
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ari Adamy,
Pilar Hospital, Brazil

REVIEWED BY

Zoltan Janos Vereb,
University of Szeged, Hungary
Olfat Ali Hammam,
Theodor Bilharz Research Institute, Egypt

*CORRESPONDENCE

Silvia Pineda

sipineda@ucm.es
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Introduction: Muscle-invasive bladder cancer (MIBC) is a heterogeneous disease

with several taxonomic molecular subtypes showing different genetic, clinical, and

epidemiological profiles. It has been suggested that MIBC-subtypes follow

different tumorigenesis pathways playing decisive roles at different stages of

tumor development, resulting in distinct tumor microenvironment containing

both innate and adaptive immune cells (T and B lymphocytes). We aim to

characterize the MIBC tumor microenvironment by analyzing the tumor-

infiltrating B and T cell repertoire according to the taxonomic molecular subtypes.

Methods: RNAseq data from 396 MIBC samples included in TCGA were

considered. The subtype information was collected from the international

consensus taxonomic classification describing six subtypes: Basal/Squamous-like

(Ba/Sq), Luminal papillary (LumP), Luminal non-Specify (LumNS), Luminal unstable

(LumU), Stroma-rich, and Neuroendocrine-like (NE-like). Using MiXCR, we

mapped the RNA read sequences to their respective B-cell receptor (BCR) and

T-cell receptor (TCR) clonotypes. To evaluate the BCR and TCR differences among

subtypes, we compared diversity measures (richness and diversity) using a

Wilcoxon test and we performed a network analysis to characterize the clonal

expansion. For the survival analysis stratified by subtypes, Cox regression models

adjusted for age, region, and pathological stage were performed.

Results:Overall, we found different patterns of tumor-infiltrating immune repertoire

among the different MIBC subtypes. Stroma-rich and Ba/Sq tumors showed the

highest BCR and TCR infiltration while LumP showed the lowest. In addition, we

observed that the Ba/Sq and Stroma-rich tumors were more clonally expanded than

the Luminal subtypes. Moreover, higher TCR richness and diversity were significantly

associated with better survival in the Stroma-rich and Ba/Sq subtypes.

Discussion: This study provides evidence that MIBC subtypes present differences

in the tumor microenvironment, in particular, the Ba/Sq and the Stroma-rich are

related with a higher tumoral-infiltrating immune repertoire, which seems to be
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translated into better survival. Determining the causes of the different tumoral-

infiltrating immune repertoire according to the MIBC molecular subtypes will help

to improve our understanding of the disease and the distinct responses to

immunotherapy of MIBC.
KEYWORDS

B-cell repertoire, T-cell repertoire, subtyping, tumor microenevironment, muscle invasive
bladder cancer (MIBC), tumor infiltration
Introduction

Bladder cancer (BC) is the fourth most common cancer in

Northern America and Europe among men and its incidence is still

rising (1, 2). Urothelial bladder cancer (UBC) morphology represents

95% of BC. Overall, UBC is considered an immunogenic tumor due to

its relatively high tumor mutational burden (3) and its responsiveness

to Bacillus Calmette–Guerin (BCG) bladder instillations and

checkpoint inhibitors (4). However, not all patients benefit from

these therapies, possibly, because BC is not a single disease.

Most of UBC (80%) are diagnosed as non-muscle invasive

tumors. While this is a milder form of UBC, a large proportion

(40%) of patients suffer of multiple recurrences with some of them

invading the detrusor muscle (MIBC), this being a life-threat event

requiring a more aggressive treatment (5, 6). MIBC has further been

classified according to somatic DNA-based and RNA-based features.

Regarding the latter, several taxonomic classifications with different

numbers and names of MIBC subtypes have been proposed (7–17).

Recently, Kamoun et al. published an international consensus paper

based on a network-based analysis done with 1750 MIBC

transcriptomic profiles from six independent MIBC studies. The

authors reported up to six subtypes: Luminal papillary (LumP),

Luminal unstable (LumU), Luminal Non-Specified (LumNS),

Stroma-rich, Basal/Squamous-like (Ba/Sq), and Neuroendocrine-

like) (17). Interestingly, it has been observed that each of the

subtypes has distinct differentiation patterns, oncogenic

mechanisms, tumor microenvironments, as well as histological and

clinical associations.

The network of immunoregulatory pathways in bladder cancer is

quite complex, with several immune mechanisms arresting the

effective antitumor T-cell response. T cells and dendritic cells (DCs)

expressed inhibitory receptors in their membranes, repressing tumor

growth. Type 1 T helper (TH1) cells favor the generation of an anti-

tumor immune response. However, type 2 T helper (TH2) cells favor

pro-tumor immune responses. Other immune cell types that promote

tumor development are myeloid-derived suppressor cells (MDSCs),

M2 macrophages and regulatory T (Treg) cells. In addition, Mast cells

have been implicated in an indirect pro-tumor role, although the

mechanism remains unclear (18).

