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Background: Ovarian cancer (OC) has the highest mortality rate among
gynecological malignancies. Current treatment options are limited and
ineffective, prompting the discovery of reliable biomarkers. Exosome IncRNAs,
carrying genetic information, are promising new markers. Previous studies only
focused on exosome-related genes and employed the Lasso algorithm to
construct prediction models, which are not robust.

Methods: 420 OC patients from the TCGA datasets were divided into training and
validation datasets. The GSE102037 dataset was used for external validation.
LncRNAs associated with exosome-related genes were selected using Pearson
analysis. Univariate COX regression analysis was used to filter prognosis-related
INncRNAs. The overlapping IncRNAs were identified as candidate IncRNAs for
machine learning. Based on 10 machine learning algorithms and 117 algorithm
combinations, the optimal predictor combinations were selected according to
the C index. The exosome-related LncRNA Signature (ERLS) model was
constructed using multivariate COX regression. Based on the median risk score
of the training datasets, the patients were divided into high- and low-risk groups.
Kaplan-Meier survival analysis, the time-dependent ROC, immune cell
infiltration, immunotherapy response, and immune checkpoints were analyzed.

Results: 64 IncRNAs were subjected to a machine-learning process. Based on
the stepCox (forward) combined Ridge algorithm, 20 IncRNA were selected to
construct the ERLS model. Kaplan-Meier survival analysis showed that the high-
risk group had a lower survival rate. The area under the curve (AUC) in predicting
OS at 1, 3, and 5 years were 0.758, 0.816, and 0.827 in the entire TCGA cohort.
xCell and ssGSEA analysis showed that the low-risk group had higher immune
cell infiltration, which may contribute to the activation of cytolytic activity,
infammation promotion, and T-cell co-stimulation pathways. The low-risk
group had higher expression levels of PDL1, CTLA4, and higher TMB. The ERLS
model can predict response to anti-PD1 and anti-CTLA4 therapy. Patients with
low expression of PDL1 or high expression of CTLA4 and low ERLS exhibited
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significantly better survival prospects, whereas patients with high ERLS and low
levels of PDL1 or CTLA4 exhibited the poorest outcomes.

Conclusion: Our study constructed an ERLS model that can predict prognostic
risk and immunotherapy response, optimizing clinical management for

OC patients.

KEYWORDS

exosome-related IncRNA, ovarian cancer, machine learning, prognosis model,
immunotherapy response

Introduction

Global Cancer Statistics reports that ovarian cancer (OC)
caused the death of 207,252 individuals worldwide in 2020 (1).
OC has the highest mortality rate among gynecological
malignancies (2). Aggressive first-line treatment with surgery and
adjuvant chemotherapy is the main treatment for advanced OC, but
within 2-3 years after diagnosis, 70% of patients with advanced-
stage OC still have a relapse (3, 4). The introduction of anti-VEGF
and PARP inhibitors as treatment modalities has significantly
increased the duration of progression-free survival (PFS) for
recurrent OC patients, although progression remains unavoidable
in most cases of OC patients. In the last decade, accumulating
studies have revealed that immune checkpoint inhibitors (ICIs)
have revolutionized the treatment of multiple cancers. However, the
effect of immunotherapy on the clinical treatment of OC is not
satisfactory (5-7), only 8 to 9.6% of OC patients benefit from ICI
therapy (8), especially in patients with PD-1, PD-L1, or CTLA4
negative patients. The limited benefit of immunotherapy has led
researchers to develop new biomarkers to predict the efficacy of OC
immunotherapy to improve prognosis.

The tumor immune microenvironment (TIME) is considered a
critical factor in the efficacy of immune therapy against cancer (9).
The TIME refers to the immune infiltrating microenvironment,
which consists of a large number of immune cells gathered in and
around the tumor (10). Immune cells in the TIME, including T
cells, B cells, natural killer cells, macrophages, etc., participate in
immune surveillance and anti-tumor responses through various
mechanisms such as releasing cytotoxic molecules, producing
cytokines, and regulating immune responses. Nevertheless, tumor
cells can escape immune cell attack by activating immune
checkpoints. Immune checkpoints include PD-L1, CTLA-4, and
others. Tumor cells release exosomes that serve as mediators for
immune escape and influence the efficacy of immune therapy
(11-13).

