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Tumor-secreted lactate
contributes to an
immunosuppressive
microenvironment and affects
CD8 T-cell infiltration
in glioblastoma
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Introduction: Glioblastoma is a malignant brain tumor with poor prognosis.

Lactate is the main product of tumor cells, and its secretion may relate to

immunocytes’ activation. However, its role in glioblastoma is poorly understood.

Methods: This work performed bulk RNA-seq analysis and single cell RNA-seq

analysis to explore the role of lactate in glioblastoma progression. Over 1400

glioblastoma samples were grouped into different clusters according to their

expression and the results were validated with our own data, the xiangya cohort.

Immunocytes infiltration analysis, immunogram and the map of immune

checkpoint genes’ expression were applied to analyze the potential connection

between the lactate level with tumor immune microenvironment. Furthermore,

machine learning algorithms and cell-cell interaction algorithm were introduced

to reveal the connection of tumor cells with immunocytes. By co-culturing CD8 T

cells with tumor cells, and performing immunohistochemistry on Xiangya cohort

samples further validated results from previous analysis.

Discussion: In this work, lactate is proved that contributes to glioblastoma immune

suppressive microenvironment. High level of lactate in tumor microenvironment

can affect CD8 T cells’ migration and infiltration ratio in glioblastoma. To step

further, potential compounds that targets to samples from different groups were

also predicted for future exploration.
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Introduction

Glioblastoma (GBM) is a malignant tumor derived from the

central nervous system, with median survival time <15 months (1).

GBM manifests a high aggressive growth pattern, high recurrence

ratio, and high resistance to chemo- and radiotherapy, which together

contribute to its poor prognosis (2). Targeted therapies, such as RTK

inhibitors, have not proven successful and are likely undermined by

genetic heterogeneity (3, 4). Apart from maximal surgical removal,

current clinical strategies including chemotherapy (temozolomide)

and radiotherapy can improve patients’ survival outcome but are

never curative. Recent research reported that GBM can be grouped

into different subtypes based on genetic characteristic, and those

subtypes showed different responses to treatment (5–7). Therefore,

exploring the genetic characteristics of GBM may assist in

understanding tumorigenesis, tumor recurrence, and innovating

novel treatments.

The Warburg effect was first proposed in 1924 and described the

metabolism rewiring in tumor cells, and this effect has been proved to

modulate tumor progression (8) and the tumor-immunosuppressive

microenvironment (9). Moreover, the product of the Warburg effect,

lactate, was also reported as a mediator between tumor cells and other

cells, like macrophage polarization (10), cytotoxic T cells (11), CD4 T

cells (12), fibroblasts (13), dendritic cells (14), regulatory T cells (15),

and natural killer cells (16). Therefore, lactate plays a critical role in

bridging tumor cells and other cells. In GBM, accumulation of lactate

was believed to be connected with GBM invasiveness (17), to

modulate tumor cell–epithelial cell crosstalk (18), and to be

associated with tumor resistance to chemotherapy (19).

Nevertheless, the role of lactate in GBM remains elusive.

The GBM immunosuppressive microenvironment has gained a lot of

attention in recent years since GBM, unlike other tumors like melanoma,

resistant to immunotherapy (20–22). Several studies reported that T cells,

peripherally derived macrophages, dendritic cells, microglia, and myeloid

cells contributed to the GBM immunosuppressive microenvironment

and impaired the efficiency of immunotherapy (23–26). Meanwhile,

INFG has been reported to be involved in various tumors’

immunosuppressive microenvironment including hepatocellular

carcinoma (27), neuroblastoma (28), and breast cancer (29).

Interestingly, research which obtained mesenchymal GBM by genetic

manipulation of neural stem cells proposed that GBM immune evasion

and its immunosuppressive microenvironment were closely related to

GBM subtypes (1). Therefore, the influence of GBM cells on

immunocytes may contribute to its immunosuppressive

microenvironment, which together further interfere with GBM

response to immunotherapy. However, the mechanism on how GBM

cells affect immunocytes is poorly investigated.

In this work, we collected lactate-associated genes (LAGs) and

explored their role in GBM. A consensus cluster analysis was

performed based on LAGs to classify 1,410 GBM samples, the GBM

meta cohort (30, 31), into two clusters. Cluster 1 samples showed

worse prognosis than cluster 2 samples and produced more lactate

than cluster 2 samples based on LAG expression. Biofunction

prediction based on bulk RNA-seq analysis and single-cell RNA-seq

analysis suggested that immunocytes’ function in cluster 1 was

affected. Moreover, cell–cell interaction and immunogram (32)
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revealed that GBM cells with high lactate accumulation may

modulate immunocytes (including microglia, CD8 T cells, and

peripheral blood macrophage) and tumor response to interform

gamma (IFNG), which together result in an immunosuppressive

microenvironment in GBM. An in vitro experiment supported that

CD8 T-cell infiltration and migration were influenced by lactate

accumulation. In the end, sensitive compounds based on the cluster

model were predicted, which may improve GBM patients’ prognosis.

