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A cause–effect relationship
between Graves’ disease and
the gut microbiome contributes
to the thyroid–gut axis:
A bidirectional two-sample
Mendelian randomization study

Jiamin Cao1, Nuo Wang1, Yong Luo1, Chen Ma1, Zhuokun Chen1,
Changci Chenzhao1, Feng Zhang1, Xin Qi2* and Wei Xiong1*

1Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Hunan, China,
2Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Hunan, China
Background: An association between Graves’ disease (GD) and the gut microbiome

has been identified, but the causal effect between them remains unclear.

Methods: Bidirectional two-sample Mendelian randomization (MR) analysis was used

to detect the causal effect betweenGDand the gutmicrobiome.Gutmicrobiomedata

were derived from samples from a range of different ethnicities (18,340 samples) and

data on GD were obtained from samples of Asian ethnicity (212,453 samples). Single

nucleotide polymorphisms (SNPs) were selected as instrumental variables according

to different criteria. They were used to evaluate the causal effect between exposures

and outcomes through inverse-variance weighting (IVW), weighted median, weighted

mode, MR-Egger, and simple modemethods. F-statistics and sensitivity analyses were

performed to evaluate bias and reliability.

Results: In total, 1,560 instrumental variables were extracted from the gut

microbiome data (p< 1 × 105). The classes Deltaproteobacteria [odds ratio

(OR) = 3.603] and Mollicutes, as well as the genera Ruminococcus torques

group, Oxalobacter, and Ruminococcaceae UCG 011 were identified as risk

factors for GD. The family Peptococcaceae and the genus Anaerostipes

(OR = 0.489) were protective factors for GD. In addition, 13 instrumental

variables were extracted from GD (p< 1 × 10–8), causing one family and eight

genera to be regulated. The genus Clostridium innocuum group (p = 0.024,

OR = 0.918) and Anaerofilum (p = 0.049, OR = 1.584) had the greatest

probability of being regulated. Significant bias, heterogeneity, and horizontal

pleiotropy were not detected.

Conclusion: A causal effect relationship exists between GD and the gut

microbiome, demonstrating regulatory activity and interactions, and thus

providing evidence supporting the involvement of a thyroid–gut axis.

KEYWORDS

Graves’ disease, gut microbiome, causal effect, Mendelian randomization, thyroid–
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Introduction

Graves’ disease (GD) is an autoimmune disease with a lifetime risk of

3% for women and 0.5% for men (1). The classic manifestations of GD

include hyperthyroidism, palpitations, and ophthalmopathy (2).

Although GD has been recognized for over two centuries, the

underlying pathological mechanisms have not been fully elucidated.

Many risk factors have been suggested to be involved in the disease

process, such as genetics, epigenetics, smoking, stress, the gut

microbiome, and infection (3). GD is an immune-related disease, with

many up-regulated microRNAs, proteins, antibodies, and cytokines

present in the circulatory system, but the signaling mechanisms

between risk factors and dysfunction of the immune system remain

unclear (4). Based on the bio-psycho-social matrix model, integrated

research has been used to detect the pathogenesis of GD and other risk

factors involved in GD, such as social stress (3, 5). Research on the

association between GD and other organs has also been performed.

The concept of the thyroid–gut axis (TGA) has been used to explore

the association between the thyroid gland and the gut, and the intestinal

influence on the thyroid has been described as involving the uptake of

micronutrients and regulation of immune responses (6). In recent years,

with the development of sequencing technology, the mechanisms utilized

by the gut microbiome in regulating disease processes have been

elucidated, indicating that the gut microbiome regulates the immune

response and metabolism as well as interactions with drugs (7, 8). Many

studies have identified a relationship between the gut microbiome and

the thyroid gland (9). The gut microbiome is associated with the

incidence of GD, as indicated by the variation in gut microbiome

composition observed between participants with GD and participants

without GD (9). Recent basic research has illustrated that the gut

microbiome may be involved in the loss of self-tolerance and auto-

aggressive damage, thus participating in the pathogenesis of GD (9).

