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Single-cell RNA-seq analysis
identifies distinct myeloid cells
in a case with encephalitis
temporally associated with
COVID-19 vaccination

Masakazu Ishikawa1,2†, Yuki Shimada3†, Tatsuhiko Ozono3,
Hisatake Matsumoto2,4, Hiroshi Ogura4, Keigo Kihara3,
Hideki Mochizuki3, Tatsusada Okuno3, Shuhei Sakakibara4,
Makoto Kinoshita3* and Daisuke Okuzaki1,2,6,7*

1Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research
Center, Osaka University, Osaka, Japan, 2Center for Infectious Disease Education and Research,
Osaka University, Osaka, Japan, 3Department of Neurology, Graduate School of Medicine, Osaka
University, Osaka, Japan, 4Department of Traumatology and Acute Critical Medicine, Graduate School
of Medicine, Osaka University, Osaka, Japan, 5Laboratory of Immune Regulation, WPI Immunology
Frontier Research Center, Osaka University, Osaka, Japan, 6Genome Information Research Center,
Research Institute for Microbial Diseases, Osaka University, Osaka, Japan, 7Institute for Open and
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Recently accumulating evidence has highlighted the rare occurrence of COVID-

19 vaccination-induced inflammation in the central nervous system. However,

the precise information on immune dysregulation related to the COVID-19

vaccination-associated autoimmunity remains elusive. Here we report a case

of encephalitis temporally associated with COVID-19 vaccination, where single-

cell RNA sequencing (scRNA-seq) analysis was applied to elucidate the distinct

immune signature in the peripheral immune system. Peripheral blood

mononuclear cells (PBMCs) were analyzed using scRNA-seq to clarify the

cellular components of the patients in the acute and remission phases of the

disease. The data obtained were compared to those acquired from a healthy

cohort. The scRNA-seq analysis identified a distinct myeloid cell population in

PBMCs during the acute phase of encephalitis. This specific myeloid population

was detected neither in the remission phase of the disease nor in the healthy

cohort. Our findings illustrate induction of a unique myeloid subset in

encephalitis temporally associated with COVID-19 vaccination. Further

research into the dysregulated immune signature of COVID-19 vaccination-

associated autoimmunity including the cerebrospinal fluid (CSF) cells of central

nervous system (CNS) is warranted to clarify the pathogenic role of the myeloid

subset observed in our study.
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Introduction

The outbreak of severe acute respiratory syndrome called

coronavirus disease-2019 (COVID-19) was caused by a novel

coronavirus (SARS-CoV-2) infection (1). The SARS-CoV-2

infection has spread rapidly worldwide by high human-to-human

transmission, resulting in a public health emergency of

international concern. The ongoing COVID-19 pandemic has

been described as ‘an explosive pandemic of historic proportions’,

with over 200 million confirmed cases and over 5 million confirmed

deaths worldwide (2). Several mRNA vaccination applications have

prevented severe SARS-CoV-2 disease outcomes (3). Accumulating

evidence demonstrates that mRNA vaccination is highly effective in

eliciting the production of antibodies against SARS-CoV-2 (3–5).

Despite the well-acknowledged efficacy of mRNA vaccination of

SARS-CoV-2, the precise alteration of immune responses elicited by

mRNA vaccination remains to be clarified. Although several studies

suggest the safety of mRNA vaccination for patients suffering from

autoimmune neurological diseases (6, 7), reports showing the rare

occurrence of autoimmune diseases affecting peripheral or central

nervous system is accumulating (8–10). The frequency of

encephalitis after COVID-19 mRNA vaccination is estimated to

be 2 in 10 million (11). Thus, it is crucial to clarify the immune

dysregulation triggered and identify the cellular population

contributing to the development of COVID-19 vaccination

associated-autoimmunity. Improvements in DNA library

preparation technology for sequencing have enabled RNA

sequencing to comprehensively analyze gene expression levels at

the single-cell level (12). Single cell RNA-sequencing (scRNA-seq)

provides information on both the proportion of each specific

cellular subset, and the gene signature of the cells (13). Here, we

describe a case where augmentation of autoimmune encephalitis

was observed after COVID-19 vaccination using scRNA-seq of

peripheral blood mononuclear cells (PBMCs), and further

demonstrate distinct myeloid cell population identified in PBMCs

at the acute phase of the disease.
Materials and methods

Subjects and PBMC preparation

PBMCs were chronologically collected from the patient at the

onset of encephalitis (day 0), two days after the onset of the disease

(day 3), and at the remission of the disease (day 17). Written

informed consent was obtained from the participant prior to the

participation in the study. The protocol was reviewed and approved

by the Ethics Committee of Osaka University and in accordance

with the tenets set forth in the Declaration of Helsinki.
Isolation of PBMCs

PBMCs were isolated using Histopaque 1077 (Sigma) by

centrifugation at 800g for 15 min at room temperature. PBMCs at

the interface were collected, rinsed twice with phosphate buffered
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saline (PBS) and 2% bovine serum albumin (BSA), and cryopreserved

