
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ana Teles,
Max Planck Institute for Evolutionary Biology,
Germany

REVIEWED BY

Magdalena Migalska,
Jagiellonian University, Poland
Molly Staley,
Loyola University Chicago, United States

*CORRESPONDENCE

Michal Vinkler

michal.vinkler@natur.cuni.cz

†These authors have contributed equally to
this work

RECEIVED 30 June 2023

ACCEPTED 11 January 2024
PUBLISHED 02 February 2024

CITATION

Kuttiyarthu Veetil N, Henschen AE,
Hawley DM, Melepat B, Dalloul RA, Beneš V,
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Varying conjunctival immune
response adaptations of house
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Vladimı́r Beneš5, James S. Adelman2† and Michal Vinkler1†*

1Department of Zoology, Charles University, Faculty of Science, Prague, Czechia, 2Department of
Biological Sciences, The University of Memphis, Memphis, TN, United States, 3Department of
Biological Sciences, Virginia Tech, Blacksburg, VA, United States, 4Department of Poultry Science, The
University of Georgia, Athens, GA, United States, 5European Molecular Biology Laboratory (EMBL),
Genomics Core Facility, Heidelberg, Germany
Pathogen adaptations during host-pathogen co-evolution can cause the host

balance between immunity and immunopathology to rapidly shift. However, little

is known in natural disease systems about the immunological pathways

optimised through the trade-off between immunity and self-damage. The

evolutionary interaction between the conjunctival bacterial infection

Mycoplasma gallisepticum (MG) and its avian host, the house finch

(Haemorhous mexicanus), can provide insights into such adaptations in

immune regulation. Here we use experimental infections to reveal immune

variation in conjunctival tissue for house finches captured from four distinct

populations differing in the length of their co-evolutionary histories with MG and

their disease tolerance (defined as disease severity per pathogen load) in

controlled infection studies. To differentiate contributions of host versus

pathogen evolution, we compared house finch responses to one of two MG

isolates: the original VA1994 isolate and a more evolutionarily derived one,

VA2013. To identify differential gene expression involved in initiation of the

immune response to MG, we performed 3’-end transcriptomic sequencing

(QuantSeq) of samples from the infection site, conjunctiva, collected 3-days

post-infection. In response to MG, we observed an increase in general pro-

inflammatory signalling, as well as T-cell activation and IL17 pathway

differentiation, associated with a decrease in the IL12/IL23 pathway signalling.

The immune response was stronger in response to the evolutionarily derived MG

isolate compared to the original one, consistent with known increases in MG

virulence over time. The host populations differed namely in pre-activation

immune gene expression, suggesting population-specific adaptations.

Compared to other populations, finches from Virginia, which have the longest

co-evolutionary history with MG, showed significantly higher expression of anti-

inflammatory genes and Th1 mediators. This may explain the evolution of disease

tolerance to MG infection in VA birds. We also show a potential modulating role
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1250818/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1250818/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1250818/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1250818/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1250818&domain=pdf&date_stamp=2024-02-02
mailto:michal.vinkler@natur.cuni.cz
https://doi.org/10.3389/fimmu.2024.1250818
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1250818
https://www.frontiersin.org/journals/immunology


Kuttiyarthu Veetil et al. 10.3389/fimmu.2024.1250818

Frontiers in Immunology
of BCL10, a positive B- and T-cell regulator activating the NFKB signalling.

Our results illuminate potential mechanisms of house finch adaptation to

MG-induced immunopathology, contributing to understanding of the host

evolutionary responses to pathogen-driven shifts in immunity-

immunopathology trade-offs.
KEYWORDS

adaptations diversifying populations, emerging disease, coevolution, parasite, host-
pathogen interaction, inflammatory immune response, resistance, tolerance
to infection
Introduction

Host-parasite co-evolution belongs among the most dynamic

evolutionary phenomena (1). Novel adaptations rapidly shift

pathogen virulence [i.e. pathogen damage to host fitness (2)] as

well as host immune defence capacities. Given the frequent

emergence of novel zoonotic infections transmitted to humans

from wildlife, there is urgent need for improved understanding of

the natural variation in both patterns and mechanisms of host-

pathogen evolution (3, 4). Despite common expectation that long-

term coevolution between hosts and their pathogens favours

decrease in the pathogen virulence (1), present evidence suggests

variation in these evolutionary patterns, with long-term increase in

virulence observed in certain contexts (5). In response, hosts can

rapidly adjust their resistance, i.e. evolve capacity to decrease

pathogen replication, consistent with the arms-race model (1).