Covelli and Ludgate (10) concluded that, because the gut provides the

first and the widest exposure to bacteria, any change in the environment

may influence the microbial balance. This may further activate the gut

immune system, including the activation of Treg and Th17 cells,

promoting the incidence of GD (10). Clinical research has identified

direct changes in the gut microbiome in GD. A study involving 55

participants with GD and 48 without suggested that the gut microbiome

differed significantly between the two groups, with the levels of 18 taxa

increased and four taxa decreased in those with GD (11). A study by Ei-

Zawawy et al. revealed that the Firmicutes-to-Bacteroidetes ratio was

decreased in individuals with GD, which suggested that the gut

microbiome may participate in the pathogenesis of GD (12). However,

the generalization of the findings or ability to make a definitive

conclusion was limited owing to the small number of fecal samples

evaluated (13). In addition to clinical research, basic medical research has

also provided evidence on the TGA. For example, a murine model of GD

was used to compare the gut microbiome with control models, and the

results showed that levels of Firmicutes were significantly positively

related to orbital adipogenesis (14).

A relationship between the gut microbiome and GD has been

identified, but a causal effect is unclear. A causal effect is difficult to

identify through clinical trials owing to ethical issues and costs. Many

studies investigating the association between the gut microbiome and

GD are case–control studies, thus making it difficult to determine

whether changes in the composition of the gut microbiome or the onset
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of GD occurred first (11, 15, 16). Mendelian randomization (MR) is a

method that uses single nucleotide polymorphisms (SNPs) as an

instrumental variable (IV) from a genome-wide association study

(GWAS) to detect the causal effect between exposure and outcome

(17). SNPs are defined by a variation of a single nucleotide in a specific

position of a DNA sequence (18). As SNPs are randomized and

allocated genetically to individuals before exposure and outcome and

after excluding the effect of linkage disequilibrium, many confounders

acquired after zygote formation can be excluded when using SNPs as an

IV (19). Research using SNPs as IVs has increased in recent years (19).

In addition, as SNPs are related to both exposure and outcomes, SNPs

extracted from exposure were instrumental variables linking exposure

and outcome. By this process, SNPs have been used to group exposure

and non-exposure to evaluate the causal effect of exposure on the

outcome, similar to the randomized controlled trial (20). For example, a

causal effect has been detected between fat composition and type 2

diabetes (T2D) through MR (21).

For the present study, GWAS summary datasets of the gut

microbiome (18,340 samples) and GD (212,453 samples) were

obtained from the international consortium MiBioGen and

BioBank Japan, respectively (22, 23). Both GWAS summary

datasets were used to investigate the causal effect of the gut

microbiome on GD. Through bidirectional two-sample MR

analysis, we identified a mutually causal effect between the gut

microbiome and GD, which provided evidence supporting the

activity of a regulatory TGA.
Methods

Study design and the assumption of MR

GWAS summary data focusing on the relationships between

genetics and disease have been used to detect a causal relationship

between the gut microbiome and GD through bidirectional two-

sample MR analysis (24, 25). We first selected the gut microbiome as

the exposure and GD as the outcome to detect whether the gut

microbiome prevents or promotes the occurrence of GD. We also

investigated changes in the gut microbiome after the occurrence of

GD. The following three assumptions were satisfied for the two-

sample MR, according to Bownden et al. (26): (1) the IVs selected

from datasets were associated with exposure; (2) the IVs were not

associated with any unknown confounders of exposure; and (3) the

IVs were associated with outcomes through exposure, but not in other

ways (Figure 1A). In the process of the MR analysis, the IVs obtained

from exposure served to group outcomes of the sample population at

conception. Groups with different genotypes represent different

exposures. The causal effect of exposure on outcome in each group,

which represented the combined effect of each IV (i.e., SNP), was

calculated through MR analysis (Figure 1B).
Data sources

All of the data for the present study were obtained from two

GWASs, one related to the gut microbiome and one to GD. The

GWAS summary data on the gut microbiome were derived from
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samples comprising 24 cohorts of European, Middle Eastern, East