This immune infiltration varies according to bladder cancer

stages. Thus, non-muscle invasive bladder cancer (NMIBC) and

MIBC show significant differences in the infiltration of immune

cells. Furthermore, Kamoun et al. characterized the tumor
02
microenvironment for the different MIBC subtypes using cell

deconvolution tools and they observed that the Ba/Sq and the

Stroma-rich subtypes had higher immune and stromal infiltration

as well as distinct immune cell populations than the rest of subtypes.

Even though the immune infiltration was mainly found within these

two subtypes, it showed distinct immune cell populations. Ba/Sq

tumors were enriched in cytotoxic lymphocytes and natural killer

cells, whereas stroma-rich tumors overexpressed T- and B-cell

markers. LumNS tumors were the only luminal type associated with

immune infiltration signals; these were mainly for B and T

lymphocytes (17). These differences could help in the selection of

the patients for immunotherapies. (19)

In UBC, there are extensive evidences for an overall suppression

of immunosurveillance responses within the tumor. However, little is

known about the antigen specific responses (20). Among all the

immune cell populations, B and T cells are key components of the

adaptive immune response. T cells are involved in cell-mediated

immunity, whereas B cells are primarily responsible for antibody

responses against the specific antigens recognition through the B cell

receptors (BCR) or immunoglobulins (Ig) Both receptors can

recognize a large number of molecules. The BCR and TCR loci are

form by recombining a set of variable (V), diversity (D) and joining

(J) gene segments and its diversity is mainly concentrated in the

complementary-determining region 3 (CDR3).

The BCR are made up of two heavy chains (IGH) and two light

chains, the kappa (k) chains (IGK) and the lambda (l) chains (IGL).
The receptor diversification arises from two different processes:

somatic recombination and somatic hypermutation (21). By

contrast, T cell receptors (TCR) are either TCRab or TCRgd.
Approximately 95% of T cells express a TCRab receptor, consisting

of a TCRa (TRA) and a TCRb (TRB) chain. The remaining 5% are

made by a TCRg (TRD) and a TCRd (TRG) chain. These TCR chains

are highly diverse in their variable domains (22).

The immune cell infiltration harboring these receptors may play

decisive roles at different stages of tumor development resulting in a

tumor microenvironment containing different balances of T and B

cell receptors, in addition to the cancer cells and surrounding stroma.

Their impact on tumor progression and treatment response has been

suggested. In fact, T-cell infiltration play a central role in modern

immunotherapy response in bladder cancer, among other cancers (4,

23, 24), whereas the role of B-cell infiltration has yet to be defined

(25). Furthermore, this infiltration could be used as immunological

biomarkers which may drive towards patient stratification (26).
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Thus, given the fact theMIBC subtypes presented different immune

microenvironment and clinical behavior, we hypothesized that the

adaptive immune infiltration of these receptors is also distinct across

the MIBC subtypes. Therefore, our aim was to further characterize the

MIBC immune microenvironment by analyzing the tumor-infiltrating

B- and T- cell repertoire according to the tumor taxonomic molecular

subtypes towards a better understandingofMIBCprogressionpathways.
Material and methods

TCGA data

The study population included 404 MIBCs patients from TCGA

with available consensus taxonomic subtype data by Kamoun et al. (17)

based on RNAseq tumor data. Information on tumor gene expression

(RNA-seq), demographic, and clinicopathological characteristics were

retrieved through TCGA data portal (https://tcga-data.nci.nih.gov/tcga/

).Mutational rate data was retrieved fromThorsson et al. (27). All of the

patients provided informed consent to TCGA. Subtype information was

directly extracted from the original published paper (17). The final

number of patients analyzed was 396 (LumP=126, LumNS=20,

LumU=53, Stroma-rich=45, and Ba/Sq=152). We excluded 6

neuroendocrine-like tumors because of the insufficient number for the

posterior subtype analysis.Twopatientswere also discardedbasedon the

out-ranged and very low values presented in the TCR reads (Table S1).
BCR and TCR data extraction

B-cell receptors (BCR) and T-cell receptors (TCR) were extracted

from the RNAseq FASTQ files using the bioinformatic software

MiXCR (28). We applied the pipeline described in https://mixcr.

readthedocs.io/en/master/ for alignments using paired-end RNA-seq.

MiXCR captures all CDRs and framework regions of immune genes

and permits the assembly of full-length clonotypes. In this paper, we

extracted BCR and TCR and defined the clonotypes according to their

CDR3 sequences retrieved from the bulk RNA-seq data. The median

number of reads and clones for the four datasets are displayed in

Table S2. TRD and TRG reads and clones were very few, therefore we

decided to filter out these receptors for the analysis.
Richness and diversity analyses

To evaluate the number of BCR/TCR clones and their frequency

we assessed the richness and the diversity. They were calculated

through Expression and Entropy measurements, respectively (29).