Therefore, lactate may modulate the GBM immunosuppressive

microenvironment through targeting immunocytes and modulate

tumor response to IFNG.
Materials and methods

Data processing

The GBM meta cohort was set as the training dataset, whereas

TCGA GBM array dataset and the Xiangya GBM cohort were treated

as validation datasets. The GBM meta cohort contained 1,410 GBM

samples from CGGA_325, CGGA_693, GSE108474, GSE42669,

GSE4271, GSE43378, GSE4412, GSE74187, GSE7696, GSE83300,

and TCGA data. The definition of GBM samples is from

corresponding database. R package “sva” was used to eliminate the

batch effect during data combination. More details can be found in a

previous work (31).

Data on TCGA GBM array cohort containing 539 GBM samples

were downloaded from UCSC Xena (https://xenabrowser.net/) (33).

Data on the Xiangya cohort containing 73 GBM samples were

processed as previously described (31) and were (ID: HRA001618)

uploaded onto the China National Center for Bioinformation (https://

www.cncb.ac.cn/). Expression data of glioma cell lines were

downloaded from the Cancer Cell Line Encyclopedia (CCLE,

https://sites.broadinstitute.org/ccle). All high-throughput sequencing

datasets were transformed into log2(TPM+1) for subsequent analysis.

Raw data of GBM samples (ID: GSE138794, GSE84465, SCP50,

GSE131928)were downloaded and combined into one cohort for single-

cell RNA-seq analysis. Datasetswere combinedwithR package “Seurat.”

Meanwhile, R package “NormalizeData” was used for data procession,

“scCATCH”was used for cell annotation, “infercnv”was used for tumor

cell identification, and “TSNE” was introduced for visualization.
Consensus cluster analysis

Samples were subdivided into different groups by introducing R

package “Consensus Cluster Plus” (34). The optimum group number

was decided by introducing the cumulative distribution function plots

and consensus matrices.
Epigenetic alternation analysis

Single-nucleotide polymorphisms (SNPs) and somatic copy

number variations (CNVs) based on TCGA GBM array were

analyzed with R package “maftools.” Associated SNPs and CNV
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data were downloaded from UCSC Xena. GISTIC analysis was

introduced, and variation peaks were generated using GISTIC 2.0

analysis (https://gatk.broadinstitute.org). R packages “ggplot2,”

“ggsignif,” and “gg.gap” were used for visualization.
Enrichment analysis based on GSVA
and GSEA

GO pathway-related gene lists were downloaded from http://

www.gsea-msigdb.org/gsea/msigdb. The GSVA score of those

pathways was calculated with R package “GSVA.” GSEA

enrichment was performed with R package “clusterProfiler.”
Machine learning algorithms

A support vector machine (R package ‘e1071’) was used to learn

the characteristics of the cluster model, and this model was

reproduced on glioma cell lines. Another two machine learning

methods, Boruta and XGboost (R packages ‘Boruta’ and “xgboost”),

were introduced to identify the immunocyte characteristics between

cluster 1 and cluster 2. The interaction of the immunocyte-

characteristic and immunocyte infiltration ratio is shown in a Venn

diagram (R package “VennDiagram”).
Immunocyte infiltration and immune
escape-associated genes

CIBERSORT and xCell algorithm were performed for

immunocyte infi l trat ion rat io analysis with R package

“CIBERSORT” (35, 36) and “xCell” (37), respectively.

An immunogram was introduced to illustrate the immune-

associated pathway activation difference based on the cluster model.

A gene list was obtained from a previous work (32), and R packages

“ssGSEA” and “ggradar” were introduced for visualization.

Immune escape-associated genes were collected from a previous

work (38) and visualized with R package “ggplot2.”
Cell–cell interaction

R package “CellChat” was used to predict the interaction between

tumor cells and other cells in the tumor immune landscape based on

ligand–receptor pairs (39).
Cell culture

Three GBM cell lines (U251MG, U87MG, and A172) were

purchased from BeNa Culture Collection (https://www.bncc.org.cn/).

CD8 T cells were isolated from donor. Individuals’ informed consent

were signed and verified by the ethics committee. Cells were cultured in

high-glucose DMEMwith 10% fetal bovine serum at 37°C and 5% CO2.

For CD8 T-cell isolation, lymphocyte separation medium was

added to blood. A medium white layer was extracted gently after
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centrifuging at 2,000 rpm for 20 min. Platelets were removed by

centrifuging at 1,500 rpm for 10 min. Red blood cells lysis buffer was

added to lyse red blood cells for 30 min. Finally, CD8 MicroBeads

were added for CD8 T-cell isolation.
Lactate assay

2 × 105 U251MG, U87MG, and A172 cells were seeded into a six-

well plate. Cultural medium was collected after culturing for 48 h, and

a lactate concentration kit (Nanjing Jiancheng Bioengineering

Institute, China) was used for calculating lactate concentration.
Migration assay