Asian, American Hispanic/Latin, and African American ethnicities,

with a total sample number of 18,340 individuals (23). The batch

effect was excluded, and details of the 24 cohorts can be found in a

previous publication (23). Multiple hypervariable regions (i.e., V1–

V2, V3–V4, and V4) in the 16S ribosomal RNA (rRNA) gene were

used to investigate the composition of the gut microbiome.

Concerning taxonomic profiles, the Ribosomal Database Project

(RDP) classifier (v.2.12) was used to submit the reads to SILVA (a

reference database) after the samples were rarefied to 10,000 reads by

a predefined random seed, and 211 taxa passed taxon inclusion cut-off

points (the posterior probability was set as 0.8) including nine phyla,

16 classes, 20 orders, 35 families, and 131 genera. Unknown taxa were

excluded from the results (23). The GWAS summary data for GD

were obtained from BioBank Japan, which is the largest biobank of the

Asian population, containing 212,453 samples (2,176 individuals with

GD and 210,277 without), with a dataset of 8,885,805 SNPs (22).
IV selection

To select the SNPs as IVs that could indicate a potential

association between exposure and outcome, we set different

thresholds based on differences in exposure. First, we selected the

gut microbiome as the exposure. In this case, the IVs were associated

with GD at the significance level of p< 1 × 105. The minor allele

frequency level was set as 0.01. The linkage disequilibrium threshold

was set as R2 = 0.01, and the distance to search for linkage

disequilibrium R2-values was set as 500 kb. The super-population

was set as East Asian, which was used as the reference panel. If the

SNPs selected from exposure were absent in the outcome dataset,

the proxy SNPs were significantly related to the selected variants

(R2 > 0.8). When GD was selected as the exposure, the IVs’
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significance level was represented by the genome-wide statistical

significance threshold (p< 1 × 10–8). Moreover, the linkage

disequilibrium threshold was set as 0.001, and the clumping

window was 10,000 kb. The other parameters were kept constant

when the exposure was the gut microbiome. The F-statistic of the

IVs was calculated to detect whether or not there was a weak IV bias,

which was defined as a value of the F-statistic< 10 because the bias of

the IV estimator was larger than 10% of the bias of the observational

estimator, as the F-statistic is over 10 (27). IVs were excluded when

the F-statistic was< 10 using the following formula: F = R2

(n – k – 1)/k(1 – R2), where R2 is the exposure variance defined

by the selected SNPs, n is the sample size, and k is the number of

IVs (28).
Statistical analysis

Five methods are commonly used to detect the causal effect

between exposure and output:
(1) Inverse-variance weighting (IVW): IVW estimates the causal

effect of exposure on the outcome by combining the ratio

estimates for each SNP, which essentially translates MR

estimates into a weighted regression of SNP-outcome effects

on SNP-exposure effects (29, 30).

(2) Weighted median: the weighted median method provides

unbiased estimates even if up to 50% of the information

derives from invalid IVs (31).