Exosomes, small membrane vesicles ranging in size from 30 to
150 nm, are produced by various cells. They play a crucial role in
mediating intercellular communication and transporting cargo
molecules, including proteins, DNA, RNA, microRNA, and
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IncRNA. This has garnered significant interest among researchers
(14). A substantial quantity of exosomes can be found in the blood
and ascites of OC patients. These exosomes have been associated
with OC progression and its treatment, spanning various aspects
(15-20) including immunotherapy (21, 22), angiogenesis (14, 23),
chemotherapy resistance (24, 25), and tumor metastasis (26, 27).
They hold promise as potential diagnostic and prognostic
biomarkers. Long non-coding RNA (IncRNA) is characterized as
non-coding RNA with a length exceeding 200 nucleotides,
constituting approximately 3% of the total RNA content within
exosomes (28). Furthermore, increasing evidence suggests that
epigenetic regulation of IncRNA plays a significant role in
reprogramming the phenotype of immune cells in TIME,
particularly in OC. For example, SNHG12 enhances immune
escape by promoting the IL-6/miR-21 crosstalk between OC cells
and M2 macrophages, leading to increased expression of PD-L1
(29). LncRNA PVT1 combined with PD-1 inhibitors can inhibit the
progression of OC in treatment (30). Accumulating evidence
suggests that epigenetic regulation of exosome-derived IncRNA
plays an important role in OC by reprogramming the phenotype
of immune cells in TIME (31). However, previous studies only
evaluated the prognosis of OC based on exosome-related genes
prediction models (32) and did not integrate the necessary
information about exosome IncRNA. Previous studies have
demonstrated the effectiveness of exosome-related IncRNA
prognostic models in breast cancer (33), esophageal squamous
cell carcinoma (34), and hepatocellular carcinoma (35, 36).
However, their applicability in OC remains uncertain. At present,
machine learning is widely used in constructing predictive models
for tumor prognosis, treatment, and diagnosis (37-40). However,
the prediction model of exosome-related genes is based only on the
Lasso algorithm (32), which is not robust.

In our paper, taking into account the complex role of exosomes,
we aimed to integrate and develop the exosome-related IncRNA
signature (ERLS) to improve outcomes for OC patients. Specifically,
we construct a more robust ERLS model by using 10 machine
learning algorithms and their 117 combinations, which were trained
based on the 10-fold cross-validation framework. Subsequently, OC
patients were divided into high- and low-risk groups based on their
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ERLS risk scores, and the characteristics of immune cell infiltration,
immunotherapy response, and immune checkpoint were also
identified. This work may help optimize immune therapy and
further improve clinical outcomes in patients with OC.

Materials and methods
Data downing and processing

RNA sequencing expression data for tumor tissues from 420
patients with OC and their corresponding clinical information,
were obtained from The Cancer Genome Atlas (TCGA). (https://
portal.gdc.cancer.gov/projects/TCGA-OV). The RNA seq
transcripts per kilobase million (TPM) including the expression
of 16901 IncRNA and 19962 protein-coding genes were downed
and further log-2 transformed. However, complete clinical data
(including age, stage, grade, and tumor_residual) were available for
369 patients (Table 1). Due to missing values in the clinical
information, 51 patients were excluded from the time-dependent
ROC analysis. For other analyses, we used the RNA sequencing
expression data of 420 patients. The GSE102073 dataset was
downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/) as an
external validation of the accuracy of the ERLS model. In addition,
121 exosome-related genes were obtained from the ExoBCD
database (https://exobcd.liumwei.org/), which were summarized
in Supplementary Data 1. The expression data of IncRNA in
normal ovarian tissue were obtained from the GTEx database

TABLE 1 Summary of clinical information for patients with OC.

validation
datasets (n=106)

Train
datasets (n=263)

Age(year) 59.80 + 11.55 59.65 + 11.31
Stage
I 0 0
I 14 5
11 208 85
v 41 16
Grade
1 0 0
2 26 16
3 236 90
4 1 0
Tumor_residual
No
macroscopic disease 9 26
1-10 mm 142 52
11-20 mm 19 7
>20 mm 53 21
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(https://www.gtexportal.org/home/downloads/adult-
gtex#bulk_tissue_expression).

Screening of candidate exosome-
related IncRNAs

The rcorr function in the Hmisc package of R calculated the
Pearson correlation coefficients to determine the correlation
between exosome-related genes expression and the corresponding
IncRNAs. Subsequently, exosome-related IncRNAs were selected
according to the criteria of p< 0.05 and |Cor|> 0.4. Meanwhile, the
survfit function in the survival package of R was used to perform a
univariate Cox regression to identify prognostic IncRNAs with a
significant p threshold of 0.05. Finally, IncRNAs that overlap with
exosome-related IncRNAs and prognostic IncRNAs were selected as
candidate IncRNAs for the machine learning process.

Identification of exosome-related IncCRNA
signature (ERLS) based on
machine learning

The 420 OC patients from the TCGA cohort were divided in a
7:3 ratio into training and validation datasets using the
createDataPartition function in the caret package. To identify
potential biomarkers for OC, candidate IncRNAs were further
screened using 10 machine learning algorithms and 117 algorithm
combinations. In the training datasets, 10 machine learning
algorithms and 117 algorithm combinations were employed to
identify the optimal algorithm combinations based on a 10-fold
cross-validation, which was verified in the verification data set. The
selection of the best algorithm combinations was based on Harrell’s
consistency index (C index) in the validation datasets. 10 machine
learning algorithms include Random Survival Forest (RSF), Lasso,
Elastic Net (Enet), Ridge, Generalized Boosted Regression (GBM),
Stepwise Cox, CoxBoost, Cox Partial Least Squares Regression
(plsRcox), Supervised Principal Components (SuperPC), and
survival support vector machine (survival-SVM). Subsequently,
the selection of important variables based on the optimal
algorithm combinations was achieved using the stepAIC function
in the MASS package. The Akaike Information Criterion (AIC) is
used to compare models, which takes into account the statistical fit
of the models and the number of variables used for the fit. The
regression model with a small AIC value should be selected first,
which shows that the model has obtained a sufficient fitting degree
with few parameters. See the Methods Supplement for more details.
Finally, we constructed the ERLS model using a multivariate COX
regression, and the risk score was constructed with the following
formula: Risk score = 37", (coefi » Expi), Expi indicated the
expression level for each exosome-related IncRNA, and Coei
indicated the corresponding Cox regression coefficient.