A 5-µm Transwell chamber was used to coculture GBM cell lines

and CD8 T cells. 3 × 105 U87MG/A172 cells were seeded into the

lower chamber, and 3 × 105 CD8 T cells were cultured in the upper

chamber. After coculturing CD8+ T cells and tumor cells for 48 h,

cells in the lower chamber were harvested and calculated by flow

cytometry. For the external lactate group, 7.5 mmol/l lactate medium

was added to the lower chamber.
Immunohistochemistry

Xiangya GBM samples from different clusters were selected for

immunohistochemistry (IHC) as previously described (40). Glioma

tissues were collected and written informed consent was obtained

from patients. The included glioma tissues were approved by the

Ethics Committee of Xiangya Hospital, Central South University. In

brief, slides were incubated with anti-CD8 antibody (66868-1-Ig,

Proteintech) at 4°C overnight. Signals were visualized under

standard protocols, and images were captured by introducing an

Olympus inverted microscope.
Compound prediction

Drug sensitivity prediction based on PRISM, CTRP, and

CellMiner databases was conducted as described in previous works

(41, 42). Briefly, compound sensitivity was evaluated as an AUC

score; a lower AUC score indicates higher sensitivity. The sensitivity

of samples from the GBM meta cohort was predicted with R

package “pRRophetic.”
Statistical analysis

A normality test was performed first to determine data

distribution. Then, Student’s t test or ANOVA was used for

normally distributed data; Wilcoxon test and Kruskal–Wallis test

were introduced for non-normally distributed data to examine the

difference between two or multiple groups, respectively. Kaplan–

Meier curves with the log-rank test were generated to illustrate

patients’ prognosis difference. The Wilcoxon rank-sum test was
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used to compare the difference between various groups. Results from

a pan-cancer analysis were analyzed using GSCALite (http://bioinfo.

life.hust.edu.cn/web/GSCALite/) (43). Results from the bulk RNA-seq

analysis and single-cell RNA-seq analysis were analyzed with R

(version 4.1.2).
Results

Lactate-associated genes are dysregulated
in various tumor types

To illustrate the role of lactate level in tumor, we first collected key

LAGs from GO gensets (GO_LACTATE_METABOLIC_PROCESS;

GO_LACTATE_TRANSPORT), including HIF1A, LDHA, LDHB,

PFKFB2, SLC16A1, SLC16A3, SLC16A7, SLC16A8, and UEVLD.
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HIF1A is a critical trigger of glycolysis as a response to hypoxia.

LDHA and LDHB are lactate dehydrogenases regulating the

transition between pyruvate and lactate. The SLC family is

responsible for extracellular lactate transport. PFKFB2 regulates the

generation of fructose-2,6-bisphosphate and controls glycolysis.

UEVLD is believed to enable the activity of oxidoreductase, which

is a critical enzyme that controls the glycolysis bypass pathway and

pentose phosphate pathway (44).

LAG expression was first mapped in various tumor types

compared with their paired normal tissue in TCGA (Figure 1A). As

illustrated, genes like SLCA6A3, SLC16A8, SLC16A1, and LDHA

have a higher expression in LUAD and LUSC than paired normal

tissues, whereas the expression of PFKFB2 decreases in those tumors.

Then, survival analysis indicates that a high expression of SLCA6A3,

SLC16A1, and LDHA and a low expression of LDHB are recognized

as a tumor progression promotor in some tumors (Figure 1B).
D

A B

C

FIGURE 1

Pan-cancer analysis of LAGs. (A) The expression of LAGs in various tumors. (B) The survival analysis of LAGs in various tumors. (C) The SNPs of LAGs in
various tumors. (D) The methylation status of LAGs in various tumors.
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Therefore, dysregulated LAG expression is common in various tumor

types and is highly connected to tumor prognosis.

Next, SNPs, methylation, and copy number variations (CNVs) are

analyzed to explore their potential connections with dysregulated

LAGs. Among all tumor types in TCGA, the most common mutated

genes are HIF1A and SLC16A7, which accounts for 21% in all

samples (Figure 1C). Over 10% samples carry mutated SLC16A1

(19%), PFKFB2 (16%), UEVLD (13%), LDHB (13%), and LDHA

(11%), and the proportion of mutated SLC16A8 in all samples is 6%.

Interestingly, genes that have a higher mutation ratio, like SLC16A7,

PFKFB2, and HIF1A, are biomarkers that have no relationship with

tumor prognosis.

The methylation difference between tumor and their paired

normal samples was also investigated. LAGs like SLC16A8,

SLC16A1, and LDHB have a higher methylation ratio in tumor

tissue than in normal tissue; a lower methylation ratio of SLC16A7

and SLC16A3 is noticed in that comparison (Figure 1D). Among

most of these tumor types, a negative correlation between gene

methylation and mRNA expression was revealed by calculating the

Spearman correlation, including HIF1A, SLC16A1, UEVLD,

SLC16A8, PFKFB2, LDHB, and SLC16A3 (Supplementary

Figures 1A, B). In contrast, a positive correlation tendency of

SLC16A7 was found.

CNVs based on homozygous or heterozygous amplification and

deletion were explored. Homozygous amplification of SLC16A3 and

PFKFB2 was only found in BRCA, CHOL, LIHC, and OV

(Supplementary Figure 2A). Homozygous deletion of LAGs was not

identified. Moreover, massive heterozygous amplification and

deletion of LAGs were located in various tumor types

(Supplementary Figure 2B).

In summary, dysregulated LAGs are common in various tumor

types and are associated with tumor progression. Previous studies

highlighted that dysregulation of LAGs can affect tumor progression

(45). For instance, LDHB promoter methylation is associated with

breast cancer progression (46). HIF1A controls GBM growth and

sensitivity to treatments through the PDGFD–PDGFRa axis (47).