(3) Weighted mode: when the largest number of similar

individual instrument causal effect estimates comes from

valid instruments, the weighted mode method is consistent

even if the IVs are invalid (32).
FIGURE 1

The principle of bidirectional Mendelian randomization (MR) analysis. The process of bidirectional MR analysis was divided into two steps. Each step
contained three assumptions (assumptions 1, 2, and 3) and involved a two-sample MR analysis to detect the causal effect between exposure and
outcome (A). The idea of a two-sample MR analysis was represented by a flowchart (B). In step 1, the gut microbiome served as exposure, and Graves’
disease (GD) served as the outcome. The single nucleotide polymorphisms (SNPs) obtained from the gut microbiome were considered instrumental
variables (IVs), which provided the grouping basis for the GD sample population. The effect of every SNP was combined and the causal effect of gut
microbiome on GD was calculated through MR analysis. In step 2, the GD served as exposure, and the gut microbiome served as the outcome. The SNPs
obtained from GD were considered IVs, which provided the grouping basis for the gut microbiome sample population. The effect of every SNP was
combined, and the causal effect of GD on the gut microbiome was calculated through MR analysis. GD, Graves’ disease; IV, instrumental variable; SNP,
single nucleotide polymorphism.
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(4) MR-Egger: the MR-Egger is a tool that provides a causal effect

through the slope coefficient from Egger regression and also

detects small study bias (26).

(5) Simple mode: the simple mode is an unweighted mode of the

empirical density function of causal estimation (33).
The characteristics of the five methods are described in Table 1.

All five methods were used to detect the causal effect between the gut

microbiome and GD. The Wald ratio was used to detect the causal

effect when there was only one IV obtained from exposure. The causal

effect is presented as an odds ratio (OR) when the significance level is

less than 0.05, as calculated through the MR method (25).

In sensitivity analyses, heterogeneity was used to evaluate the

compatibility of instrumental variables. Cochran’s Q statistics were

used to test heterogeneity through the IVW and MR-Egger methods.

The effect of heterogeneity should be considered if it existed among

IVs (p< 0.05) (34). Cochran’s Q was calculated as

Q =o
j
wj(b̂

IV
j − b IV

j )2

where. b^=Sjwjb^jIVSjwj and wj=SE(b^jIV)−2 (35). Horizontal

pleiotropy indicates that IVs are associated with outcomes through

other ways than causal effects, which may lead to false-positive results

(p< 0.05) (36). Regarding the direct association between the selected

IVs and the outcome, horizontal pleiotropy was tested using MR

pleiotropy residual sum and outlier (MR- PRESSO). Leave-one-out

analysis was performed to identify whether or not a single SNP

strongly drives the causal effect of exposure on outcome. To conduct a

leave-one-out analysis, harmonized data from exposure and outcome

were used as input and tested through the inverse-variance-weighted

method. Each SNP from IVs was left out, in turn, to evaluate whether

the potential outliers existed, using the TwoSampleMR package (37).

The methods used in the present study were performed using R

software (4.1.0; The R Foundation for Statistical Computing, Vienna,

Austria) and the main R packages used in our manuscript include

TwoSampleMR, MRPRESSO, and MendelianRandomization (https://

github.com/1527311/20221004). The diagram of MR in this study is

shown in Figure 2.
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Results

Causal effects of the gut microbiome on
patients with GD

To investigate the causal effects of the gut microbiome on GD, we

included 1,560 IVs. The F-statistic of each SNP was > 10, which

indicated that no weak instrument bias existed (Supplementary

material 1). These IVs were derived from five phyla, 16 classes, one

order, 29 families, and 115 genera, and the number of IVs ranged

from 1 to 24. We combined the effect of SNPs from the same gut

microbiome through MR analysis. Furthermore, the MR method

found that two classes, one family, and four genera had a causal

effect on GD (Table 2).

The classes Deltaproteobacteria and Mollicutes, as well as the

genera Ruminococcus torque group, Oxalobacter , and

Ruminococcaceae UCG 011, were identified as risk factors for GD,

and Deltaproteobacteria had the largest OR (OR = 3.603) according to

the MR-Egger method. The family Peptococcaceae and the genus

Anaerostipes were the protective factors against GD, and Anaerostipes

had the smallest OR (OR = 0.489) according to the weighted median.

The scatterplot, including the causal effect of the gut microbiome on

graves' disease, is shown in Figure 3.