Afterward, we proceeded to validate the prognostic value of the
ERLS model across multiple datasets, including the validation datasets,
the entire TCGA cohort, and the GSE102073 dataset. Initially, patients
were divided into high- and low-risk groups based on the median risk
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score of the training datasets. This same risk stratification was applied
to the validation datasets, the entire TCGA cohort, and the GSE102073
dataset. Subsequently, survival analysis and time-dependent ROC
curves were conducted to evaluate the predictive accuracy of the
ERLS model in these datasets. Additionally, univariate and
multivariate COX regression analyses were performed to assess the
prognostic impact of the ERLS compared to other clinical factors in
OC patients.

Evaluating the immune cell infiltration in
OC patients

Infiltration levels of 28 types of immune cells were calculated
using the R package ssGSEA (33, 34). The set of genes for the 28
immune cell markers was downloaded from the TISIDB database
(http://cis.hku.hk/TISIDB/) (41). Additionally, we also used the R
package xCell to analyze and evaluate the infiltration ratios of 64 cell
types in the high-risk and low-risk groups. The xCell R package,
which is based on the ssGSEA method, can perform an immune
infiltration analysis based on the gene expression data for 64 immune
and stromal cells (42). Finally, we used the limma package to analyze
differential gene expression between the high-risk and low-risk
groups. Subsequently, the GSEA package performed an enrichment
analysis of differential immune genes to investigate the difference in
the immune function in the high-risk and low-risk groups. The R
package “clusterProfiler” was used to conduct Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG) on the different
genes in the high-risk and low-risk groups.

Predicting immunotherapy response based
on the ERLS model

The ERLS model can identify different survival risks and immune
microenvironmental characteristics in OC patients. Next, we focused
on the ability of the ERLS model to discriminate response to
immunotherapy. We evaluated immunotherapy response based on
The Tumor Immune Dysfunction and Exclusion (TIDE) (http://
tide.dfci.harvard.edu/), The Cancer Immunome Atlas (TCIA)
(https://tcia.at/home), Tumor Mutation Burden (TMB), and the
expression of immune checkpoint in high-risk and low-risk groups.
The TIDE Tool was used to assess the potential for tumor immune
escape of tumor samples with gene expression profiles and predict
response rate to immune checkpoint blockade (ICB) (43). The
effectiveness of immunotherapy was lower with higher TIDE scores.
The immunophenoscore (IPS) was obtained from the TCIA database
to evaluate the benefit of anti-PD1 and anti-CTLA4 immunotherapy
(44). The higher the IPS score, the more sensitive the response to
immunotherapy. TMB is an indicator for evaluating the frequency of
gene mutations. The more tumor gene mutations, the higher the
number of antigens on the cell surface, and the greater the benefit of
immunotherapy. The expression of immune checkpoints including
PD1, PDLI, and CTLA4, was significantly correlated with the efficacy
of immunotherapy. Therefore, we focused on differences in the
expression of immune checkpoints in the two groups.
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Exosome isolation and real-time
quantitative PCR

We used the limma package to compare the expression of
IncRNA in normal ovarian tissue and OC tissue. We found that the
expression of IncRNAs showed differential patterns (Supplementary
Figure 1). Next, we detected the expression of some IncRNAs in
exosomes from SKOV3 cells, IOSE80 cells, and OVCARS cells.
SKOV3 cells, IOSES0 cells, and OVCARS cells were obtained from
Procell Life Science & Technology Co. Ltd. (Wuhan, China). Firstly,
SKOV3 cells were cultured in McCoy’s 5A medium with 10% fetal
bovine serum (FBS, Gibco, 10099141) and 1% penicillin-
streptomycin (Gibco, 10378016) at 37 °c and 5% CO2. IOSE80
cells and OVCARS cells were cultured in RPMI-1640 medium with
10% FBS and 1% penicillin-streptomycin at 37 °c and 5% CO2.
Secondly, when cell fusion reached 70%-80%, washing with
phosphate-buffered saline (PBS) 3 times, they were cultured in
the basic medium. After 48 h culture, the conditioned media were
collected. Exosomes were extracted from the conditioned media of
SKOV3 cells, IOSE80 cells, and OVCARS8 cells using
ultracentrifugation. We used three methods to identify exosomes,
including the transmission electron microscope (TEM), the
nanoparticle tracking analysis (NTA), and Western blot (WB).
Subsequently, we performed real-time quantitative PCR detection
of IncRNA in exosomes. We isolated RNA using TRIZOL
(Invitrogen, 10296028). RNA was reversed to cDNA using
SuperScriptTM III First-Strand Synthesis SuperMix for qRT-PCR
(Invitrogen, 11752050). Then, according to the manufacturer’s
instructions, we performed RT-qPCR using SYBR™ Select mix
(ABI-invitrogen, 4472920). The AC134312.1 primers used were
TCTTCACCCATGTCCTGTGC (forward primer) and CAGGGG
TCCTTCTGTTCGTC (reverse primer). The PCOLCE.ASI primers
used were TTGGCCACTGTGACCTGTTC (forward primer) and
CTGAGCTAGAACCCAGGAGC (reverse primer). The
LEMDI1.AS1 primers used were CCACTGGTAACTTGCCGTCT
(forward primer) and AAATGCCCTTCTCCTGTCGG (reverse
primer). The LINC00892 primers used were GGATGTTCTTTG
CTGGGCTG (forward primer) and ATCAAGCTGCCTC
TCGGAAG (reverse primer). The AC010834.3 primers used were
GCCTGTTCACACATTGCTGG (forward primer) and CCTTGG
GCTCACCCATGATT (reverse primer). The AL138820.1 primers
used were GTTATTGGGCTTGCTGCTGG (forward primer) and
TTCAGGGAAGAGGTGCCATC (reverse primer). The relative
expression levels were calculated using the 2-AACt method. The
RT-PCR and WB experiments were independently repeated three
times, with three replicate wells for each independent repetition.