The number of BCR/TCR reads can be highly dependent on the

sequencing depth. Therefore, we accounted for this by calculating the

expression dividing the number of reads by the total number of

sequenced reads in the RNA-seq FASTQ files. Expression was

estimated with the following formula:

Igi=TRi =
Mi

Ni +Mi
; i = 1, :::,N
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Where Mi is the number of reads that map to a specific VDJ

recombination and Ni is the number of reads that map to a anything

else in the genome in n samples.

In addition, to take into consideration not only the number of

clones but its frequency, Shannon entropy (H index) was estimated as:

H = −o
N

i=1
pi log2 (pi); i = 1, :::,N

Where N is the number of unique clones and pi is the frequency of

clone i. We defined a clone as those reads that had the same V and J

gene, same CDR3 length, and 90% of nucleotide identity for BCR, and

95% for TCR. We restricted this analysis to those reads that estimated

the CDR3 region.
Network analysis

The network used to assess the overall clonal nature and the

dominance of a clone was generated applying an algorithm similar to

that already described in previous publications (29, 30). Briefly, each

vertex represents a B-cell or T-cell sequence where the size indicates the

number of identical chains. An edge (defined by the clone definition:

same V and J segments, same CDR3 length, and 90%/95% nucleotide

identity betweenCDR3s for BCR/TCR, respectively) between two vertex

indicates that the sequence belongs to the same clone and clusters define

each clone in the repertoire. The analysis was done using igraph package

in R using the layout with_graphopt option to generate the plot.

Then, the network was quantified calculating the Gini Index for

vertex size (clonal expansion) and cluster size (clonal diversification).

Gini Index is a measure of unevenness extensively used to measure

wealth distribution. A Gini coefficient of zero expresses perfect

equality and a Gini coefficient of 1 expressed maximal inequality. It

measures the inequality among values of frequency distribution. We

used the Gini function from ineq package in R to calculate the Gini

coefficient for vertex size and cluster size distribution. When applied

to vertex size, the overall clonal nature is represented. If it was closer

to 1, vertices were unequal, showing expansion of some of them, and

closer to 0, otherwise. When applied to cluster size, clonal dominance

was represented. If closer to 1, clusters were unequal and therefore

represented dominant clones; if closer to 0, all clusters were of equal

size. Finally, all these information was considered together to

compare the clonal expansion and diversification trends by subtypes.
Statistical analysis

To evaluate the BCR and TCR differences among subtypes, we

compareddiversitymeasures (expressionandentropy)usingaWilcoxon

rank test. We also checked the correlation between the clinic-

pathological variables available in TCGA and diversity measures for all

receptors (IGH, IGK, IGL, TRA and TRB) stratifying by MIBC subtype

and using Wilcoxon rank test when the variable was categorical and

Spearman correlation test when continuous. In order to assess the

correlation by MIBC subtypes between the mutational rates (silent and

non-silent mutation rates, SMR and NSMR, respectively) and the

diversity measures, a Spearman correlation test was applied.
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The inflammatory score was calculated based on Thorsson et al. (27)

scores calculation approach. The authors applied CIBERSORT to the

TCGA RNA-seq data to estimate the relative fraction of 22 immune cell

types within the leukocyte compartment.More specifically, they aggregate

the cell types of interest to generate the different scores. According to this,

we calculated the inflammatory score by adding the relative fraction of

inflammation related immune cells (Inflammatory score = Monocytes +

Macrophages.M0 + Macrophages.M1 + Macrophages.M2 +

Dendritic.cells.resting + Dendritic.cells.activated + Mast.cells.resting

+ Mast.cells.activated + Neutrophils + Eosinophils + B.cells.naive +

B.cells.memory + T.cells.CD4.naive + T.cells.CD4.memory.resting

+ T.cells.CD4.memory.activated + T.cells.follicular.helper +

T.cells.regulatory + T.cells.gamma.delta + T.cells.CD8 + T.helper +

NK.cells.resting + NK.cells.activated). To check the correlation between

the inflammatory score and both measures, richness and diversity for all

receptors (IGH, IGK, IGL, TRA and TRB) stratified by subtype, a

Spearman correlation test was used.

Survival analysis were performed to assess the association between

the diversity measures (expression and entropy) and overall survival
Frontiers in Immunology 04
(OS). Hazard ratios and 95% confidence intervals were estimated with

Cox regressionmodels adjusted for age, region, and pathological disease

stage. The different BCR and TCR measurements were included in the

models to evaluate their prognostic value. Cox model considering the

potential interaction between the BCR and TCR measurements and the

subtypes were also calculated.

Results

Sociodemographic featureswere similar across subtypes, the LumNS

and LumUbeing slightly older than the rest of the subtypes (Table 1). As

expected, the Stroma-rich andBa/Sq subtypes had less papillary features.