In the sensitivity analyses, we performed heterogeneity statistics,

horizontal pleiotropy, and leave-one-out analysis. Heterogeneity

analysis showed no evidence of a causal effect on GD among the

investigated variables of the gut microbiome (Supplementary material

2). We used the MR-PRESSO method to detect horizontal pleiotropy,

and the results showed that no horizontal pleiotropy existed

(Supplementary material 3). Leave-one-out analysis showed no

SNPs driving the association between the gut microbiome and

GD (Figure 4).
Causal effects of GD on the gut microbiome

For the causal effects of GD, 13 SNPs satisfied the criteria. After

analysis using the MR method, GD had a causal effect on one family
TABLE 1 Characteristics of five Mendelian randomization (MR) methods.

Method Description Number
of SNPs Advantages Disadvantages

Inverse-
variance
weighting

Combining the ratio estimates for each SNP,
serves as standard method of MR

>1 Simplest and higher effectiveness Requires all the IVs to be valid

Weighted
median

Provides unbiased estimates even if
information is from invalid IVs (<50%)

>2 More precise than MR-Egger Unable to address selection bias

Weighted
mode

Calculates the causal effect from valid IVs in
the largest cluster

>3 More precise than the simple mode
Smaller power to detect a causal effect than
IVW and weighted median

MR-Egger
Provides estimate not affected by the
violations of the standard IVs assumptions

>2
Gives consistent estimates even when
100% of genetic variants are invalid IVs

The Instrument Strength Independent of
Direct Effect is not valid in some cases

Simple mode
Unweighted mode of empirical density
function of causal estimation

>3
Less biased than IVW and weighted
median

Less precise than the IVW weighted
median
The description column describes the characteristics of each MR method. The pros and cons of the five MR methods were compared to obtain comprehensive results; five MR methods were used in causal
effect analysis between the gut microbiome and Graves’ disease (GD). IV, instrumental variable; IVW, inverse-variance weighting; MR, Mendelian randomization; SNP, single nucleotide polymorphism.
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and eight genera (Figure 5). Through IVW, the genera Clostridium

innocuum group (p = 0.024, OR = 0.918) and Sutterella (p = 0.024,

OR = 0.953) were down-regulated after the onset of GD. The family

Oxalobacteraceae and the genera Anaerofilum, Intestinimonas,

Oxalobacter, Peptococcus, Ruminococcaceae UCG 005, and

Terrisporobacter were up-regulated after the onset of GD (Table 3).

Of these bacterial communities, the genus Anaerofilum had the

highest OR (p = 0.049, OR = 1.584), which indicated that patients

with GD had a higher risk of increased levels of the

genus Anaerofilum.

No weak instrument bias or heterogeneity statistics were

identified among the IVs, and no horizontal pleiotropy existed

between the IVs and the gut microbiome (Supplementary material

4). Leave-one-out analysis revealed that no SNP was significantly

associated with the outcome (Figure 6).
Frontiers in Immunology 05
Discussion

We conducted a bidirectional MR analysis to identify a causal

effect between GD and the gut microbiome. We confirmed an

association between GD and the gut microbiome using GWAS

summary data, and the results were consistent with previous

literature. We found that GD and the gut microbiome reciprocally

interacted and that a causal effect existed between GD and the gut

microbiome. In addition, risk factors, such as the class

Deltaproteobacteria, and protective factors, such as the genus

Anaerostipes, were associated with GD in the gut microbiome. The

onset of GD also changed the composition of the gut microbiome; for

example, there was an increase in the level of the genus Anaerofilum

and a reduction in the relative abundance of the genus

Clostridium innocuum.
TABLE 2 Causal effects of the gut microbiome on Graves’ disease (GD).