Data analysis

Data processing and statistical analysis were performed with R
software (version 4.2.2) (https://cran.r-project.org/). Pearson
correlation coefficients were calculated using the Hmisc package.
Kaplan-Meier (KM) survival analysis, univariate and multivariate
Cox regression analyses were performed using the survival package.
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Machine learning was carried out using the glmnet,
randomForestSRC, CoxBoost, plsRcox, superpc, gbm, survivalsvm,
and MASS packages. The time-dependent ROC curves were
generated using the timeROC package. Violin plots were generated
using the VioPlot package. Immune cell infiltration analysis was
carried out with the ssGSEA and xCell package. Differential gene
expression analysis was performed using the limma package. The
GSEA package conducted an enrichment analysis of differential gene
expression. The “clusterProfiler” package was utilized for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses. PCR results were drawn using GraphPad Prism.
*P< 0.05, **P< 0.01, **P< 0.001, ***P< 0.0001.

Results

Workflow

As shown in Figure 1, we constructed the ERLS model
according to the following process.

121 exosome-related genes
from ExoBCD databases
and TCGA-OV(n=420)

Pearson correlation analysis

2712 exosome-related
IncRNAs

\

10.3389/fimmu.2024.1228235

Screening of candidate exosome-
related IncRNAs

According to the setting |Cor|>0.4 and P<0.05, a total of 2712
exosome-related IncRNAs were found (Figure 2A), and the specific
correspondences between IncRNAs and mRNAs were shown in
Supplementary Data 2. In addition, the 840 IncRNAs were
identified as having significant prognostic values with univariate
COX regression analysis (Figure 2B), the detailed information on
IncRNAs was illustrated in Supplementary Data 3. Finally, a set of
64 IncRNAs was subjected to a subsequent machine learning
process to construct an exosome-related IncRNA signature
(ERLS) (Figure 2C).

Establishment of exosome-related IncRNA
signature (ERLS) based on
machine learning

To establish an exosome-related IncRNA signature (ERLS)
based on machine learning, the RNA sequencing expression data

TCGA-OV(n=420)

Univariate Cox regression analyses

840 prognostic IncRNAs

)

|

64 candidate exosome-related IncRNAs

10 machine learning algorithms and
117 algorithms combinations

TCGA-training datasets (n=296)

36 IncRNAs were identified based on the
stepCOX (forward) combined with the Ridge

Multivariate Cox regression

20 exosome-related IncRNAs

Kaplan-Meier survival analysis N

ERLS model

TCGA-validation datasets (n=124)

Univariate COX and Multivariate
COX regression analysis

TCGA-all datasets (n=420)

The time-dependent ROC analysis

ERLS model evaluation and validation

Comparison with other models

GSE102073 datasets (n=84)

Immune Cell Infiltration
(The ssGSEA package analyzes 28
immune cell gene makers from the
TISIDB database. The xCell
package analyzes 64 immune cells.)

function.

Immune function
(The GSEA package performs an
enrichment analysis of the immune
The
package performs GO, KEGG.)

Immunotherapy Response
(TIDE, TCIA, TMB, and the
expression of immune checkpoints
used to evaluate

clusterProfiler were

immunotherapy response.)

FIGURE 1
Workflow for constructing the ERLS model.
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64 candidate exosome-related INncRNAs. (A) A total of 2712 exosome-related INcCRNAs (|Cor|>0.4 and P<0.05). (B) 30 randomly selected IncRNAs
were visualized in 840 IncRNAs. (C) 64 IncRNAs were incorporated into subsequent machine learning.