Therefore, dysregulated LAGs may affect GBM prognosis.
The prognosis of glioblastoma patients in
cluster 1 is worse than that in cluster 2

Considering that GBM is a malignant tumor and its relationship

with LAGs is elusive, we focused on exploring its role in GBM. The

GBM meta dataset was set as the training cohort, whereas TCGA

GBM-array dataset and Xiangya dataset were used for validation. As

for the validation cohort, there are 539 samples in TCGA GBM-array

and 73 samples in the Xiangya cohort.

The consensus cluster analysis classified samples in the GBM meta

cohort into two groups, cluster 1 and cluster 2 (Supplementary

Figures 3A, B). The support vector machine was used to identify the

main difference characteristics between two groups and regroup samples

in the validation cohort based on these features (Supplementary

Figure 3C). Overall survival analysis indicated a significant survival

outcome difference between cluster 1 and cluster 2 in the GBM meta

cohort (Figure 2A, P = 0.00066), TCGA GBM-array cohort (Figure 2B,

P = 0.013), and Xiangya cohort (Figure 2C, P = 0.0023).
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The expression of the LAG difference was also mapped to

illustrate its relationship with the cluster model, IDH status, 1p19q

status, MGMTmethylation status, and glioma CpG island methylator

phenotype (G-CIMP) status (Figures 2D, E). Most of LAGs, including

HIF1A, LDHA, SLC16A1, and SLC16A3, were upregulated in cluster

1 samples, whereas LDHB, PFKFB2, SLC16A7, and SLC16A8 were

downregulated (Supplementary Figure 4A). Similar expression maps

of LDHA, SLC16A1, SLC16A3, LDHB, PFKFB2, SLC16A7, and

LSC16A8 were also proved in TCGA GBM array cohort

(Supplementary Figure 4B). A higher expression was found for

HIF1A, LDHA, SLC16A1, SLC16A3, SLC16A8, and UEVLD in

IDH wild-type GBM compared with IDH mutant GBM

(Supplementary Figure 4C). Meanwhile, HIF1A, LDHA, PFKFB2,

SLC16A1, SLC16A3, SLC16A8, and UEVLD in 1p19q non-co-

deletion GBM had a higher expression relative to 1p19q co-deletion

GBM (Supplementary Figure 4D). However, differentially expressed

genes between MGMT-methylated GBM and unmethylated GBM

were LDHA and SLC16A3 (Supplementary Figure 4E). As for GCIMP

status, a higher expression of LDHA, SLC16A1, SLC16A3, and

UEVLD was found to be connected with non G-CIMP GBM and a

higher expression of LDHB and SLC16A7 was related to G-CIMP

GBM (Supplementary Figure 4F). Therefore, dysregulated LAG

expression strongly associated with GBM unfavorable clinical

features. Considering that LDHA and HIFA promote the

production of lactate, and LDHB is responsible for lactate-pyruvate

transformation (48), these dysregulated LAGs implied that cluster 1

samples may have severe lactate accumulation than cluster 2 samples.

Furthermore, single-cell RNA-seq analysis was performed to

validate the conclusion that lactate may modulate GBM samples’

immunocyte infiltrations (Figure 2F). The cluster model was

reproduced on single-cell RNA-seq data with the support vector

machine algorithm (Figure 2G). A previous study identified four

cell types of GBM (OPC: oligodendrocyte-progenitor-like, AC:

astrocyte- l ike , NPC: neural-progenitor- l ike , and MES:

mesenchymal-like) based on single-cell RNA-seq analysis (49);

GBM with more MES cells possesses poor prognosis. In this work,

more MES cells were enriched in cluster 1 samples (Figure 2H),

proving that cluster 1 consisted of more aggressive growth samples.

Taken together, a dysregulated expression of LAGs can be applied to

predict GBM prognosis.
Complicated epigenetic alternations were
observed in cluster 1 samples

First, comparing the CNV map between cluster 1 and cluster 2

samples, variations were found on chromosomes 3, 4, 5, 7, 8, 9, 10, 11,

12, 13, and 17 (Figure 3A). Then, we explored the somatic mutation

variation difference between cluster 1 and cluster 2 samples. A

somatic mutation signature comparison indicated that only more C

> G was noticed in cluster 2 samples than in cluster 1 samples. As for

somatic mutation variant classification and type, a significant

difference was only observed on frameshift deletion and deletion,

respectively (Supplementary Figure 5A).

Next, we analyzed the SNP difference between cluster 1 and

cluster 2 samples (Figures 3B, C). Mutation of PTEN (38% vs.

26%), TTN (27% vs. 29%), TP53 (26% vs. 32%), EGFR (21% vs.
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29%),MUC16 (17% vs. 11%), FLG (12% vs. 15%), RYR2 (11% vs. 11%),

PIK3CA(10%vs. 10%),SPTA1(10%vs. 11%), andSYNE1(10%vs. 11%)

was noticed in both cluster 1 and cluster 2 samples. Among these genes,

PTEN andMUC16 showed a higher mutation ratio in cluster 1 samples

than cluster 2 samples, whereas a high percentage of mutated TP53,

EGFR, and FLG was found in cluster 2 samples. In the meantime,

mutated NF1 (16% vs. 7%) and RB1 (11% vs. 8%) were significantly

enriched in cluster 1 samples. On the other hand, IDH1 (less than 6% vs.