The LumNS subtype was the most advanced at diagnosis (65% of the

tumors in Stage IV). The summary of the sequenced reads by MIBC

subtypes is showed in Table S2. For all ofMIBC subtypes, the number of

reads was higher for the BCR compared to the TCR clonotypes. Stroma-

rich subtype (mean(sd) = 41954 [2290 – 1312355]) and LumNS (mean

(sd)= 24998 [2156 - 304394])were the subtypeswith the highest number

of BCR reads, whereas the highest amount of TCR reads was shown by
TABLE 1 Sociodemographic and clinical features for MIBC cases according to subtypes.

All cases LumP LumNS LumU Stroma-rich Ba/Sq p.value

N=396 N=126 N=20 N=53 N=45 N=152

Age at diagnosis: 0.024

<=60 104 (26.3%) 45 (36.0%) 3 (15.0%) 13 (24.5%) 6 (13.3%) 37 (24.3%)

61-70 121 (30.6%) 38 (30.4%) 5 (25.0%) 11 (20.8%) 18 (40.0%) 49 (32.2%)

>70 170 (43.0%) 42 (33.6%) 12 (60.0%) 29 (54.7%) 21 (46.7%) 66 (43.4%)

Sex: 0.274

Female 104 (26.3%) 32 (25.4%) 7 (35.0%) 8 (15.1%) 12 (26.7%) 45 (29.6%)

Male 292 (73.7%) 94 (74.6%) 13 (65.0%) 45 (84.9%) 33 (73.3%) 107 (70.4%)

Region: 0.86

USA+Canada 334 (84.6%) 103 (82.4%) 18 (90.0%) 46 (86.8%) 40 (88.9%) 127 (83.6%)

Europe 43 (10.9%) 16 (12.8%) 2 (10.0%) 3 (5.66%) 4 (8.89%) 18 (11.8%)

Brazil+Puerto Rico 18 (4.56%) 6 (4.80%) 0 (0.00%) 4 (7.55%) 1 (2.22%) 7 (4.61%)

BMI: 0.05

<25 148 (42.4%) 60 (53.1%) 5 (27.8%) 17 (34.7%) 17 (44.7%) 49 (37.4%)

>=25 201 (57.6%) 53 (46.9%) 13 (72.2%) 32 (65.3%) 21 (55.3%) 82 (62.6%)

Smoking status: 0.631

Non-smoker 107 (27.9%) 41 (33.1%) 5 (27.8%) 13 (25.0%) 10 (23.3%) 38 (26.0%)

Ever smoker 276 (72.1%) 83 (66.9%) 13 (72.2%) 39 (75.0%) 33 (76.7%) 108 (74.0%)

Histology: <0.001

Papillary 132 (33.8%) 73 (58.4%) 7 (35.0%) 16 (30.8%) 8 (17.8%) 28 (18.8%)

Non-Papillary 259 (66.2%) 52 (41.6%) 13 (65.0%) 36 (69.2%) 37 (82.2%) 121 (81.2%)

Disease Stage: <0.001

STAGE I-II 127 (32.2%) 70 (56.5%) 1 (5.00%) 14 (26.4%) 4 (8.89%) 38 (25.0%)

STAGE III 136 (34.5%) 30 (24.2%) 6 (30.0%) 20 (37.7%) 17 (37.8%) 63 (41.4%)

STAGE IV 131 (33.2%) 24 (19.4%) 13 (65.0%) 19 (35.8%) 24 (53.3%) 51 (33.6%)
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the Ba/Sq (mean(sd) = 404.5 [13 - 3975]) and Stoma-rich (mean(sd) =

308 [65 - 5753]) subtypes (Table S2).

BCR/TCR infiltration is significantly different
across MIBC subtypes

Overall, we found significant differences of BCR and TCR

richness and diversity across MIBC subtypes (Figures 1, 2). The

highest BCR infiltration was observed for the Stroma-rich subtype

that, jointly with Ba/Sq tumors, showed the highest TCR richness and

diversity, too. On the other hand, LumP tumors presented the lowest

BCR and TCR infiltration pattern. Wilcoxon rank test results

comparing the TCR and BCR diversity measures between the

different subtypes are reported in Tables S3, S4.

Significant differences in BCR clonal expansion and clonal

diversification between the different subtypes were also found through

the network analyses (Figure 3; Tables S5, S6). The Stroma-rich subtype

showed the highest BCR clonal expansion levels while the LumP showed

the lowest. The rest of the subtypes behaved similar in terms of BCR

clonal expansion. The Stroma-rich subtype showed the highest levels of

dominant clones for IGL and IGK and LumP showed the lowest. Higher

levels of IGH dominant clones were observed for the LumNS subtype

and the lowest levels were observed for the LumP, again.