of 420 patients with OC were randomly divided into training
datasets and validation datasets according to the 7:3 ratio. The
training datasets included 296 patients, and the validation datasets
included 124 patients. In the training datasets, we integrated 10
machine learning algorithms and 117 algorithm combinations
based on the 10-fold cross-validation framework to select
important IncRNA and calculate the C-index of each model in
the validation datasets. The stepCox (forward) algorithm combined
with the Ridge algorithm showed the highest C-index (0.7192),
which was determined as the optimal model (Figure 3A), see
Supplementary Data 4 for details. With the stepCOX (forward)
combined with Ridge algorithm analysis, based on the smallest AIC
area, we identified 36 important IncRNAs (Figure 3B). We used
multivariate Cox regression analysis to select 20 exosome-related
IncRNAs that were independently associated with overall survival
(OS) (Figure 3C; Table 2). These 20 IncRNAs were used to develop
an ERLS model that evaluated the prognostic risk of OC patients.
The ERLS model was constructed using the following formula:
(-0.5161*the expression of TYMSOS)+(1.1441*the expression of
AC134312.1)+(-0.9014*the expression of PCOLCE.AS1)
+(-0.456*the expression of LEMD1.AS1)+(-1.1728*the expression
of LINC00892)+(-1.1375*the expression of LINC00702)
+(-0.6047*the expression of TRBV11.2)+(1.0543*the expression of
LINCO02362)+(-2.1089*the expression of AC106801.1)+(1.0632*the
expression of AC010834.3)+(-0.5132*the expression of WAC.AS1)
+(0.9141*the expression of AL391832.3)+(-0.9446*the expression
of AL133467.1)+(1.6647*the expression of AC073389.2)
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+(1.9116*the expression of AL138820.1)+(2.5106*the expression
of BX324167.2)+(-0.6528*the expression of AL390719.3)
+(-1.8016*the expression of AC009244.1)+(-0.7968*the expression
of AL138824.1)+(0.5713*the expression of AC007877.1).

Next, a risk score was calculated using the predict function
within R software in the training datasets. Patients were divided into
high- and low-risk groups based on the median risk scores in the
training datasets. The threshold was then extended to the validation
datasets. Subsequently, Kaplan-Meier survival analysis was
employed to evaluate the differences in OS between the high-risk
and low-risk groups, with the results indicating a significant
reduction in OS for patients in the high-risk group (Figures 3D-
F). The figures of the risk score curve and the survival state heat
map for the training and validation datasets were shown in
Figures 3G-I. Furthermore, we performed a univariate COX
regression analysis on the risk score, stage, grade, age, and
tumor_residual. Finally, the risk score, age, stage, age, and
tumor_residual were selected for multivariate Cox regression
analysis, which revealed that the risk score and stage were
independent prognostic factors for OC (Figures 3], K).

The area under the curve (AUC) of the time-dependent ROC
analysis for 1-year, 3-year, and 5-year was 0.758, 0.816, and 0.827 for
patients in the entire TCGA cohort, respectively, indicating that the
ERLS model has a certain accuracy in predicting OS in OC patients
(Figures 4A-C). We incorporated the clinical characteristics of age,
stage, age, tumor residual, and the ERLS into the time-dependent
ROC analysis and found that the AUC of the ERLS remained always
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FIGURE 3

An ERLS was identified based on 10 machine learning algorithms and its clinical prognostic value. (A) A total of 117 algorithm combinations based on
10-fold cross-validation, the C-index of each model was calculated in the validation datasets. (B) 36 IncRNAs and their coefficients were identified
based on the stepCOX (forward) combined with the Ridge algorithm. (C) Multivariate Cox regression analysis screened out 20 exosome-related
IncRNAs that were independently associated with OS. (D—F). Kaplan-Meier survival analysis in the training datasets, validation datasets, and the entire
TCGA cohort. (G-I) The risk score curve and the survival state heat map in the training datasets, validation datasets, and the entire TCGA cohort. (3)
Univariate COX regression analysis of clinical factors and the ERLS for OS. (K) Multivariate COX regression analysis of clinical factors and the ERLS

for OS.

larger than other clinical characteristics, which was 0.809, 0.651, and ~ AC073389.2, and AC009244.1) were covered in the ERLS. Based
0.758, respectively (Figures 4D-F). Furthermore, external validation = on the median risk score derived from the training datasets, the
was performed using the GSE102073 datasets, in which only 11  patients were divided into high- and low-risk groups. The ERLS
IncRNAs (PCOLCE-AS, TYMSOS, LEMDI1-AS1, LINC00892, showed a significant discriminatory ability in predicting the
LINC00702, LINC02362, AC010834.3, WAC-AS1, AL391832.3,  prognosis of the two groups (Figure 4G). The AUC of the time-
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TABLE 2 20 exosome-related IncRNA signature in the ERLS.

10.3389/fimmu.2024.1228235

coef HR 95%ClI P-value

TYMSOS -0.5161 0.5968 (0.41389,0.8607) 0.005721
AC134312.1 1.1441 3.1398 (1.48162,6.6536) 0.002827
PCOLCE.AS1 -0.9014 0.406 (0.16866,0.9773) 0.044301
LEMDI.AS1 -0.456 0.6338 (0.46622,0.8617) 0.003616
LINC00892 -1.1728 0.3095 (0.09693,0.9883) 0.047717
LINC00702 -1.1375 0.3206 (0.13159,0.7812) 0.012302
TRBV11.2 -0.6047 0.5463 (0.40245,0.7414) 0.000105
LINC02362 1.0543 2.8699 (1.24144,6.6344) 0.013671
AC106801.1 -2.1089 0.1214 (0.02922,0.5042) 0.003702
AC010834.3 1.0632 2.8958 (1.94921,4.3019) 1.4E-07
WAC.AS1 -0.5132 0.5986 (0.42082,0.8515) 0.004313
AL391832.3 0.9141 2.4946 (1.07567,5.7855) 0.033179
AL133467.1 -0.9446 0.3888 (0.16891,0.8951) 0.026388
AC073389.2 1.6647 52842 (2.10093,13.2907) 0.000404
AL138820.1 1.9116 6.7636 (1.63566,27.9681) 0.008307
BX324167.2 25106 12.3125 (2.91812,51.9504) 0.000631
AL390719.3 -0.6528 0.5206 (0.3306,0.8198) 0.00484
AC009244.1 -1.8016 0.165 (0.03143,0.8665) 0.033233
AL138824.1 -0.7968 0.4508 (0.21586,0.9414) 0.033954
AC007877.1 0.5713 1.7705 (1.13104,2.7716) 0.012471