10%), TRRAP (less than 6% vs. 10%), ATRX (less than 6% vs. 14%),

PKHD1 (6% vs. 11%), and FLG2 (6% vs. 10%) were noticed in cluster 2

samples.More details about thesemutated genes, like IDH1, ATRX, and

NF1, are summarized in Supplementary Figure 5B.

A correlation analysis of top 25 mutated genes in cluster 1 and

cluster 2 samples was conducted (Supplementary Figures 5C, D). Co-

occurrence pairs like FCGBP–LRP2 and FAT4–SYNE1 were noticed

in cluster 1 samples. Meanwhile, pairs like RELN–DNAH9, LRP2–

AHNAK, DNAH9–SYNE1, AHNAK–SYNE1, and ADAM29–SYNE1

were found in cluster 2 samples. Interestingly, two exclusive pairs,

PIK3CA–PTEN and IDH1–PTEN, were also discovered in cluster 2
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samples. Mutated PTEN, PIK3CA, ATRX, and IDH1 have been

proved to be associated with GBM prognosis (50–52). Other

mutated genes like FAT4 (53), SYNE1 (54), and ADAM29 (55)

have been proved to be associated with tumor prognosis but not

with GBM. Taken together, those novel mutated genes may assist in

predicting GBM patients’ prognosis.
Higher tumor lactate levels affect the tumor
immune microenvironment

Several studies proposed that lactate can modulate immunocyte

function, activation, and infiltration (10–16). Therefore, we

investigated the immunocyte infiltration ratio difference between

cluster 1 and cluster 2. Biofunction prediction based on GSVA and

GSEA indicated that T-cell migration, activation, extravasation, and

differentiation-associated pathways were selectively activated in

cluster 1 and cluster 2 samples (Figures 4A, B). Moreover, pathway

T-cell cytokine production, T cell-mediated cytotoxicity, T cell-
D
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FIGURE 2

The cluster model based on LAGs. Overall survival analysis based on the GBM meta cohort (A), TCGA GBM array cohort (B), and Xiangya cohort (C). The
heatmap of LAGs in the GBM meta cohort (D) and TCGA GBM array cohort (E) along with clinical features. (F) Components of data from single-cell RNA-
seq analysis. (G) The cluster model in data from single-cell RNA-seq analysis. (H) The percentage of MES-like, AC-like, OPC-like, and NPC-like cells in
the cluster model.
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mediated immunity, and T-cell antigen processing and presentation

were also preferentially activated in cluster 1 samples than in cluster 2

samples. In the meantime, validation on TCGA GBM array database

indicated similar conclusions (Supplementary Figures 6A, B). In

single-cell RNA-seq analysis, biofunction prediction based on GSEA

also suggested that T cell-related pathways were enriched in cluster 1

samples (Figure 4C).
High-lactate secretion may contribute to an
immunosuppressive microenvironment

A previous study proposed 10 characteristics of tumor immune

landscape (32). In bulk RNA-seq analysis, cluster 1 samples scored

higher in glycolysis, innate immunity, priming activation, T cells, IFNG

response, inhibitory molecules, marrow-derived suppressor cells, and

recognition of tumor cells (GBM meta cohort in Figure 5A and
Frontiers in Immunology 07
Supplementary Figure 9A, TCGA GBM array cohort in

Supplementary Figures 7A, 9B, Xiangya cohort in Supplementary

Figures 8A, 9C). Nevertheless, after focusing on tumor cells from

single-cell RNA-seq analysis, tumor cells from cluster 1 had higher

scores on glycolysis, proliferation, recognition of tumor cells, marrow-

derived suppressor cells, inhibitory molecules, and IFNG response,

whereas cluster 2 tumor cells had higher scores on innate immunity,

priming and activation, T cells, and regulatory T cells (Figure 5B and

SupplementaryFigure9D).Althoughcluster 1 samples hadhigher scores

on recognition of tumor cells, immunosuppressor features likemarrow-

derived suppressor cells, inhibitory molecules, and IFNG response were

enriched in cluster 1 samples. Correspondingly, immunity activation-

associated features were active in cluster 2 samples. Together, GBM cells

in cluster 1 samples may inhibit immunity activation and contribute to

an immunosuppressive microenvironment.

The expression map of immunomodulators, including receptor,

ligand, co-inhibitor, co-stimulator, antigen, cell adhesion molecules,
A

B

C

FIGURE 3

The SNP and CNV difference in the cluster model. (A) CNV difference in the cluster model. (B, C) SNP difference in the cluster model.
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and other genes, was depicted based on the cluster model (38).

According to bulk RNA-seq analysis, most of modulators were

upregulated in cluster 1 samples (GBM meta cohort in Figures 5C–I,

TCGA GBM array cohort in Supplementary Figures 7B, H, Xiangya

cohort in Supplementary Figures 8B, H). However, results from the

single-cell RNA-seq analysis suggested that even if a dysregulated

expression of those modulators was also found, not all of them were

upregulated in cluster 1 samples (Supplementary Figure 10).

