron microscope (TEM) were

implemented. The hydrodynamic diameter of Iacs-eif3c-RNA

peaked at ~23.5 nm measured by dynamic light scattering,

implying formation of nanoscale clusters (Figure 3D). Moreover,

in TEM images, Iacs-eif3c-RNA presented similar particle

characteristics further supporting dynamic light scattering results

(Figure 3E). Through the above method and detection, we

successfully converted eIF3C siRNA into stable Iacs-eif3c-RNA.
2.3 The biosafety properties of Iacs-eif3c-
RNA in vivo

To evaluate the toxicity of the Iacs-eif3c-RNA in vivo, an

extensive study of toxicity was conducted using C57BL/6 mice.

Iacs-e i f3c-RNA and negat ive contro l (Au-NC) were

intraperitoneally injected every other day, undergoing a 14-day

administration. On the 15th day, mice were sacrificed for the

following experiment. The results of blood routine tests presented

that the granulocyte (Gran) and platelet (PLT) increased within

normal limits (Gran: 0.23-3.6×109/L; PLT: 400-1600×109/L) in

peripheral blood after Iacs-eif3c-RNA treatment (Figures 4C, D),

while the white blood cell (WBC), lymph (LYM), hemoglobin

(HGB) and red blood cell (RBC) didn’t appear significant

differences (Figures 4A, B, E, F). It is identified that the effects of
Frontiers in Immunology 04
Iacs-eif3c-RNA on hematologic systems have been controlled

within safe limits. Body weight of mice among three groups

exhibited consistent growth trends during the administration

(Figure 4G), implying that Iacs-eif3c-RNA did not adversely affect

normal physiological activities such as feeding in mice. In order to

confirmed whether Iacs-eif3c-RNA affected organs, the indicators

of organ damage were measured. The histological H&E staining of

heart, liver, kidney, lung and spleen also showed normal cell

morphology (Figure 4H). Alanine aminotransferase (ALT),

aspartate aminotransferase (AST), creatinine (CREA) and blood

urea nitrogen (BUN) related to liver and kidney function also have

similar level among three groups (Figures 4I–L). The above results

indicated that Iacs-eif3c-RNA possessed favorable biosafety and the

potential for clinical application.
2.4 Iacs-eif3c-RNA achieved tumor eIF3C
expression disruption and efficient tumor
growth suppression in vivo

To determine whether nanoparticles are able to target to and

accumulate in tumor site, we measured the content of gold in tumor

tissue of mice, which were injected with Iacs-eif3c-RNA after 0, 4,

10 and 24 hours. The result showed that gold content in tumor

increased with time (Figure 4M), which indicated the Iacs-eif3c-

RNA could target to and accumulate in tumor at least 24 hours. To

verify the antitumor ability of Iacs-eif3c-RNA, the drugs was

intraperitoneally injected to HNC xenograft model every other

day in a 19-day cycle (Figure 5A). Tumor weights were

significantly reduced in mice treated with Iacs-eif3c-RNA,
B C D E

A

FIGURE 3

Fabrication and characteristic of Iacs-eif3c-RNA. (A) The preparation process of Iacs-eif3c-RNA. (B) FT-IR spectra of Iacs-eif3c-RNA and Au-Core.
The band at 1200 cm−1 which was attributed to the stretching vibration of -SH. (C) UV-Vis absorption spectra of Iacs-eif3c-RNA. The distinct
absorption peaks at 330 nm in the UV-Vis region is the absorption peaks for the Au-S-siRNA species. (D) Hydrodynamic diameter distributions of
Iacs-eif3c-RNA and Au-Core. (E) Transmission electron micrograph images (TEM) of Iacs-eif3c-RNA (scale bar = 50 nm).
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supporting by the photographs of tumors and tumor-bearing mice

(Figures 5B, D). Mice injected with Iacs-eif3c-RNA showed no

abnormalities on body weight during the administration

(Figure 5C). Encouragingly, Iacs-eif3c-RNA treatment

substantially suppressed tumor growth (TGI=59.41%), based on

the evidences on volume and H&E staining of tumor tissues
Frontiers in Immunology 05
(Figures 5E, G). Immunohistochemical results indicated that the

expression level of eIF3C in tumor tissues treated with Iacs-eif3c-

RNA was significantly reduced, which proved that Iacs-eif3c-RNA

enriched in tumor tissues and fully played the role of silencing

target genes (Figure 5F). In addition, in the presence of diminished

eIF3C levels, expression of Ki67 lowered in Iacs-eif3c-RNA-treated
B C D

E F

G

H

I J K L

M

A

FIGURE 4

In vivo safety evaluation of Iacs-eif3c-RNA. (A–F) White blood cell (WBC), lymph (LYM), granulocyte (Gran), hemoglobin (HGB), red blood cell (RBC),
and platelet (PLT) in peripheral blood reflecting blood metabolic capacity. (G) The body weight of mice during 14-day treatments. (H) The
representative histological H&E staining images of brain, heart, liver, lung, spleen, kidney in mice after the indicated treatments (magnification: 20×,
scale bar: 200µm). (I–L) Alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CREA) and urea (UREA) were measured to
reflect liver function. (M) The content of Au ion in tumor detected by Inductively Coupled Plasma Mass Spectrometer. Tumor tissue of mice was
collected at 0, 4, 10 and 24 hours after Iacs-eif3c-RNA injected intraperitoneally. The data were presented as mean ± s.d. **, p<0.01.
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tumor tissues, and the number of TdT-mediated dUTP nick end