in fetal bovine serum with 10% dimethyl sulfoxide. All samples were

processed within 4 hours of collection. The preserved PBMCs were

thawed immediately at 37°C, transferred to a 50-ml tube, and ten

volumes of prewarmed PBS was added slowly and dropwisely,

followed by centrifugation at 500g for 5 min. The pellet was

resuspended in 1 ml of PBS with 2% BSA, and the viability of each

sample was assessed by counting using trypan blue and a Countess II

FL Automated Cell Counter (Thermo Fisher Scientific).
TotalSeq-C hashtag antibody staining,
single cell library preparation
and sequencing

The PBMCs from each donor were stained with Human

TruStain FcX Fc Blocking Reagent (BioLegend, 422302) for

10 min at 4°C. Subsequently, the cells were then stained with a

TotalSeq-C hashtag (BioLegend) for 30 min at 4°C. The cells were

then washed twice using centrifugation at 500g for 5 min at 4°C

with PBS supplemented with 2% (vol/vol) BSA. Each sample’s cell

number and viability were determined using trypan blue and a

Countess II FL Automated Cell Counter, then pooled together in

equal numbers. The cells were counted again and processed

immediately for a 10x 5’ single-cell system followed by

Chromium Next GEM Single Cell V(D)J Reagent Kit v2 with

Feature Barcoding technology for Cell-Surface Protein-Rev D

protocol. Gene expression and feature barcode libraries were

prepared according to the manufacturer’s protocol (10x

Genomics). All libraries were sequenced using the DNBSEQ-

G400 (MGI) to achieve a minimum of 20,000 paired-end reads

per cell for gene expression and 5,000 paired-end reads per cell for

cell-surface protein.
Bioinformatics analysis

Sequencing data obtained from MGISEQ-G400 were aligned to

the GRCh38 genome using Cell Ranger (v.6.1.0). We have also

obtained the public data from Wang et al. (2022) (reference

number: OMIX001295) as healthy subjects, which samples were

analyzed immediately after the second dose of mRNA-1273

vaccination (14). Filtered matrices were loaded into the R package

Seurat (v.4.0) (15) and conducted data filtering, normalization,

scaling, dimensional reduction, clustering, and visualization were

conducted using Seurat. After clustering, cell types were

automatically determined by using ScType (16). The gene

expression information of surface proteins is shown in

Supplementary Table 1. Differential gene expression (DE) analysis

was conducted by FindMarker script implemented in Seurat. The

results of DE analysis were used in volcano plot and Gene Ontology

(GO) enrichment analysis. The figure of the volcano plot was

plotted by hand-made scripts, and GO enrichment analysis was

conducted by using the compareCluster function in the R package

clusterProfiler (17). Genes differentially expressed were identified as

p_val_adj < 0.1 and |Log2 FC| > 1.
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Data availability

Data that support the findings of this study are available from

the corresponding author upon reasonable request. Data for all

scRNA-seq will be available through GEO at accession number

GSE205606 and GSE205607.
Results

Case presentation

A 25-year-old Asian woman had been experiencing swelling

and pain in her right toe interphalangeal joint and finger proximal

interphalangeal joint. She was diagnosed with rheumatoid arthritis

and commenced treatment with methotrexate after a positive blood

test for rheumatoid factor and joint echo results. Subsequently, she

developed a generalized convulsive seizure and was transferred to

her previous physician. MRI T2-weighted head images showed

high-signal areas just below the cerebral cortex in the right

frontal and parietal lobes, and both symptoms and imaging

findings improved with antiepileptic drugs and oral steroids.