Such adaptations have emerged, for example, in amphibians (6)

and bats (7) challenged by fungal pathogens, or rabbits facing

myxoma virus epidemics (8). However, if pathology caused by the

excessive immune defence is too costly (9), the immunity-

immunopathology trade-off can favour the evolution of tolerance

to the infection instead of, or in addition to, resistance (10–12).

Unlike resistance, tolerance mitigates the host’s fitness loss through

a reduction of tissue damage caused by infection or improved repair

of this damage, without necessarily reducing pathogen replication.

In contrast to resistance, evolution of tolerance to infection typically

does not promote the arms race accelerating further increase in

pathogen virulence (13, 14). However, if the increase in host’s

tolerance decreases immunopathology that favours pathogen

transmission, pathogen can respond by evolving higher virulence

(15, 16). This can further select on optimisation of the immune

response, setting equilibrium between host immunity and

immunopathology (9). Although recent research in different

species of wild vertebrates (17–19) indicated that infection

tolerance can be a common strategy to reduce the fitness costs in

hosts facing novel pathogens, we still mostly lack evidence on the

immunological mechanisms responsible for the shifts between

resistance to tolerance in natural host-pathogen systems.
02
One of the few relevant vertebrate models for this investigation

where we have evidence for tolerogenic adaptation (20) can be

found in the recent evolutionary interaction between the bacterium

Mycoplasma gallisepticum (MG) and its novel host, the house finch

(Haemorhous mexicanus) (21). MG is a horizontally transmitted

pathogen that shows high antigenic variation (22). Previously

known to be a respiratory pathogen of domestic poultry (23), in

1994 MG was first detected in wild house finches in Virginia

(eastern USA), causing mild to severe conjunctivitis (24). Within

three years, the infection spread across eastern North American

populations of the host and, after a few-year’s lag, in the early 2000s

the disease was detected in western North American house finch

populations (25). Mycoplasmal conjunctivitis disease decreases

survival of finches (26) in the wild, often causing severe decline

(up to 60%) in affected house finch populations (27). However, the

epizootic did not reach some isolated house finch populations, such

as those introduced to the Hawaiian Islands which still remain naïve

to MG. Further, because of the way that MG spread west across the

northern part of the United States and then down the western coast,

MG has only recently (or in some cases, never) been documented in

host populations in areas of the southwest United States such as

Arizona (28).

The house finch-MG model system is unique in avian

evolutionary ecology given the precisely mapped spatiotemporal

epizootic data and the wealth of pathogen isolates collected

throughout time from various wild house finch populations that

are presently available for infection experiments (29). This

experimental research has shown that MG virulence has increased

over time, with the evolutionarily original MG isolates (e.g. the

isolate VA1994) causing milder disease than the more recent,

evolutionarily derived isolates (e.g. the isolates NC2006 or

VA2013) (30, 31). At the same time, there is inter-individual

variability among hosts in their responses to the pathogen (32)

and the host populations appear to have adapted to the MG

selective pressure (33). We have recently shown that house finch

populations with a longer co-evolutionary history with MG show

more tolerance to the infection than the populations in recent or no

contact with the pathogen (20), with tolerance quantified as milder
frontiersin.org
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disease severity (i.e., conjunctivitis) at a given pathogen load. This is

probably linked to regulation of the inflammatory response, which

is less pronounced in the Harderian glands of house finch

populations in longer contact with the pathogen, compared with

populations with little or no contact with MG (20, 33).

Bacteria of the genus Mycoplasma are extracellular and

intracellular parasites known in vertebrates to trigger excessive

proinflammatory signalling (e.g. mediated by IL1B or IL6), while

down-regulating regulatory signals with anti-inflammatory effects

(e.g. IL10) (34). In humans, clinical manifestations of acute

mycoplasmosis result from immunopathologic inflammation

generated by the host, rather than by the direct pathogen-

mediated tissue damage (35). Excessive inflammation may

contribute to MG’s ability to evade the host effector antibody

response by disrupting regulation of the inflammation, improving

pathogen transmission efficiency (36). In house finches, MG

infection affects mainly the sites belonging to conjunctiva-

associated lymphoid tissue, including conjunctiva and Harderian

gland (37). Since its emergence in finches, MG appears to have

evolved to trigger stronger pro-inflammatory cytokine levels in the

host periocular lymphoid tissues, which is positively correlated with

increased bacterial loads (37), disease severity (5), and pathogen

spreadability (36). This promotes in the host an evolutionary trade-

off between selection on stronger immunity to clear the pathogen

infection, consistent with resistance, and constraint emerging from

immunopathology, selecting on down-regulation of inflammation

achieved through tolerance.