labeling (TUNEL) positive cells increased, suggesting that this

treatment suppressed tumor cell proliferation and augmented

apoptosis (Figures 5H, I). And it was interesting that Iacs-eif3c-

RNA decreased PD-L1 expression of tumor cells, implying Iac-

eif3c-RNA may be benefit to inhibition of immune escape in

antitumor immunity (Figure S1). Collectively, the results

indicated Iacs-eif3c-RNA exerted excellent antitumor efficacy by

reducing the intracellular level of eIF3C, inhibiting cell growth and

promoting apoptosis, suggesting that it has a sustainable tumor

suppressor potential in vivo.
Frontiers in Immunology 06
2.5 Reduced intracellular expression levels
of eIF3C exhibited sensitization to
chemotherapy in the HNC
xenograft model

Chemotherapy is a core measure in the treatment of HNC; in

clinical practice, however, chemotherapy tolerance is frequently

observed, leading to the unfavorable prognosis for HNC (34, 35).

The excellent anti-tumor performance of Iacs-eif3c-RNA, as well as

the important molecular biological function of eIF3C itself

compelled us to explore its role in the treatment of
B C

D E

F G

H I

A

FIGURE 5

Iacs-eif3c-RNA inhibited the tumor growth in vivo. (A) Schematic plot of this test. (B) The photos of mice with tumor (C) The body weight recorded
during Iacs-eif3c-RNA injected intraperitoneally every two days. (D) The photos and weight of tumor tissues recorded on the 20th day after Iacs-
eif3c-RNA injected intraperitoneally. (E) The tumor volume of mice recorded during Iacs-eif3c-RNA injected intraperitoneally every two days. (F-I)
The representative histological H&E staining, TUNEL staining and IHC staining (eIF3C and ki67) of tumor executed after mice treated with Iacs-eif3c-
RNA (magnification: 20×, scale bar: 100µm). The data were presented as mean ± s.d. *, p<0.05.
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chemotherapy-resistant HNC. Here, we constructed a HNC

xenograft model using cisplatin (DDP)-insensitive FaDu cells to

examine the anti-tumor ability of Iacs-eif3c-RNA. The mice were

intraperitoneally injected with PBS, Au-NC, Iacs-eif3c-RNA, DDP

or a combination of Iacs-eif3c-RNA and DDP every other day

during 19-day administration period (Figure 6A). The

photographic results showed that tumor was smaller after treated

with no matter Iacs-eif3c-RNA alone or a combination of Iacs-
Frontiers in Immunology 07
eif3c-RNA with DDP (Figures 6B, C). Both the Iacs-eif3c-RNA

monotherapy and combination therapy showed evident tumor

suppression, while DDP alone did not significantly reduce tumor

weight (Figure 6C). The possible explanation for this phenomenon

could be attributed to the resistance towards DDP of the FaDu cell

line utilized for constructing the tumor model in this study, as

evidenced by the IC50 to DDP range range of 6.25 to 12.5 mM.

(Figure 6D) (36, 37). Iacs-eif3c-RNA inhibited tumor growth
B

C D E

F

G

H

I

A

FIGURE 6

Iacs-eif3c-RNA eIF3C combined with DDP inhibited tumor growth in vivo. (A) Schematic plot of this test. (B, C) The photos of mice and tumor being
taken, and the weight of tumor recorded at the 20th day after Iacs-eif3c-RNA injected intraperitoneally. (D) The cell inhibitory rate of FaDu cell to
DDP. (E) The body weight and (F) tumor volume of mice recorded during Iacs-eif3c-RNA injected intraperitoneally every two days. (G–I) The
representative histological H&E staining and IHC staining (eIF3C and ki67) of tumor were executed after mice treated with Iacs-eif3c-RNA
(magnification: 20×, scale bar: 100µm). The data were presented as mean ± s.d. *, p<0.05; **, p<0.01; ***, p<0.001.
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(TGI=56.18%) with little impact on body weights, while the

combined treatment showed tumor growth inhibition

(TGI=42.53%) accompanying body weight decline (Figures 6E, F).