Accordingly, the patient was discharged with a diagnosis of

autoimmune encephalitis associated with the extra-articular

manifestation of rheumatoid arthritis. Four months later, the

seizures recurred again, and the patient was transferred to our

hospital for specialist care with increased doses of oral steroids and

antiepileptic drugs. At the time of transfer, there were no obvious

neurological abnormalities, and CSF examination was normal. The

patient was scheduled for discharge from the hospital after a gradual

reduction of steroids. However, when the second dose of COVID-

19 vaccination (mRNA-1273) was administered in the same month,

the patient developed fever during the night on the same day and

generalized tonic-clonic seizures in the early morning of the next

day (day 0). MRI images of the head revealed a high-signal area in

the subcortical white matter in the fluid-attenuated inversion

recovery scan (Figure 1A), and CSF examination showed an

elevated cell count of 32 cells/mL (Figure 1B). The patient was

ventilated for seizures and treated with diazepam, fosphenytoin,

midazolam, and propofol. Three days later (day 3), the patient was

extubated and treated with steroid pulse therapy, and tacrolimus

was introduced in addition to oral steroids to prevent further

relapses of encephalitis. No residual neurological symptoms were

observed, and the patient was discharged from the hospital. On day

17 spinal fluid findings were normalized, and the lesion had

markedly resolved on head MRI imaging (Figures 1A, B).
Distinct myeloid cell population can be
observed in the acute phase of encephalitis

We generated single-cell transcriptome data of PBMCs

obtained from the patient at day 0, day 3 and day 17 (Figure 2A).

We obtained 16,295 cells in total from the 3 conditions after doublet

removal. Figure 2B shows the landscape of each immune subset
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after analyzing the combined scRNA-seq results of the 3 samples.

When scRNA-seq results of each sample were analyzed respectively,

PBMCs obtained at day 0 and day 3 of the patient revealed the

appearance of a distinct cellular population compared to those of

day 17 in the cluster island annotated as classical monocytes

(Figure 2C). There were no other distinct cellular subsets or

clonal predominance observed in the acute phase of the disease

(Supplementary Tables 2, 3).
Immunological pathways specific to the
distinct myeloid cell population at the
acute phase of encephalitis

To clarify whether the distinctive classical monocytes observed

at the acute phase of the disease in our patient was not the immune

alteration shared with healthy subjects receiving vaccination,

PBMCs obtained at day 0 were compared with the healthy

controls receiving COVID-19 vaccination from public database.

Both samples were obtained one day after the mRNA-1273 vaccine.

Figure 3 shows the distinct monocyte clusters between day 0 of the

patient and the healthy controls. Differential expression gene (DEG)

analysis was further performed among the classical monocytes

between day 0 of the patient and the healthy controls. DEGs were

defined by the threshold as p_val_adj < 0.1 and |Log2Fold| > 1. The

most highly up-regulated genes of the classical monocytes of day 0

were G0S2 (G0/G1 Switch 2), TIMP1 (TIMP Metallopeptidase

Inhibitor 1), ASPH (Aspartate Beta-Hydroxylase), and HMOX1

(Heme Oxygenase 1), whereas the most prominently down-

regulated genes were FOS (Fos Proto-Oncogene), DUSP1 (Dual

Specificity Phosphatase 1), RHOB (Ras Homolog Family Member

B), and MNDA (Myeloid Cell Nuclear Differentiation Antigen)

(Supplementary Table 4).

To further elucidate the molecular pathway representing the

overall gene signature characteristic to the distinct monocyte cluster

observed at the acute phase of day 0, Kyoto Encyclopedia of Genes

and Genomes Enrichment analysis (KEGG) Enrichment analysis

was performed. As shown in Figure 4A, the pathway term

“Rheumatoid arthritis” represented the up-regulated gene

signature of the monocyte cluster observed at day 0. No pathway

terms were enriched for genes down-regulated in the

monocyte cluster.

The DEGs which contributed to the pathway term “Rheumatoid

arthritis” were CXCL8 (C-X-C Motif Chemokine Ligand 8), CTSL

(Cathepsin L), CXCL2 (C-X-C Motif Chemokine Ligand 2), and

CCL2 (C-C Motif Chemokine Ligand 2) (Figure 4B).
Discussion

In the COVID-19 pandemic era, clinical trials have revealed

that mRNA vaccines, a novel vaccine modality, prevent COVID-19

infection at a high rate and reduce the risk of severe disease (3).

Adverse reactions are not severe in the majority of vaccine

recipients; however, rare adverse reactions of autoimmune

neurological diseases have been reported (8–10).
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Typical COVID-19 vaccination-related autoimmune

neurological diseases reported include cranial nerve palsies (18),

Guillain-Barré syndrome (9, 19), myelitis (20), and encephalitis

(10), but the details of the altered immune responses that contribute

to their pathogenesis remain unresolved.