Exposure Method Number of SNPs P-value OR

Class Deltaproteobacteria MR-Egger 13 0.008 3.603

Class Deltaproteobacteria Weighted median 13 0.018 1.699

Class Deltaproteobacteria Weighted mode 13 0.048 1.791

Class Mollicutes Weighted median 9 0.028 1.655

Class Mollicutes Inverse-variance weighted 9 0.002 1.638

Class Mollicutes Simple mode 9 0.039 2.354

Family Peptococcaceae Inverse-variance weighted 5 0.022 0.536

Genus Ruminococcus torques group Inverse-variance weighted 11 0.031 1.445

Genus Anaerostipes Weighted median 9 0.028 0.489

Genus Oxalobacter Wald ratio 1 0.035 2.395

Genus Ruminococcaceae UCG 011 Weighted median 7 0.048 1.379
The exposure represents the specific taxa used for calculating the causal effect between the gut microbiome and GD; the method represents the calculation method used for the Mendelian
randomization (MR) analysis in each row; the number of single nucleotide polymorphisms (SNPs) represents the number of instrumental variables (IVs) used for calculations; and the p-values and the
odds ratios (ORs) represent the significance and size of the causality of the results, respectively. MR, Mendelian randomization; SNP, single nucleotide polymorphism; OR, odds ratio.
FIGURE 2

Diagram of Mendelian randomization (MR) analysis processing. There were five main parts of the MR analysis in this study. The workflow was performed
twice for when the exposure was gut microbiome and Graves’ disease (GD), respectively. The left boxes indicate the name of the parts, and the right
boxes contain the specific content of each part. GWAS, genome-wide association study; IV, instrumental variable; IVW, inverse-variance weighting; MR,
Mendelian randomization; SNP, single nucleotide polymorphism.
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FIGURE 4

Leave-one-out analysis for gut microbiome on Graves’ disease (GD). The sensitivity of the causal effect of different components of the gut microbiome
on GD was analyzed through leave-one-out analysis in (A–F). The error bar represents the 95% confidence interval with the method of inverse-variance
weighting (IVW).
A B

D E F

C

FIGURE 3

Scatterplot of the effect of the gut microbiome on Graves’ disease (GD). The effect of the gut microbiome on GD is calculated through single nucleotide
polymorphisms (SNPs), which provide an association between the gut microbiome and GD through five Mendelian randomization (MR) methods (A–F).
In each plot, each dot indicates one SNP from the gut microbiome genome-wide association study (GWAS) summary dataset. The x-axis values
represent the effect of SNPs on the gut microbiome. The numerical value of the x-axis position of each dot equals the absolute value of the b-value of
each SNP, and the value of the horizontal error bar equals the standard error of the SNP from the gut microbiome GWAS summary dataset. The y-axis
values represent the effect of the SNPs on GD. The numerical value of the y-axis position of each dot equals the opposite number of b-value of SNP, and
the value of the vertical error bar equals the standard error of the SNP from the GD GWAS summary dataset. The b-values and standard errors for SNPs
are part of the dataset used to describe the relationship between SNPs and phenotypes; they can be obtained directly by querying the GWAS summary
dataset. Different colors of lines represent different MR methods: a causal effect of the gut microbiome on GD was calculated through inverse-variance
weighting (IVW) (light blue), weighted median (dark green), MR Egger (dark blue), weighted mode methods (pink), and simple mode (light green). The
slope value equals the b-value calculated using the five methods and represents the causal effect of the gut microbiome on GD. The greater the
absolute value of the slope, the greater the causal effect. Since the effect allele, an allele to which the effect estimate refers, was identified in the gut
microbiome and GD GWAS summary datasets, a positive slope indicates that exposure is a risk factor, whereas a negative slope is the opposite. GD,
Graves’ disease; MR, Mendelian randomization; SNP, single nucleotide polymorphism.
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The TGA has been well studied and supports an association