Association between mutational rates and
BCR/TCR infiltration varies across the
different MIBC subtypes

While no correlationwas observed between themutational rates and

the infiltration measures overall, the correlation patterns were highly
Frontiers in Immunology 05
heterogeneous across thedifferentMIBCsubtypes (Figures 4A,B, S1A,B;

Tables 2, 3). In the Stroma-rich subtype, mutational rates showed a

negative correlation trendwith bothBCRandTCR richness (NSMRrho:

IGH=-0.24, IGK=-0.28, IGL=-0.27, TRA=-0.26, TRB=-0.24; SMR rho:

IGH=-0.25, IGK=-0.29, IGL=-0.29, TRA=-0.30, TRB=-0.28) and TCR

diversity (NSMR rho: TRA=-0.12, TRB=-0.26; SMR rho: TRA=-0.17,

TRB=-0.31). A slightly positive correlation between themutational rates

and the TCR richness (NSMR rho: TRA=0.18, p.value=0.03; TRB=0.19,

p.value=0.02; SMR rho: TRA=0.16, p.value=0.05; TRB=0.16,

p.value=0.05) and diversity (NSMR rho: TRA=0.18, p.value=0.03;

TRB=0.21 p.value=0.01; SMR rho: TRA=0.17, p.value=0.04; TRB=0.18

p.value=0.03) was found in the Ba/Sq. In addition, LumP showed a

positive correlation with both BCR and TCR richness (NSMR rho:

IGH=0.21, p.value=0.02; IGK=0.22, p.value=0.01; IGL=0.21,

p.value=0.02; TRA=0.23, p.value=9.7e-03; SMR rho: IGH=0.19,

p.value=0.03; IGK=0.20, p.value=0.02; IGL=0.20, p.value=0.03;

TRA=0.22, p.value=0.01) and with TRA diversity (NSMR rho: 0.30,

p.value=0.02; SMR rho: 0.28, p.value=4.1e-03) (Tables 2, 3).

Ba/Sq BCR/TCR infiltration is significantly
associated with inflammatory score

Ba/Sq subtype showed a significant positive correlation with both

BCR and TCR richness (IGH: rho=0.20, p.value=1.6e-02; IGK:

rho=0.22, p.value=8.2e-03; IGL: rho=0.21, p.value=9.7e-03, TRA:

rho=0.47, p.value=2.4e-09; TRB: rho=0.36, p.value=7.4e-06) and

TCR diversity (TRA: rho=0.43, p.value=9.6e-08; TRB: rho=0.40,

p.value=1.4e-06). In addition, a significant positive correlation

between the inflammatory score and TCR richness (TRA: rho=0.29,

p.value=1.2e-03; TRB: rho=0.28, p.value=1.6e-03) and diversity
FIGURE 1

BCR and TCR richness among the different MIBC subtypes. BCR related results are plotted in purple and TCR in yellow. In the Y axis the logarithm of the
expression is represented. Each box of the boxplots is a subtype (see legend). The differences between richness across the subtypes are displayed only
when significant. * → 0.05 > p > 0.01; ** → 0.01 > p > 0.001; *** → p < 0.001.
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(TRA: rho=0.33, p.value=6.1e-06; TRB: rho=0.37, p.value=9.1e-05)

was observed for the LumP subtype (Figures 4C, S1C; Tables 2, 3).

Interestingly, BCR and TCR richness and diversity did not show any

pattern of correlation with the inflammatory score in the Stroma-

rich subtype.
There is no association between the clinical
data and BCR/TCR infiltration

We explored the association between the clinic-pathological

variables available in TCGA and both measures, richness and

diversity, for all receptors (IGH, IGK, IGL, TRA and TRB) by

stratifying by subtype. No associations for any of the clinical

variables was observed (Table S7).
BCR and TCR infiltration is associated
with overall survival in Ba/Sq and
Stroma-rich subtypes

Richness and diversity were associated with OS when we stratified

by subtypes (Table S8 and Figure 5) showing an interaction effect

between the BCR and TCR measurements with the different subtypes

(Table S9). Ba/Sq subtype showed significantly better OS for higher

TCR richness (HR[95% CI]: TRA=0.57 [0.37-0.86], TRB=0.53 [0.34-

0.81]) and diversity (HR[95% CI]: TRA=0.79 [0.69-0.9], TRB=0.81

[0.71-0.92]) and BCR richness (HR[95% CI]: IGH=0.81 [0.63-1.03],

IGK=0.77 [0.6-0.98], IGL=0.77 [0.59-1.00]), and Stroma-rich

subtype showed significantly better OS for higher TCR richness
Frontiers in Immunology 06
(HR[95% CI]: TRA=0.23 [0.08-0.7], TRB=0.2 [0.06-0.62]) and

diversity (HR[95% CI]: TRA=0.59 [0.43-0.82], TRB=0.62 [0.46-0.84]).

Interestingly, OS was not associated with diversity measures if

stratification by subtypes was not performed. BCR and TCR

infiltration were not significantly associated with OS in either of

Luminal subtypes.
Discussion

Cancer classifications, such as the pathological, the molecular,

and the taxonomic, aim to improve the patient management.