Our patient is a rare case of rheumatoid encephalitis with acute

exacerbation, which was observed after the vaccine booster

immunization. It remains elusive whether the specific classical
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monocyte population identified in our case is observed in COVID-19

vaccination-related CNS diseases in general, or is rather reflecting

enhanced dysregulated immunity of each specific disease.

Accumulating evidence is warranted to clarify the potential role of the

specific classical monocyte population to utilize as the surrogate marker

of immune flare in COVID-19 vaccination-related CNS diseases.

Recent reports of detailed single-cell analysis after mRNA

vaccine administration have revealed that vaccination induces
A

B

FIGURE 1

MRI images and clinical course. (A.a) FLAIR image of the brain obtained 2 days before the vaccination. (A.b) FLAIR image of the brain on day 0 show
extensive development of high intensity lesions predominantly at the white matter. (A.c) FLAIR image of the brain on day 24 reveals the amelioration
of high intensity lesions observed at the acute phase of the disease. (B) The closed squares and open circles represent CSF cell count and protein
concentration of each timepoint respectively.
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A B

C

FIGURE 2

Single-cell RNA-seq analysis of PBMCs obtained at day 0, day 3, and day 17 from the patient. (A) Experimental design of the study. Figure was
created using BioRender.com. (B) UMAP projection of all PBMCs with major subsets annotated. (C) UMAP projection of all PBMCs split by samples.
FIGURE 3

Single-cell RNA-seq analysis of classical monocyte cell population. UMAP visualization of classical monocytes colored by sample conditions. “Day 0”
depicts the samples obtained from the patient on day 0. “Healthy” depicts the samples obtained from the public healthy control data OMIX001295.
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specific acquired immune activation, including antigen-specific

CD4-positive T cells and CD8-positive T cells, while booster

vaccination induces notably enhanced innate immune responses

(21). The enhanced responses of CD4- and CD8-positive T cells

after the booster vaccination is also demonstrated in another study

(22), while memory B cells are also demonstrated to be primed by

mRNA vaccine (23). Furthermore, immunosuppressant medication

is shown to inhibit the efficacious germinal center responses elicited

by mRNA vaccine (24).

The specific classical monocyte population we identified in this

study is characterized by high expression of CXCL8, CTSL, CXCL2,

and CCL2, all of which are molecules associated with rheumatic

disease activity, and we hypothesized that the COVID-19 vaccination

may have been the trigger for the rheumatic activity in our patients.

CXCL8 is known to be elevated in PBMCs of patients with active

rheumatoid arthritis (25). The cathepsins including CTSL is known

to be expressed at high levels in the joints of rheumatoid arthritis (26).
Frontiers in Immunology 06
It is also reported that CXCL2 is significantly elevated in the serum of

rheumatoid arthritis compared to healthy controls (27). In addition,

CCL2 has been reported to be elevated in the serum of rheumatoid

patients compared to healthy controls (28).

Large clinical studies of rheumatoid arthritis have reported that

COVID-19 vaccine does not clearly increase the risk of recurrence

(29), but there are rare reports of increased disease activity and

recurrence (30). Rheumatoid arthritis is mainly characterized by

joint symptoms, but can be complicated by various central nervous

system symptoms, including meningitis and encephalitis (31).

It remains to be clarified whether the specific classical monocyte

population we identified in this study directly contributes to the

development of encephalitis by infiltrating the brain or by

enhancing systemic production of inflammatory cytokines,

leading to brain lesions. In this regard, further analysis of CSF

cells, which was not feasible in our study due to insufficient number

of cells collected, will provide more convincing evidence to show the
A

B

FIGURE 4

KEGG pathway and DEG analysis of classical monocytes. (A) Bar plot of KEGG pathway enriched in significantly (p_val_adj < 0.1 and |avg_log2FC| >
1) up-regulated genes among classical monocytes at day 0 and day 3 of the patient. (B) Violin plot of the genes related to KEGG pathway term
“Rheumatoid arthritis” in (A). “Day 0” depicts the samples obtained from the patient on day 0. “Healthy” depicts the samples obtained from the public
healthy control data OMIX001295.
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pathogenic immune subsets responsible for encephalitis

development after COVID-19 vaccination.

Another limitation of this study is that the patients were under

treatment with various types of medication at the time of sample

collection. In this regard, we cannot exclude the possibility that

these multi-factorial effects altered the gene expression pattern of

our scRNA-seq results of the patient.

Considering the autoimmune background of rheumatoid

arthritis in our patient, it is also interesting to elucidate whether

COVID-19 vaccination can activate the immune signature

underlying the pathogenesis characteristic of each disease related

to autoimmunity in the future studies.
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