Transcriptomic analysis is an important approach to identify

possible shifts in immune regulation of host-pathogen interactions.

Previous studies using transcriptomics in house finches focused on

gene expression changes in spleen, a secondary lymphoid tissue not

topologically linked with the MG infection site where the primary

direct contact between the host and the pathogen occurs (38, 39).

Our previous RNA-seq transcriptomic research in the Harderian

gland (20), a periocular secondary lymphoid tissue, has shown that

3 days post inoculation (DPI) with MG, house finches from more

tolerant populations (those with a longer history of MG endemism)

also showed reduced up-regulation of immune gene expression,

notably among inflammation-regulating chemokines (20). Here we

adopted the 3’-end transcriptomic QuantSeq approach to more

closely explore the variation in immune regulation underlying the

observed differences between the house finch populations in their

tolerance to MG. Unlike the previously studied Harderian gland,

conjunctiva is a lymphoid tissue directly exposed to the MG

pathogen and thus the first tissue to be immunologically affected

by the infection. Our objective was to describe the conjunctival

immune response involved in directing the subsequent pathway

regulation towards resistance or tolerance to MG. We used samples

from the same birds for which Harderian gland tissues were

analysed in Henschen et al. (20). MG-naïve house finch juveniles

that were captured in one of four wild populations (Virginia = VA,

Iowa = IA, Arizona = AZ and Hawaii = HI) were exposed to one of

two MG isolates (original VA1994 or evolved VA2013) under

controlled captive conditions. At the time of experimentation, the

VA population had experienced the longest coevolution with MG

(>20 years), the IA population only a slightly shorter co-evolution
Frontiers in Immunology 03
with MG than VA (~20 years (24);, while in AZ the MG epidemics

are still relatively recent (0-5 years, with no detections in the

population sampled (28);, and the HI population is likely entirely

naïve to MG due to its geographic isolation (20). Differences

between house finch populations in their co-evolutionary time

with MG allowed us to track the variation in the immune

responses associated with adaptation to the pathogen. The

immune responses were assessed 3 DPI in order to describe the

initial phase of the infection, during which innate immune

regulation is being established at the infection site (37). Using

differential gene expression (DGE) analysis, we first identified the

immune pathways involved in response to MG and their differences

between the four host populations (model 1). In our analysis, we

focused namely on the variation in pro-inflammatory pathways that

could promote resistance to MG and regulatory mechanisms that

could increase tolerance to MG, indicating house finch adaptations

to the pathogen. Second, we described differences between the four

host populations in control individuals, where variation in baseline

immune regulation can be identified (model 2). Third, we

characterised differences in conjunctival immune responses

associated with MG strain virulence (model 3).
Materials and methods

Experimental design and animals

Details of the experiment are provided in (20), so here we

recapitulate it only briefly. Hatch-year house finches (identified as

first-year based on plumage characteristics) were captured using

mist nets and feeder traps (40) between June and September 2018 in

Blacksburg, Virginia (VA), Ames, Iowa (IA), Tempe, Arizona (AZ)

and Oahu, Hawaii (HI) (details provided in Supplementary Table

S1, Electronic Supplementary Material 1, ESM1 and map displaying

the details of sample collection is shown in Supplementary Figure 1,

Supplementary Figure S1 in ESM2). Any finches that showed

clinical signs of MG infection during capture were immediately

released. Following capture, each bird received a uniquely

numbered aluminium leg band, and an electronic balance was

used to determine its mass. To eliminate ectoparasites, the birds

were all dusted with 5% sevin powder. The trapped birds were

brought to the Iowa State University animal facility. After arrival, all

birds were subjected to an acclimation and quarantine period

(minimum of 40 days), which included treatment with

prophylactic medications to prevent naturally occurring

infections. A serological assay was run on blood collected

approximately two weeks post-capture to ensure that all birds

used in experiments were seronegative for MG infection (20).