Molecular subtyping studies have allowed the allocation of cancer

into homogeneous groups that are considered to harbor similar

molecular and clinical characteristics. Furthermore, this has helped

researchers to identify both actionable targets for drug design as well

as biomarkers for response prediction. In deep, molecular subtyping

studies have allowed to better correlate cancer cases with clinical

outcomes than the traditional classifications of cancer (31–33).

MIBC is a heterogeneous disease with several taxonomic

molecular subtypes showing different genetic, clinical, and

epidemiological profiles (17, 34). It has also been suggested that

MIBC-subtypes follow different tumorigenesis pathways playing

decisive roles at different stages of tumor development and

resulting in a tumor microenvironment containing different

balances of adaptive immune cells (T and B lymphocytes) (17). In

addition, the different MIBC subtypes have been associated with

different therapeutics options (16). However, despite the growing

evidences of subtyping clinical implications, MIBC subtypes have

yet to enter into routine clinical practice (35).
FIGURE 2

BCR and TCR diversity among the different MIBC subtypes. BCR related results are plotted in purple and TCR in yellow. In the Y axis entropy is represented.
Each box of the boxplots is a subtype (see legend). The differences between diversity across the subtypes are displayed only when significant. Wilcoxon test:
* → 0.05 > p > 0.01; ** → 0.01 > p > 0.001; *** → p < 0.001.
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While a very recent study detailed theUBC immune-profile, it did not

considered the differentmolecular subtypes (19). To our knowledge, this is

the first study characterizing the MIBC immune microenvironment by

analyzing the tumor-infiltrating B and T repertoire according to the

taxonomic molecular subtypes using RNAseq data from 396 MIBC

samples included in TCGA. Furthermore, we report on the association

of tumor-infiltrating immune repertoire with mutational rates,

inflammatory score, overall survival, and clinico-pathological features,

across the different MIBC subtypes.

We observed large differences on BCR and TCR richness and

diversity, as well as on BCR clonal expansion and diversification among

the different MIBC subtypes. Stroma-rich and Ba/Sq tumors showed

the highest BCR and TCR infiltration while LumP subtype showed the

lowest. In addition, we observed that the Ba/Sq and Stroma-rich tumors

weremore clonally expanded than the Luminal subtypes. Moreover, the

correlation between mutational rates and inflammatory score with

BCR/TCR measurements highly varied across subtypes.
Frontiers in Immunology 07
A high infiltration in Ba/Sq tumors is further supported by the

observation that Schistosoma-associated bladder cancer arises from a

chronic granulomatous inflammation and irritation leading to

squamous cell carcinoma subtype of the bladder (36) Urinary tract

infections (UTIs) have been controversially established as risk factor

for bladder cancer (37). Since it has been shown that during UTIs an

adaptive immune response is generated (38), we could think that

subtyping bladder cancer could help to better establish their

relationship with bladder cancer.

The high infiltration of BCR and TCR in the Stroma- rich subtypes

relies on the fact that these tumors displayed overexpression of smooth

muscle, myofibroblast, fibroblast and endothelial gene signatures,

intermediate urothelial differentiation and overexpression of B-cell

markers (17, 39). The fact that molecular subtyping is performed on

biopsy specimens representing only a fraction of the tumor mass,

warrants particular caution when considering this subtype. While

some tumors are actually stroma-rich, some biopsy specimens are
A

B

FIGURE 3

BCR clonal expansion and diversification by subtypes. (A) On the Y axis, clonal expansion is represented by using the Gini Index and on the X axis, clonal
diversification is displayed by Gini Vertex. The plot is colored by subtype, each dot is a MIBC sample and the boxplot represented the distribution of each
clonal measurement by subtype. (B) B-cell repertoire networks from two samples representing one Ba/Sq (blue) and one LumP (green). Each vertex
represents a unique BCR being the vertex size defined by the number of identical BCRs considering the nucleotide sequences. An edge exists between
vertices when they belong to the same clone as defined before, so clusters are groups of interconnected vertices forming a clone.
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A

B

C

FIGURE 4

Correlation between mutational rates and inflammatory score with richness by subtypes. BCR related results are plotted in purple and TCR in yellow. In
the Y axis the logarithm of the expression is displayed. On the X axes, the logarithm 10 of the (A) non-silent (B) silent mutational rates, (C) inflammation
score are plotted. Each line, is the regression line assessed in the correlation test performed by subtypes and they are colored by them.
TABLE 2 Correlation between the two mutational rates and inflammatory score and richness for all receptors by subtypes.