HR hazard ratio, CI confidence interval.

dependent ROC values for 1-year, 3-year, and 5-year survival was
0.536, 0.548, and 0.722, respectively (Figure 4H).

We also compared the AUC values of the ERLS at 1-year, 3-year,
and 5-year in the entire TCGA cohort with 21 other previously
published prognostic features for OC patients (see Supplementary
Data 5). These 21 prognostic features are related to N6-
methyladenosine, cell apoptosis, autophagy, immunity, mitochondria,
and others. The results showed that the ERLS is competitive among
these models (Figure 4I).

Assessing the immune cell infiltration
based on the ERLS model

To better understand the characteristics of the immune
microenvironment between the high-risk group and the low-risk
group, the xCell and ssGSEA packages were employed to investigate
the proportion of immune cells. Using the xCell R package, we
found that the low-risk group demonstrated higher levels of aDC,
CD4 memory T cells, CD8 T cells, DC, M1 macrophages, mast cells,
pDC, skeletal muscle, and Th2 cells (Figure 5A). Subsequently, the
ssGSEA analysis further confirmed that the low-risk group was

Frontiers in Immunology

associated with higher infiltration of activated CD4 T cell, activated
CD8 T cell, effector memory CD8 T cell, immature B cell, gamma
delta T cell, natural killer cell, natural killer T cell, plasmacytoid
dendritic cell, Type 2 T helper cell, in addition to immature
dendritic cell (Figure 5B). The proportion of immune cells in
each OC patient is shown in Figure 5C. The observed differences
in immune cell infiltration between the high-risk and the low-risk
groups may be contributed to cytolytic activity, inflammation
promoting, and T-cell co-stimulation pathways (Figure 5D).

In order to understand the different immune functions of the
high-risk group and the low-risk group, we performed a Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis. GO results showed that different
expressed genes were mainly involved in the biological process
(BP) of positive regulation of cellular component biogenesis,
embryonic organ development, and axonogenesis. In cellular
components (CC), they were related to the cellular mitochondrial
matrix and cell-substrate junction, while molecular functions (MF)
mainly regulate GTPase regulator activity. The results of the KEGG
analysis showed that the different expressed genes were mainly
involved in the MAPK signaling pathway and the PI3K-Akt
signaling pathway (Figures 6A, B).
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FIGURE 4

The AUC and validation of the ERLS in OC patients. (A—C) The AUC of the ERLS in the training datasets, validation datasets, and the entire TCGA
cohort. (D—F) The AUC of the ERLS and clinical characteristics in the training datasets, validation datasets, and the entire TCGA cohort. (G) Kaplan-

Meier survival analysis in the GSE102073 dataset (log-rank test: P=0.0014)
AUC on the ERLS with other models in the entire TCGA cohort.

The immunotherapy response on
different groups

Differences in immune cell infiltration can lead to differences in
response to immunotherapy. Therefore, we explored the value of
the ERLS in immunotherapy. A significant difference in the
Exclusion score was found between the high-risk and low-risk
groups, but not in the TIDE score, the dysfunction score, and the
MSI score. Notably, a trend toward higher TIDE scores and lower
MSI scores was observed in the high-risk group compared to the
low-risk group (Figure 7A). In addition, we observed an inverse
association between tumor mutational burden (TMB) and the ERLS
risk score, which may suggest that the high-risk group has less
benefit from immunotherapy (Figure 7B). The potential of the ERLS
model to respond to anti-PD1 and anti-CTLA4 immunotherapy
was further assessed in the TICA database. As shown in Figures 7C,
D, the ERLS model could identify the response to anti-PD1, anti-
CTLAA4, or their combination. Furthermore, we found that the low-
risk group had higher expression of PDL1 or CTLA4 (Figure 7E).
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. (H) The AUC of the ERLS in the GSE102073 dataset. (I) Comparison of

The risk score of the ERLS was negatively correlated with CTLA4
expression, and no significant association was found between the
expression of PDL1 and the risk score (Figures 7F, G). These
findings provided some evidence for the predictive ability of the
ERLS model to identify responses to immunotherapy.