Therefore, to further specify the role of those modulators in cell–cell

communication and the immunosuppressive microenvironment, we

predicted the interactions between tumor cells and other cell types.
High lactate level affects CD8 T-cell
infiltration

Therefore, we investigated the tumor immune landscape

difference between cluster 1 and cluster 2 samples. Results from

the ESTIMATE algorithm suggested that cluster 1 samples had a

higher immune score, higher stromal score, and lower tumor
Frontiers in Immunology 08
purity, implying a more complicated immune landscape in

cluster 1 than cluster 2 samples (Supplementary Figures 11A, B).

CIBERSORT and xCell algorithm were introduced to analyze the

immunocyte infiltration ratio difference between cluster 1 and

cluster 2 samples from the training cohort (Figure 6A and

Supplementary Figure 12) and the va l idat ion cohort

(Supplementary Figures 11C, 12). In cluster 1, CD8 T cells, CD4

T cells, activated dendritic cells, and macrophages were

preferentially infiltrated. Meanwhile, a higher infiltration ratio of

B cells, resting dendritic cells, and Th1 cells was observed in cluster

2 samples. Then, two machine learning algorithms, XGboost and

Boruta, were used to identify the cluster model-associated

immunocytes (Figures 6B, C). A higher importance score represents a

stronger relationship with cluster 1 samples. As illustrated, stromal cells

like epithelial cells, astrocytes, and neurons and immunocytes like Th2

cells, M1 macrophages, CD8 T cells and dendritic cells were recognized

as cluster 1 samples’ characteristic. Integrating results from immunocyte

infiltration ratio analysis, the Xgboost and the Boruta algorithm, CD8 T

cells, dendritic cells, and macrophages were selected and considered as

cluster 1 sample-associated immunocytes (Figure 6D).
A

B

C

FIGURE 4

The biofunction prediction based on the cluster model in the GBM meta cohort. Biofunction prediction based on GSVA (A) and GSEA (B). (C) GSEA
enrichment based on single cell RNA-seq data.
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Lactate modulates CD8 T cells, microglia,
and macrophage

A cell–cell interaction within various cell types was analyzed, and

their role in sending or receiving signals was illustrated (Supplementary

Figures 13A, B). Then, several potential differentially activated pathways

between tumor cells and other cells were selected, including

IL17 signaling pathway (Supplementary Figure 13C), IFN-II

signaling pathway (Supplementary Figure 13D), VEGF signaling

pathway (Supplementary Figure 13E), PERIOSTIN signaling

pathway (Supplementary Figure 13F), TWEAK signaling pathway

(Supplementary Figure 13G), and PAR signaling pathway

(Supplementary Figure 13H).

Specifically, ligand–receptor pairs, such as IL17A-(IL17RA

+IL17RC) (Figure 7A), IL17F-(IL17RA+IL17RC) (Figure 7B), IL17AF-
Frontiers in Immunology 09
(IL17RA+IL17RC) (Figure 7C), IFNG-(IFNGR1+IFNGR2) (Figure7D),

VEGFA-VEGFR1 (Figure 7E), POSTN-(ITGAV+ITGB5) (Figure 7F),

TNFSF12-TNFRSF12A (Figure 8A), and GZMA-F2R (Figure 8B), were

identified, suggesting that tumor cells with different lactate secretions

may modulate immunocytes through these pairs.

Compared with cluster 2 tumor cells, cluster 1 tumor cells

communicated with microglia more actively through the IL17

signaling pathway (Figures 7A–C), the IFN-II signaling pathway

(Figure 7D), the VEGF signaling pathway (Figure 7E), and the

PERIOSTIN signaling pathway (Figure 7F). In addition, cluster 1

tumor cells also received more signals from periphery blood M1 and

M2 macrophage than cluster 2 tumor cells (Figure 8A). Interestingly,

cluster 2 tumor cells received more signals from T cells than cluster 1

tumor cells (Figure 8B). Together, those results implied that lactate

may affect T cells, microglia, and periphery blood macrophage.
D
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FIGURE 5

The immune landscape of cluster 1 and cluster 2 samples from the GBM meta cohort. Immunogram based on the GBM meta cohort (A) and data from
single-cell RNA-seq analysis (B). The expression of immune inhibitors/contributors, including receptor (C), ligand (D), co-inhibitor (E) co-stimulator (F),
antigen (G), cell adhesion (H), and other (I). NS, no significance, **P < 0.01, ***P < 0.001.
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Integrating results from biofunction prediction, we explored the

potential effect of lactate on CD8 T cells. The infiltration ratio of CD8+

Tcells in cluster 1 andcluster2 sampleswasfirst validated.Weselectedone

sample from each cluster based on the Xiangya cohort and further

examined the infiltration ratio of CD8 T cells and IHC. As indicated, the

ratio in in cluster 1 was higher than in cluster 2 (Figure 8C). Then, we

focusedon the influenceof tumorwithdifferent lactateproduction abilities

on CD8+ T cells. Central nervous system tumor cell lines’ expression was

obtained from CCLE, and the support vector machine algorithm was

performed on group cell lines. GBMcell linesU87MGandU251MGwere

grouped into cluster 1,whereasGBMcell lineA172was labeled as cluster 2

(Figure 8D). As predicted, U251MG (6.642 ± 0.128mmol/l) and U87MG

(7.624±0.317mmol/l) hadhigh lactate concentrations in culturalmedium

than A172 (5.891 ± 0.178 mmol/l) (Figure 8E). Then, we exposed CD8 T

cells to GBM cells (U87MG and A172) or external lactate (7.5 mmol/l) to

inquire if lactate concentration can affect CD8 T-cell migration. As
Frontiers in Immunology 10
illustrated, the low lactate concentration group (A172 group:

117,109.333 ± 4,217.798; external lactate group: 83,844.667 ±

17,576.598) recruits more CD8 T cells than the high lactate

concentration group (U87MG group: 51,327.333 ± 5,442.792)

(Figure 8F). Along with recent discovery (56), lactate can increase

stemness of CD8 T-cell in colon cancer model. However, lactate can also

weak CD4 T cell and CD8 T cell motility in inflammatory sites (57)

indicating the complicate role of lactate in regulating CD8T cells in GBM.
Novel chemo-compound treatment strategy
for glioblastoma with different lactate
secretion abilities

Based on two clusters, potential sensitive drugs from the CTRP1,

CTRP2, and PRISM databases were predicted. Cluster 1 samples
A B

C

D

FIGURE 6

Immunocyte infiltration difference between cluster 1 and cluster 2. (A) Immunocyte infiltration analysis based on CIBERSORT and xCell algorithm.
Immunocyte characteristic difference based on the cluster model using machine algorithm “Xgboost” (B) and “Boruta” (C). (D) Interaction of immunocyte
infiltration and results from “Xgboost” and “Boruta”.
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showed higher sensitivity to 5-fluorouracil, A-770041, AT-7519,

BMS-536924, bortezomib, dasatinib, embelin, epothilone B, JW-7-

52-1, luminespib, MG-132, mitomycin-C, paclitaxel, SNX-2112,

TGX221, THZ-2-49, vinorelbine, WH-4-023, AZ960, AZD5582,

staurosporine, trametinib, ULK1-4989, LGX818, LY2090314, and

LY364947 (Figures 9A–C).

On the contrary, cluster 2 samples were sensitive to ACY-1215,

AR-42, CI-1033, CUDC-101, CX-5461, GSK1059615, GSK690693,

OSI-027, PF-00299804, PI-103, QL-X-138, WYE-125132, ABT737,

acetalax, dinaciclib, sabutoclax, vincristine, I-BET151, and indisulam

(Supplementary Figures 14A, C). Thus, selecting proper compounds

may assist in targeting tumors with different lactate secretion abilities.
Discussion

GBM can be classified into three subtypes (5, 6), namely,

proneural, classical, and mesenchymal, and following studies
Frontiers in Immunology 11
identified that mesenchymal GBM had worse prognosis relative to

other subtypes. Proneural–mesenchymal transition was related to

GBM sensitivity to treatments, like radiotherapy and chemotherapy,

recurrence, and progression. Therefore, recent years’ several studies

proposed that targeting proneural–mesenchymal transition may slow

GBM progression. In this work, we constructed a cluster model based

on LAGs, and GBM samples were classified into different groups,

cluster 1 and cluster 2. Following exploration identified that cluster 1

manifested worse clinical outcomes and higher lactate secretion

ability than cluster 2 samples. Moreover, cluster 1 samples also

consisted of a high proportion of MES-like cells, which is also a

characteristic of MES GBM, implying its inner relationship with GBM

subtypes (49), according to single-cell RNA-seq analysis. Therefore,

interfering with tumor lactate secretion ability may improve GBM

prognosis by modulating proneural–mesenchymal transition.

Abnormal LAG expressions have been widely explored in GBM

(58, 59). In this work, pan-cancer analysis suggested that methylation,

SNP, and CNV did not affect LAG expression in GBM as much as in
DA

B E
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FIGURE 7

Cell–cell interaction based on the cluster model in single-cell RNA-seq analysis. Ligand–receptor pair difference between cluster 1 and cluster 2
samples, including IL17A-(IL17RA+IL17RC) (A), IL17F-(IL17RA+IL17RC) (B), IL17AF-(IL17RA+IL17RC) (C), IFNG-(IFNGR1+IFNGR2) (D), VEGFA-VEGFR1 (E),
and POSTN-(ITGAV+ITGB5) (F).
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other tumor types like lung cancer or breast cancer. Interestingly, a

recent theory proposed that the generation of mesenchymal GBM

may result from dysregulated transcriptional activity (1). Studies

observed that GBM with a high glycolysis rate, which means higher

lactate secretion ability, was associated with extensive transcription

factor network alternation (60). Since HIF1a is a critical transcription

factor and several studies reported its constant expression under non-

hypoxic circumstance (61–63), the high lactate secretion ability of

GBM may also result from abnormal regulation of the transcription

factor network. Nevertheless, this hypothesis still requires massive

experiments to support and validate.

Several potential chemical compounds that target tumors with

different lactate secretion abilities were predicted. For instance, 5-

fluorouracil (64, 65), bortezomib (66), trametinib (67), and LY2090314

(68) can affect glycolysis to inhibit tumor progression. As cluster 1

samples are more sensitive to these compounds and have higher lactate
Frontiers in Immunology 12
secretion ability than cluster 2 samples, targets to tumor based on their

characteristics can assist in inhibiting tumor progression.