between the thyroid and the gut (6, 38). The physiological function of

and pathological changes in the thyroid are regulated by the function

of the gut. On the one hand, the intake of minerals, such as iodine, is

necessary for synthesizing thyroid hormones, whereas mineral

elements, such as selenium, are essential for maintaining the

normal function of the thyroid (39, 40). However, a general

association between the intake of essential nutrients through the gut

and cell metabolism should be recognized (41). Conversely, the gut

interacts with the immune system through nutrients and microbiota,

which mediate autoimmune diseases such as GD and thyroid cancer

(42). Recent studies on the TGA have mainly focused on the effects of

the gut on the thyroid, and few studies have reported on the effects of

the thyroid on the gut. The present study found that the levels of the

family Oxalobacteraceae and genera Anaerofilum, Intestinimonas,

Oxalobacter , Peptococcus , Ruminococcaceae UCG 005,

Terrisporobacter, Clostridium innocuum species, and Sutterella were
Frontiers in Immunology 07
altered in patients with GD, which revealed a causal effect of GD on

changes in the gut microbiome and provided evidence for the

reciprocal influence of the thyroid gland on the gut.

Changes in the gut microbiome have long been associated with

GD. A prospective clinical study with 39 participants with GD and 17

without GD found that the levels of bacilli, Lactobacillales, Prevotella,

Megamonas, and Veillonella strains in patients with GD were

increased, but that the levels of Ruminococcus, Rikenellaceae, and

Alistipes strains were decreased (43). Another study evaluating 55

participants with GD and 48 participants without GD also revealed a

change in the gut microbiome, including in the levels of the phylum

Firmicutes, the phylum Bacteroidetes, the family Prevotellaceae, the

family Veillonellaceae, and the genus Prevotella group 9 (11). In

addition, the treatment of GD also alters the gut microbiome. For

example, methimazole up-regulates the levels of Bifidobacterium and

Collinsella but down-regulates the levels of Prevotella and Dialister

(44). Methimazole combined with potential prebiotic berberine
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FIGURE 5

Scatterplot of the effect of Graves’ disease (GD) on the gut microbiome. The effect of the GD on the gut microbiome is calculated through single
nucleotide polymorphisms (SNPs), which provide an association between GD and gut microbiome through five Mendelian randomization (MR) methods
(A–I). In each plot, each dot indicates an SNP from the GD genome-wide association study (GWAS) summary dataset. The x-axis values represent the
effect of the SNPs on GD. The numerical value of the x-axis position of each dot equals the absolute value of the b-value of each SNP, and the value of
the horizontal error bar equals the standard error of SNPs from the GD GWAS summary dataset. The y-axis values represent the effect of the SNP on the
gut microbiome. The numerical value of the y-axis position of each dot equals the opposite number of the b-value of the SNP, and the value of the
vertical error bar equals the standard error of SNP from the gut microbiome GWAS summary dataset. The b-values and standard errors for SNPs are part
of the dataset used to describe the relationship between SNPs and phenotypes; they can be obtained directly by querying the GWAS summary dataset.
Different colors of lines represent different MR methods: a causal effect of GD on microbiome was calculated through inverse-variance weighting (IVW)
(light blue), weighted median (dark green), MR-Egger (dark blue), weighted mode methods (pink), and simple mode (light green). The value of the slope
equals the b-value calculated through the five methods and represents the causal effect of GD on the gut microbiome. The greater the absolute value of
the slope, the greater the causal effect. Since the effect allele, an allele to which the effect estimate refers, was identified in the gut microbiome and the
GD GWAS summary dataset, a positive slope indicates that exposure is a risk factor, whereas a negative slope is the opposite.
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TABLE 3 Causal effect of Graves’ disease (GD) on the gut microbiome.