Birds were kept individually inmedium flight cages (76 cm x 46 cm

x 46 cm) for the duration of the experiment and were provided ad

libitum access to water and food. The diet consisted of a 20:80 mixture

of black oil sunflower seeds and pellets (Roudybush Maintenance

Nibles; Roudybush, Inc., Woodland, CA). Temperatures (~22°C) and

light-dark cycles (12h:12h) were kept constant.

The infection experiment was performed in October 2018 on a

sample of 60 individuals representing the four different house finch
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populations (VA, IA, AZ, HI). For each population, 5 individuals

served as controls (C) treated with Frey’s media with 15% swine

serum alone, 5 were treatment individuals inoculated with the

original MG isolate VA1994, and 5 were inoculated with the

evolved MG isolate VA2013 (in both treatments the MG dose

was 7.5×106 colour changing units, CCU/mL) following the same

methodology as in (5, 41). Three days post-infection (3 DPI), the

birds were euthanised by rapid decapitation and a panel of nine

tissues were collected. All tissues were submerged into RNA later

protectant within 15 minutes of euthanasia and immediately

refrigerated at 4°C. The cooled periocular conjunctiva-associated

lymphoid tissue (conjunctiva and nictitating membrane) samples

were transported within 48 hours to Charles University, Czech

Republic, where they were kept frozen to -80°C until

further processing.
RNA extraction and sequencing

Our conjunctival samples contained both the conjunctiva-

associated lymphoid tissue (CALT) and skin of the eye lid. For

ensuring the proper RNA extraction of the lymphoid tissue, we used

the following protocol. All conjunctival samples from the 60 birds

were homogenized using PCR-clean beaded tubes (OMNI

International, USA - Serial Number: 2150600) using the MagNa

Lyser (Roche, Basel, Switzerland). The skin tissues present in the

samples were separated during the centrifugation step and

discarded, while the homogenised lymphoid tissue was used for

the total RNA extraction with the High Pure RNA Tissue Kit

(Roche, Basel, Switzerland). We used Nanodrop (NanoDrop ND-

1000) and Agilent 2100 Bioanalyzer with nano chip (Agilent

Technologies, California, USA) to calculate the RNA yield (in all

cases >20 ng/ul) and integrity (in all cases RIN values >7) (details

provided in Supplementary Table S2, ESM1).

To perform sufficiently deep transcriptomic sequencing in a

representative sample of individuals with different treatments

across four populations, we adopted the 3’-end transcriptomic

QuantSeq approach, which is more cost-efficient in larger

population samples than the classical RNA-seq ( (42–44);

Kuttiyarthu Veetil et al. in prep.). The library preparation and

sequencing were performed at the European Molecular Biology

Laboratory (EMBL), Heidelberg, Germany. All the samples were

first barcoded with Illumina TruSeq adapters (45). The QuantSeq

libraries were prepared using Lexogen QuantSeq 3’-polyadenylated

RNA Library Prep Kit FWD (Illumina). The sequencing was carried

out using the Illumina NextSeq 500 platform. QuantSeq is based on

a protocol devoid of mRNAs fragmentation before reverse

transcription (46), but the read fragment sequencing targets are

generated close to the polyadenylated 3′ end. This method uses total

RNA as an input and there is no prior poly(A) enrichment or rRNA

depletion. QuantSeq generates only one read fragment per

transcript, and the number of reads mapped to a given gene is,

therefore, proportional to its expression (42). Eight samples failed

during library preparation and were excluded from the sequencing.

The rest of the 52 indexed samples were pooled together and single-

end 80 bp reads were generated. Thus, the final analysis is based on
Frontiers in Immunology 04
the sequence data representing conjunctival samples from 52 birds

(details on the birds provided in Supplementary Table S3, ESM1).
Transcriptomes

On average, we obtained ~10 million reads per sample,

comparable to zebra finch 3’-end transcriptomic sequencing. The

bioinformatic analysis was carried out using BAQCOM pipeline

(https://github.com/hanielcedraz/BAQCOM). The samples were

aligned to the zebra finch genome downloaded from Ensembl

(47) (bTaeGut1_v1.p-GCA_003957565.1). The tools included

Trimmomatic (version 0.39) (48) for the adapter trimming, STAR

software (49) for the aligning with the reference and feature Counts

from the Subread package (50) for assigning of the sequences and

gene level quantification. The alignment percentage of the

conjunctiva samples to the reference genome ranged between

52.42% to 80.62% (Supplementary Table S4, ESM1). Next, the

DGE analysis was performed using the limma (Linear Models for

Microarray Data) package (51) in R (version- version 4.1.1) (52). In

this analysis, we considered the source population, sex, and MG

treatment as fixed factors, testing them together with their

interactions at the significance level of padj value ≤ 0.05 and a

minimum log2fold change value ≥1. After the differential gene

expression analysis, each gene in each transcriptome was annotated.