An immunosuppressive microenvironment in GBM leads to tumor

poor response to immunotherapy (1). Since higher infiltration of

microglia (23), macrophage (25), and CD8 T cells (20, 69) can

contribute to a tumor immunosuppressive microenvironment, we

found that lactate accumulation may be one potential way to

determine how GBM affects these immunocytes. For instance, cluster

1 samples interact with microglia through IL17, VEGF, and POSTN, or

with macrophage through TNFSF12, or with CD8 T cells through F2R

more active than cluster 2 samples. IL17 can activate microglia (70, 71)

and promote GBM progression (72, 73). The connection between

POSTN and regulating TGF-b1, HIF-1a, and VEGFA expression has

been confirmed, which can affect GBM progression and macrophages

(74, 75). TNFSF12 has been confirmed to modulate tumor progression

through interacting with macrophage (76, 77). Therefore, future
D
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FIGURE 8

The role of CD8+ T cells in cluster 1 and cluster 2 samples. Cluster 1 and cluster 2 tumor cell communication with macrophage and CD8+ T cells through
TNFSF12-TNFRSF12A (A) and GZMA-F2R (B), respectively. (C) IHC revealed the CD8+ T-cell infiltration difference between cluster 1 and cluster 2 samples.
(D) The cluster model in central nervous system tumor cell lines. (E) Lactate concentrations in U251MG, U87MG, and A172. N = 3. *P < 0.05, **P < 0.01,
***P < 0.001. (F) Percentage of migrated of CD8+ T cells after coculture with U87MG and A172 for 48 h. N = 3. *P < 0.05, **P < 0.01, ***P < 0.001.
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exploration on the relationship between tumor cells and immunocytes

through these ligand–receptor pairs may offer insights on

understanding the failure of GBM immunotherapy and GBM

immunosuppressive microenvironment.

In an in vitro validation, cluster 1 cell lines produced more lactate

relative to cluster 2 cell lines. Meanwhile, more CD8+ T cells

infiltrated in cluster 1 samples in tumor samples, but the ability of

CD8+ T cells’migration was inhibited when cultured with highlactate

produced tumor cells. A recent work proposed that high lactate can

increase the population of stem-like CD8+ T cells in colon cancer

model, but another study found that CD8+ T cell motility is inhibited

in high lactate environment (57) which may explain the inhibition on

CD8 T cell migration ability in vitro in our finding. Regarding to the

effect of lactate on CD8 T cell, in acute myeloid leukemia, elevated

lactate levels dysregulated CD8+ T-cell function (78). Decreasing

extracellular lactate levels can not only transform M2 macrophage

into M1 macrophage but also restore CD8+ T-cell activity (79).

Meanwhile, lactate was also reported to obliterate CD8+ T-cell

function, which results in tumor poor response to immunity (80–

83). Therefore, although high-infiltration CD8+ T cells were noticed

in cluster 1 samples, high lactate accumulation may also suppress the

normal function of CD8+ T cells and result in a tumor

immunosuppressive microenvironment.

Tumor response to the IFNG difference between cluster 1 and cluster

2 samples was identified, and it was also predicted as one possible reason

that contributes to GBMmalignancy. The role of IFNG in GBM became

more and more significant in recent years’ research, including GBM
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progression and the tumor immunosuppressive microenvironment.

Previous IFNG-related gene signature models predicted the prognosis

of GBM and its sensitivity to immunotherapy and radiotherapy (84),

implying its significant role in GBM.Moreover, high production of IFNG

by T cells can promote upregulation of PD-L1 in tumor cells, which will

weaken the tumor response to CAR-T cells (85). In a mouse model

bearing intracranial tumor treated with temozolomide, IFNG-produced

CD8+ T cells prolonged mouse survival time than IL17-produced CD8+

T cells and IFNG/IL17-produced CD8+ T cells (73). Inhibition on the

IFNG-triggered JAK/STAT pathway can prevent glioma invasion and

tumorigenesis (86). Therefore, high IFNG can promote GBM

progression and weaken tumor response to immunotherapy. In this

work, cluster 1 samples showed a higher response to IFNG, also

indicating the significant role of IFNG in GBM progression.

In summary, the cluster model based on lactate expression can

predict GBM progression, and MES-like cells may secrete more lactate.

Moreover, high lactate accumulation in a GBMmicroenvironment also

contributes to an immunosuppressive microenvironment. Higher

immune inhibitor-associated genes like LAGs, VEGF, EDNRB, and

TGFB1 were also upregulated, implying the critical role of lactate in a

tumor immunosuppressive microenvironment. Candidate compounds

targeted to cluster 1 sample prediction were predicted. For instance,

bortezomib in combination with temozolomide can not only prolong

GBM patients’ survival time but also improve tumor immunological

response (87). Vinorelbine can activate stem-like CD8+ T cells and

improve anti-PD-1 therapyefficiency inbreast cancer (88).Treating lung

cancer with trametinib can increase NK-cell and T-cell infiltration and
A

B C

FIGURE 9

Compound prediction based on the cluster model. Cluster 1 sample sensitive compounds from CTRP1 (A), CTRP2 (B), and PRISM (C) databases.
*P < 0.05, **P < 0.01, ***P < 0.001.
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elevate tumor response to immunotherapy (89). Hence, those

compounds may assist in GBM immunotherapy.
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