Outcome Method Number of SNPs P-value OR

Family Oxalobacteraceae Weighted median 7 0.007 1.120

Family Oxalobacteraceae Inverse-variance weighted 7 0.015 1.085

Genus Clostridium innocuum group Inverse-variance weighted 7 0.024 0.918

Genus Anaerofilum MR-Egger 7 0.049 1.586

Genus Intestinimonas Inverse-variance weighted 7 0.046 1.045

Genus Oxalobacter Weighted median 7 0.006 1.132

Genus Oxalobacter Inverse-variance weighted 7 0.002 1.114

Genus Peptococcus Inverse-variance weighted 7 0.020 1.078

Genus Ruminococcaceae UCG 005 Weighted median 7 0.030 1.055

Genus Ruminococcaceae UCG 005 Inverse-variance weighted 7 0.034 1.041

Genus Sutterella Inverse-variance weighted 7 0.024 0.953

Genus Terrisporobacter Inverse-variance weighted 7 0.030 1.067
F
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The outcome represents the specific taxa used for calculating the causal effect between GD and the gut microbiome; the method represents the calculation method used for the Mendelian
randomization (MR) analysis in each row; the number of single nucleotide polymorphisms (SNPs) represents the number of instrumental variables (IVs) used for calculations; and the p-values and the
ORs represent the significance and size of causality of the results, respectively. MR, Mendelian randomization; SNP, single nucleotide polymorphism; OR, odds ratio.
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FIGURE 6

Leave-one-out analysis for Graves’ disease (GD) on the gut microbiome. The sensitivity of the causal effect of GD on a different type of gut microbiome was
analyzed using leave-one-out analysis in (A–I). The error bar represents the 95% confidence interval with the method of inverse-variance weighting (IVW).
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achieves a better effect on GD than methimazole alone, and the

changes in the gut microbiome include changes in levels of

Lactococcus lactis, Enterobacter hormaechei, and Chryseobacterium

indologenes (45). The results obtained from patients with GD reveal

that changes in the gut microbiome accompany GD, which agrees

with our results (45). However, a causal effect between GD and the gut

was not illustrated in these previous studies, and the number of

samples in these studies ranged from dozens to hundreds, which are

not sufficient sample sizes to be representative of the general

population. However, in the present study, the data on the gut

microbiome contained 18,340 samples from a range of ethnicities,

and the GD data contained 212,453 samples of Asian ethnicity,

allowing the present study to be more representative of

the population.

Potential mechanisms of gut microbiome interactions with GD

have recently been investigated. Jiang et al. found that higher levels of

Bacteroides in GD may alter the intestinal barrier and induce an

inflammatory reaction by elevating the concentration of

inflammatory factors, which may change the immune status and

facilitate the incidence of autoimmune disease (46). In addition,

higher thyroid hormone levels have also been positively related to

Lactobacillus (47). Another study based on a mouse model also

reported a causal correlation between the gut microbiome and GD.

Researchers have reported that different microbiomes in mice can

lead to different presentations of GD and Graves’ ophthalmopathy

after injection with a human thyroid-stimulating hormone receptor

(hTSHR) eukaryotic expression plasmid (48). Vancomycin

significantly down-regulates the level of gut microbiota, and

decreases the incidence and severity of GD, whereas mice that

receive a human fecal material transfer from GD present with

increased severity of GD (48). The present study also provides

evidence of a causal effect between the gut microbiome and GD

based on GWAS summary data from the human population and

further found that this causal effect was bidirectional. However, the

present study did not identify the specific mechanism for how the gut

microbiome interacts with GD.

In the present study, we concentrated on the interactive effects

between the gut microbiome and GD through bidirectional MR

analysis, which we also used to detect the causal effect between the

gut microbiome and GD. Compared with traditional clinical trials,

MR analysis allows the identification of sequential relationships as the

exposure is defined before the outcome through IVs in the design of

the MR analysis, and IVs are less prone to influence by potential

confounders (49). The present study utilized F-statistics and

horizontal pleiotropy, which overcame weak biases and showed a

direct association between SNPs and the outcome. Because the data

used in the present study were derived mainly from the Asian

population, the extrapolation of the results to other ethnic

populations should be considered with caution.

In conclusion, the present study confirmed an association and

defined a causal effect between GD and the gut microbiome through
Frontiers in Immunology 09
MR analysis, thereby providing evidence supporting the activity of a

TGA in the pathogenesis of GD.
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