However, we have observed that the gene expression of PDLI
and CTLA4 did not seem to distinguish the prognosis risk between
the high-risk group and the low-risk group. The two groups were
divided according to the median expression of PDL1 and CTLA4 in
the training datasets (Figures 8A, B). Subsequently, a survival
comparison was performed among four groups of OC patients
who were identified based on combined ERLS with PDLI1 or
CTLA4. The results of this comparison revealed that the ERLS
was able to differentiate the outcomes of patients with similar PDLI
or CTLA4 levels. Patients with low expression of PDLI or high
expression of CTLA4 and low ERLS exhibited significantly better
survival prospects compared to the other three groups, whereas
patients with high ERLS and low levels of PDL1 or CTLA4 exhibited
the poorest results relative to the other groups (Figures 8C, D).

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1228235
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Cui et al.

Group B8 rign B tow

B Group B igh B fow

10.3389/fimmu.2024.1228235

Infitration Abundance

hn,,,_

1. “ . _u

g\

zi

é’
[

b
&Y

o,

JAJ Jm i

Infiltration Abundance
f—

Relatve Percent

iutohis

FIGURE 5

u »WM

ik

\ ‘,M\

i 'm i It

i

i w‘v

I8

| H‘U‘H\

Ji

Evaluation of immune cell infiltration in high-risk and low-risk groups using xCell and ssGSEA. (A) The proportion of 64 cells in the high-risk group
compared to the low-risk group was based on the xCell packages. (B) The proportion of immune cells in the high-risk group compared to the low-
risk group based on the ssGSEA packages. (C) The proportion of immune cells in each OC patient. (D) The differential immune functions in the high-

risk and low-risk groups. *P<0.05; **P<0.01; ***P<0.001.

Exosome isolation and real-time
quantitative PCR

We used ultracentrifugation to purify exosomes from the
supernatants of SKOV3 cells, IOSE80 cells, and OVCARS cells
and identified the exosomes. TEM analysis revealed that the
exosomes are microvesicles with a diameter range of 30 to 150
nm, which are globular and have a typical cup shape (Figure 9A).
NTA showed that the diameter of exosomes concentrated at 100 nm
(Figure 9B). The biomarkers of exosomes (CD81, CD63) were
detected by Western blotting (Figure 9C). Real-time quantitative

PCR results showed the different expression of IncRNA in exosomes

from normal ovarian epithelial cells and OC cells (Figures 9D-I).

Discussion

Exosomes, derived from malignant tumor cells, serve as

communicators for intercellular communication (45).

Identification of genetic material signatures in exosomes is

expected to be a potential marker to improve the clinical

prognosis of OC patients (46, 47). In our paper, we integrated
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The detection of exosomes characteristics and IncCRNA expression in exosomes from IOSE80 cells, SKOV3 cells, and OVCARS cells. (A) The results of
TEM for exosomes. (B) The results of NTA for exosomes. (C) The expression of CD63 and CD81 in exosomes was detected using WB. (D-1) The
expression of INcCRNA in exosomes was measured using RT-PCR. The RT-PCR and WB experiments were independently repeated three times, with
three replicate wells for each independent repetition. *P < 0.05, ****P < 0.0001.

exosome-related IncRNA to construct ERLS aiming to evaluate the
prognosis and immunotherapy response of OC patients. The risk
score for ERLS was calculated by multiplying the expression levels
of 20 IncRNAs by the corresponding coefficients. Based on the
ERLS risk score, OC patients were divided into high- and low-risk
groups. Compared to the low-risk group, the high-risk group has a
worse prognosis. Multivariate COX regression analysis showed that
the ERLS was an independent risk factor for prognosis. With
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regards to predicting immunotherapy response, the ERLS was
able to distinguish the benefit of anti-PD1 or anti-CTLA4
immunotherapy. The ERLS combined with the expression of
PDLI or CTLA4 can more accurately predict the prognostic risk
of OC patients. Patients with low expression of PDL1 or high
expression of CTLA4 and low ERLS risk score had the best
prognosis, while those with low PDL1 or CTLA4 expression and
high ERLS risk score had the worst prognosis.
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Exosome-related IncRNA and prognostic IncRNA were used to
identify candidate IncRNAs. Subsequently, a total of 36 significant
IncRNAs were screened using a combination of the stepCox(forward)
and Ridge arithmetic. A multivariate Cox regression model was
employed to construct the ERLS model, which includes 20
IncRNAs. Research indicates that these IncRNAs have also been
utilized in prognostic models for ovarian cancer (48-52). Compared
to other models (53, 54), we used more machine learning algorithms
to make our model more robust. Survival analysis showed a worse
prognosis in the high ERLS group. Furthermore, multivariate COX
regression analysis showed that the ERLS was an independent
prognostic factor for patients with OC. The ROC areas for 1-, 3-,
and 5-years were 0.758, 0.816, and 0.827 in the entire TCGA datasets,
respectively. The results of external validation showed that the AUC
values of 1-, 3-, and 5-years were 0.536, 0.548, and 0.722, respectively.
In particular, it has more advantages in long-term survival prediction.
In addition, compared to other models in the entire TCGA database,
the ERLS is competitive. These results suggest that the ERLS can
identify prognostic risk in OC patients, indicating that the ERLS has
great potential for clinical application.