Richness
Subtype All LumP LumNS LumU Stroma-rich Ba/Sq

Chain Type R p-value R p-value R p-value R p-value R p-value R p-value

Non-silent mutation rate (NSMR)

IGH 0.09 8.01e-02 0.21 1.88e-02 0.33 0.158 0.29 3.67e-02 -0.24 0.116 0.02 0.818

IGK 0.09 6.26e-02 0.22 1.30e-02 0.40 7.92e-02 0.28 4.57e-02 -0.28 6.19e-02 0.03 0.748

IGL 0.08 0.116 0.21 1.72e-02 0.46 4.27e-02 0.28 4.15e-02 -0.27 7.20e-02 0.01 0.867

TRA 0.11 2.26e-02 0.23 9.66e-03 0.47 3.84e-02 0.06 0.670 -0.26 8.99e-02 0.18 3.00e-02

TRB 0.03 0.542 0.01 0.880 0.64 3.03e-03 0.14 0.310 -0.24 0.116 0.19 2.06e-02

Silent mutation rate (SMR)

IGH 0.07 0.149 0.19 3.01e-02 0.30 0.192 0.25 6.97e-02 -0.25 9.53e-02 0.02 0.844

IGK 0.08 0.127 0.20 2.33e-02 0.38 9.88e-02 0.24 8.61e-02 -0.29 5.40e-02 0.02 0.784

IGL 0.07 0.192 0.20 2.58e-02 0.43 6.07e-02 0.25 7.24e-02 -0.29 5.64e-02 0.01 0.859

TRA 0.09 6.11e-02 0.22 1.49e-02 0.52 2.06e-02 0.04 0.769 -0.30 4.75e-02 0.16 5.17e-02

(Continued)
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stroma-rich due to chance or sampling at the tumormargin (40).Hence,

it is necessary to be careful in drawing conclusions about this subtype.

Nevertheless, the fact that immune infiltration is associated with

mutational rate in Stroma-rich tumors and with the inflammatory

score in Ba/Sq subtype suggest that the source and type of immune

infiltration may be different in these two subtypes. Our observation is

also supported by Kamoun et al. that reported distinct immune cell

populations in these two MIBC subtypes (17). Specifically, we found

that the tumor-infiltrating immune repertoire inversely correlates
Frontiers in Immunology 09
with the mutational rates in the Stroma-rich subtype. This inverse

correlation could be explained because this subtype is characterized

by a high stromal infiltration, mainly of smooth cells, fibroblasts, and

myofribroblasts that could cover the cancer cells where the mutations

mainly originate (17).

In general, high mutational rates lead to the formation of tumor

neoantigens, making tumors more immunogenic and more sensitive

to immunotherapy (41). The above observations, jointly with the fact

that higher TCR richness and diversity was associated with better
TABLE 2 Continued

Richness
Subtype All LumP LumNS LumU Stroma-rich Ba/Sq

Chain Type R p-value R p-value R p-value R p-value R p-value R p-value

TRB 0.01 0.800 0.02 0.809 0.63 3.58e-03 0.11 0.439 -0.28 6.22e-02 0.16 5.28e-02

Inflammatory score

IGH 0.11 2.82e-02 0.03 0.716 -0.04 0.888 -0.25 7.57e-02 -0.10 0.508 0.20 1.61e-02

IGK 0.11 3.51e-02 0.01 0.884 -0.07 0.781 -0.26 6.24e-02 -0.15 0.310 0.22 8.17e-03

IGL 0.11 3.58e-02 0.00 0.962 -0.15 0.541 -0.27 5.79e-02 -0.14 0.348 0.21 9.73e-03

TRA 0.44 8.54e-20 0.29 1.19e-03 0.15 0.551 0.21 0.136 -0.03 0.862 0.47 2.40e-09

TRB 0.35 1.56e-12 0.28 1.58e-03 0.06 0.815 0.18 0.196 -0.06 0.684 0.36 7.41e-06
fron
Spearman correlation test was used.
TABLE 3 Correlation between the two mutational rates and inflammatory score and diversity for all receptors by subtypes.

Diversity
Subtype All LumP LumNS LumU Stroma-rich Ba/Sq

Chain Type R p-value R p-value R p-value R p-value R p-value R p-value

Non-silent mutation rate (NSMR)

IGH 0.07 0.200 0.18 6.50e-02 0.48 3.33e-02 0.07 0.622 -0.06 0.700 0.01 0.865

IGK 0.01 0.868 0.06 0.498 0.5 2.71e-02 -0.01 0.956 0.15 0.330 -0.1 0.212

IGL 0.03 0.494 0.08 0.358 0.37 0.109 0.05 0.706 -0.08 0.583 0.03 0.751

TRA 0.15 5.00e-03 0.3 2.21e-03 0.32 0.163 0.07 0.667 -0.12 0.452 0.18 2.80e-02

TRB 0.08 0.114 0.13 0.191 0.47 3.79e-02 0.02 0.872 -0.26 8.46e-02 0.21 1.29e-02

Silent mutation rate (SMR)