It is worth mentioning that the eIF3C level displayed a decline on

the basis of Iacs-eif3c-RNA administration, with or without DDP,

suggesting that the modulatory effect of Iacs-eif3c-RNA on eIF3C was

not affected by DDP-insensitive properties (Figure 6G). Meanwhile,

this trend was also consistent with the inhibitory effect of Iacs-eif3c-

RNA on tumor growth, which was likewise further supported by the

results of H&E staining (Figure 6H). Ki67 immunohistochemical

staining demonstrated that in the absence of an obvious impact under

DDP monotreatment, both Iacs-eif3c-RNA and the combined

treatment exhibited an inhibitory effect on tumor cell proliferation

(Figure 6I). The safety of Iacs-eif3c-RNA was further confirmed by

H&E staining of internal organs including brain, heart, liver, lung,

spleen and kidney (Figure S2). In summary, the results demonstrated

that Iacs-eif3c-RNA could achieve cisplatin-insensitive tumor growth

inhibition in HNC without causing damage to normal tissues and

organs, which implies that it has the potential to be a sensitizer or an

alternative therapeutic agent in the case of tolerance to conventional

chemotherapeutic agents.
3 Discussion

The main reason for the poor prognosis of HNC may be due to

its risk for relapse and drug resistance (38, 39). For example, the

prevalence of drug resistance to cisplatin, a frequently employed

chemotherapy agent in the clinical management, was observed to be

common during HNC treatment, with a subset of patients

exhibiting unresponsiveness to this drug (4, 40, 41). In the last

decade, targeted therapeutic drugs with precise positioning and low

toxicity provide a gaining interest and promising solution for the

treatment of a variety of tumors, including HNC (42–44). Several

targeted drugs, such as cetuximab and pembrolizumab, have

showed excellent therapeutic potential in the treatment of HNC

at present (45–47). As an important subunit of translation initiation

factors, eIF3C is positively correlated with Hedgehog signaling

pathway (17, 48), which participated in the immunoevasion of

certain tumors (49, 50). eIF3C was also involved in the regulation of

a variety of human cancers, such as ovarian cancer (18), lung

adenocarcinoma (51), and renal cell carcinoma (52). For all the

above reasons, eIF3C have been considered to be a promising

therapeutic target for HNC (16). Utilizing eIF3C siRNA as a

foundation, we have successfully designed and synthesized the

targeted therapeutic agent Iacs-eif3c-RNA. (Figures 2, 3) In

contrast to peptide and protein derived drugs that possess

intricate structures and mechanisms, Iacs-eif3c-RNA exhibited a

remarkable ability to suppress tumor growth in the HNC xenograft

model by effectively downregulating the gene expression of eIF3C.

(Figure 5) The xenograft models constructed from cisplatin-

resistant HSNCC cell lines exhibited notable weight reduction

subsequent to cisplatin administration, indicating the associated

systemic toxicity. Conversely, the utilization of Iacs-eif3c-RNA
Frontiers in Immunology 08
demonstrated an enhanced therapeutic outcome in terms of

inhibiting tumor growth, while not inducing any obvious toxicity

symptoms. (Figure 6) This finding presents a novel and efficacious

approach for HNC management.

As early as 2012, the proposal to develop siRNA-based drugs for

HNC treating was put forth, which achieved significant anti-tumor

effects (53–56). These siRNA drugs function by targeting specific

genes, thereby disrupting the expression of target proteins in

tumors, leading to cell apoptosis and the modification of the

tumor microenvironment to achieve precise tumor suppression.

Nevertheless, the clinical application of siRNA-based therapies

necessitates considerations of biological activity, transfection

efficiency, and biological safety (26). Naked siRNA, when

administered intravenously, lacks protection and is susceptible to

degradation by endonucleases (26, 30). Additionally, the non-

specific uptake of macrophages within the reticuloendothelial

system can lead to phagocytic damage to siRNA (26). Within the

interstitium, various factors, including the extracellular matrix,

charge repulsion between siRNA and the cell membrane, and

physiological barriers such as tight junctions, hinder the

penetration of siRNA into tumor tissues (31). In the event that

siRNA fails to achieve early endosomal escape upon cellular entry, it

undergoes acidification and degradation by lysosomes, ultimately

resulting in exocytosis (57). In recent years, there has been a

continuous effort to enhance the efficacy of siRNA as clinical

drugs by improving and updating the methods for preparing

siRNA-enveloped nano systems (25, 32, 33, 58, 59). In this study,

we used simple reactants to obtain Iacs-eif3c-RNA through a mild

preparation method, which ensured the biological activity and

improved the stability of siRNA effectively. (Figure 3)

Encouragingly, our findings suggested that Iacs-eif3c-RNA

successfully suppressed the expression of the target gene eif3c in

vivo, leading to the tumor growth inhibition (Figures 5, 6). In

addition, Iacs-eif3c-RNA demonstrated no detrimental effects in

terms of body weight, blood indexes, and organ tissue sections,

indicating its favorable biosafety and potential for clinical

application. (Figure 4 and Figure S2) In conclusion, the utilization

of Iacs-eif3c-RNA offers a reliable approach for therapeutic agent

development for HNC. Moreover, our study presents a

straightforward, effective, and secure strategy for the clinical

application of other siRNA molecules.
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