Exosome-related IncRNA are key messenger molecules that
regulate immune responses in the tumor microenvironment (55).
In the tumor microenvironment, information continues to flow
between immune cells and cancer cells through these RNAs, and
inhibition of immune cell function induces the formation of an
immunosuppressive tumor microenvironment, which affects the
response to immunotherapy (56). Therefore, we investigated
immune cell infiltration in high- and low-risk groups based on
the xCell and ssGSEA packages.

The results showed that higher levels of DC, M1 macrophages,
CD8 T cells, CD4 memory T cells, and Th2 cells were in the low-risk
group, and this result was further verified in the ssGSEA package.
The analysis of immune function differences between the high-risk
group and the low-risk group showed that different levels of
immune cell infiltration promoted the activation of the cytolytic
activity, inflammation-promoting, T cell co-stimulation pathway,
indicating that the low-risk group had a higher level of anti-
inflammatory tumor activity. We performed GO and KEGG
analysis on the genes that were different between the two groups.
The results of the KEGG analysis showed that the differentially
expressed genes were mainly involved in the MAPK signaling
pathway and the PI3K-Akt signaling pathway. As reported in the
literature, the abnormality of the MAPK signaling pathway or the
PI3K-Akt signaling pathway can cause cancer, which in turn affects
the function of immune cells (57).

The ratio of infiltration of immune cells in the tumor
microenvironment will limit the effectiveness of immunotherapy.
PD1, PDL1, and CTLA4 are commonly used immune checkpoints,
but the overall response rate to immune checkpoint inhibitors is not
high (58). Therefore, we assessed the potential of the ERLS to predict
response to immunotherapy. The TIDE tool was used to assess the
potential for tumor immune escape and predict the immunotherapy
response in OC patients. Our results showed that there were no
differences in the TIDE scores between the two groups, but the TIDE
tended to be higher in the high-risk group, suggesting that the high-
risk group may have less benefit from immunotherapy. Furthermore,
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we verified the ability of the ERLS model to predict the response to
immunotherapy through the expression of IPS in the TICA database,
TMB, and immune checkpoints. The results showed that the low-risk
group may benefit more from immunotherapy, suggesting that the
ERLS model has the potential to predict response to immunotherapy.

Subsequently, we found that the expression of the PDLI or
CTLA4 genes could not effectively assess the prognostic risk in the
entire TCGA cohort which had been divided into high- and low-
risk groups based on the median expression of PDL1 or CTLA4 in
the training set. This is not consistent with other studies (59-62)
and may be attributed to variations in the thresholds set for PDLI or
CTLA4 expression. It should be noted that the use of the median
division threshold in this study was necessary to maintain
consistency with the ERLS threshold division method.
Nonetheless, in cases where there is a similar expression of PDLI
or CTLA4, the prognostic risk of OC patients cannot be well
differentiated. Therefore, we implemented a combination of PDL1
or CTLA4 expression and the ERLS score to evaluate the prognosis.
It was found that the ERLS model had a good ability to discriminate
a prognosis in the case of similar expression of PDL1 or CTLA4.
Notably, patients with low expression of PDL1 or CTLA4 and high
ERLS had the worst survival. Patients with low expression of PDL1
or high expression of CTLA4 and low ERLS have the best prognosis.
This suggests that the combination of PDL1 or CTLA4 and ERLS
differentiates prognosis and optimizes clinical management of OC.

In addition, we detected the expression of some IncRNAs in
exosomes derived from IOSE80, SKOV3, and OVCARS cells. The
results showed that compared to IOSE80 cells, exosomes from
SKOV3 and OVCARS cells had higher expression of AC134312.1,
AC010834.3, LEMDI1.AS1, PCOLCE.AS1, LINC00892, and
AL138820.1. Research has shown that high expression of IncRNA
is associated with the proliferation of ovarian cancer cells, activation
of the PI3K-AKT pathway, T cell activation, and immune
infiltration in the tumor microenvironment (63-66). However,
this trend was not observed in OC tissues from the TCGA
datasets except LINC00892. We speculate that this trend may be
due to more IncRNAs being encapsulated in exosomes and secreted
into the extracellular environment, leading to lower expression in
OC tissues. Unfortunately, research on this phenomenon has not
yet been explained. Additionally, these IncRNAs were employed to
structure OV prognostic models. AC134312.1 is related to the Wnt
signaling pathway and T cell receptor pathway (49). LINC00892, as
one of the immune-related IncRNAs, has been used in OV
prognostic models (51). PCOLCE.ASI has been confirmed to be
related to prognosis in breast cancer (67), but its role in ovarian
cancer has not yet been determined. AC010834.3 and AL138820.1
IncRNAs have not yet been studied in the context of OV. Our initial
findings of these IncRNAs being highly expressed in ovarian cancer-
derived exosomes provide direction for future research.

In a word, considering the importance of exosome-related
IncRNAs in the progression of OC, we integrated bioinformatics
and machine learning algorithms to identify exosome-related
IncRNA signatures (ERLS) to assess the prognosis, immune cell
infiltration, and response to immunotherapy. The ERLS model is a
promising tool to optimize decision-making and monitoring
regimens in individual OC patients. However, our research still has
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certain deficiencies. This article only constructs the ERLS model from
the perspective of genetic data to evaluate the prognosis, immune
microenvironment, and immunotherapy response of OC patients
and has not been validated using cell lines and patient samples.
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