IGH 0.06 0.249 0.18 5.98e-02 0.46 4.27e-02 0.05 0.727 -0.06 0.706 0.01 0.882

IGK 0 0.925 0.03 0.767 0.5 2.61e-02 -0.04 0.791 0.19 0.210 -0.11 0.193

IGL 0.03 0.618 0.07 0.427 0.36 0.122 0.02 0.906 -0.1 0.510 0.03 0.719

TRA 0.12 1.83e-02 0.28 4.08e-03 0.36 0.118 0.05 0.733 -0.17 0.262 0.17 4.34e-02

TRB 0.07 0.206 0.12 0.227 0.5 2.47e-02 0.03 0.831 -0.31 4.12e-02 0.18 2.74e-02

Inflammatory score

IGH 0.06 0.265 0.05 0.619 -0.06 0.815 -0.17 0.246 -0.15 0.324 0.1 0.252

IGK -0.05 0.374 -0.13 0.156 0.1 0.678 -0.19 0.172 -0.32 3.39e-02 -0.01 0.873

IGL -0.04 0.467 -0.11 0.254 -0.09 0.705 -0.05 0.710 -0.15 0.324 -0.08 0.338

TRA 0.39 2.46e-14 0.33 6.14e-04 0.24 0.329 0.16 0.299 -0.04 0.806 0.43 9.58e-08

TRB 0.4 2.04e-15 0.37 9.11e-05 0.31 0.197 0.19 0.180 0.04 0.777 0.4 1.43e-06
Spearman correlation test was used.
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survival only in the Stroma-rich and the Ba/Sq subtypes, reinforce the

need to further explore the joint role of the tumor subtype and the

immune infiltration in the anti-tumor response (42).

The three luminal subtypes showed the lowest BCR and TCR

infiltration. This group of subtypes is characterized by a less aggressive

presentation of the disease and a better prognosis (11, 43). Moreover, the

immune infiltration patterns positively correlated with the mutational

rates. Intriguingly, the correlation was only observed for the BCR richness

and diversity, but not for the TCR measurements. Whether the type of

mutations in the luminal subtypes are more immunogenic than those in

the other subtypes requires further exploration.

The impact of the immune infiltration pattern on prognosis varies

across the different subtypes. While BASQ-like subtype has been

characterized by a more aggressive presentation of the disease and

worse prognosis (11, 44), we were further able to differentiate a Ba/Sq

tumors subset with better prognosis associated with TCR infiltration.

Similar results were observed for Stroma-rich tumors, characterized

by a better survival. The fact that BCR and TCR richness and diversity

were not associated with OS in the luminal subtypes may explain why

these tumors are poor responders to immunotherapy (45, 46), a fact

that could be used for patient stratification in the clinics.

There are some limitations that should be considered when

interpreting these results. First, we applied MiXCR tool to map the read

sequences using RNAseq data to their respective BCR and TCR clonotypes

as done elsewhere (29, 42). In this line, we have previously explored the

tumor infiltrating B cell repertoires across tumor types (42) showing a large

variability on BCR infiltration across tumor types and an increase clonality

in primary tumors compared to adjacent non-tumor tissues. Despite these
Frontiers in Immunology 10
tools provide accurate annotations, further studies with targeted

sequencing are necessary to validate the extracted features and

associations. Another limitation of this study was the limited clinical

data available in TCGA since the consortium’s main objective was the

detail molecular characterization of the tumors. This impaired dawning

clear conclusions from the lack of association between the tumor-

infiltrating immune repertoire and clinic-pathological conditions. Hence,

additional analyses in independent studies with more completed data are

needed. We are also aware that some of the subtypes extracted from the

MIBC samples had limited sample size (LumNS=20, NE-like=6). Indeed,

NE-like tumors were excluded from the analysis due to this reason.

Therefore, these findings will need to be further validated in a larger

sample sized study. In addition, the characterization of the risk factors

associated with the different subtypes would strongly increase the clinical

and treatment potential significance of the findings.

This study provides sound evidence that MIBC subtypes present

differences in the tumor B- and T-cell immune repertoire. In

particular, the Stroma-rich and Ba/Sq tumors are related with a

higher tumoral-infiltrating immune repertoire, however the origin

of the immune infiltration may be different in these two subtypes.

Interestingly, the Ba/Sq subtype immune infiltration correlated with

inflammation-related cells infiltrating the tumor while the Stroma-

rich immune infiltration correlated with the mutational rates.

Importantly, BCR and TCR infiltration was associated with a better

overall survival in both Ba/Sq and Stroma-rich subtypes. A better

definition of the different immune-related mechanism leading to

several MIBC taxonomic subtypes will improve our understanding

of the disease and the identification of novel therapeutic strategies.
FIGURE 5

Survival analyses considering richness and diversity for all receptors results by subtype. BCR related results are plotted in purple and TCR in yellow. Each
square represents the Hazard Ratio and its corresponding lines the 95%CI. The different colors indicates the different subtypes (see legend) and all cases
together are display in gray.
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