Ensembl BioMart (47) was used to assign gene functional

annotations (geneontology, GO), which were then manually

supplemented with Uniprot annotations. In cases where gene

names were not directly available, an orthologue search was

performed (Ensembl and NCBI Blast) for human annotations and

gene names were selected if the closest hit showed at least 60%

sequence identity. We used ShinyGO (version-0.77) (53) for

generating the figures for pathway analysis and using Venn

(https://bioinformatics.psb.ugent.be/webtools/Venn/) to create the

venn diagrams. The transcriptomic sequenced data were submitted

to the NCBI Sequence Read Archive. As an alternative, guided by

our research question, literature search (54) and previous results

(33), we selected the following target cytokine and receptor genes

potentially involved in regulation of the house finch immune

interaction with MG: IL1B, IL10, IL6, CXCL8, IL22, TNFSF15,

TLR4, TLR3, TLR2, ACOD1, CSF1R, CCL4, IL18, and TLR7

(selected based on literature search and 3’ end annotation

availability; Supplementary Table S11, ESM1).
Statistical analysis

To identify potential transcriptomic groupings of our four

populations, we first performed two Between group analyses

(BGA) using made4 package in R (55). In the first analysis, we

used the individual population identities as a grouping factor, while

for the second analysis we adopted the distinction between eastern

populations (VA and IA), which share a long co-evolutionary

history with MG, and western (AZ and HI) populations which

share a short (0-5 year) co-evolutionary history with MG, as applied

in our previous research (20). BGA targets the between-group
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variability by executing a principal component analysis (PCA) on

group means.

Next, we adopted three different methodological strategies to

reveal the transcriptomic variation between the house finch

populations and the two MG isolates using limma package from

R. Limma employs moderated t-statistics to assess differences in

expression of individual genes across the transcriptome. It allows to

design multiple-factor matrices (e.g., different time points,

experimental conditions, batch effects) and covariates, from which

it calculates the differential gene expression by accounting for all the

variables. Limma generates a full list of genes with associated p-

values and false discovery rate (FDR) for each gene, indicating the

result reliability (51).

First, to reveal population-specific variation in immune

responses to MG among the four house finch populations, in the

whole dataset we tested the following linear model, considering

population of origin, sex, MG treatment and the interaction

between population and MG treatment as explanatory variables

(model 1):

(∼  Population  +  Sex  +  MG_ treatment 

+  Population :  MG_treatment  +  MG_treatment :  Sex)

The target-gene analysis was performed only using the whole

dataset. To normalize the target gene expression data, we first

divided the total number of reference-aligned reads by the total

number of reads in the sample (Cn). To scale the data, we then

multiplied each of the normalized read counts by 10 million

(approx. 10 million was the average number of reads per sample

in our dataset). Given large number of zero expression levels

detected, we could not make relative quantification of the

expression and, therefore, the variation in gene expression is

shown as a logarithm of the scaled-normalized read counts, with
Frontiers in Immunology 05
uniform scaling across all genes. These gene expression levels were

visualised using heatmap: pheatmap package in R.

Since the results of model 1 indicated limited Population :

MG_treatment interactions, but revealed main effects of the

populations, to understand the pre-existing variation in gene

expression among those populations we then run a second linear

model, where in the control individuals alone we tested the

parameters of population, sex and their interaction (model 2):

(∼  Population  +  Sex  +  Population :  Sex)

Third, to reveal the differences in immunity activation caused

by the two MG isolates used (the original VA1994 vs. evolved

VA2013), we finally separately analysed the DGE in the VA2013

treatments compared to the controls, and in the VA1994 treatments

compared to the controls, later contrasting the two sets of results

(model 3):

(∼  Population  +  MG_ treatment  +  Population :  MG_treatment)
Results

First, to identify general transcriptomic similarities between

birds from different populations, we performed the between-group

analyses (BGA) comparing individual populations and their

western and eastern sets. These did not reveal any clear grouping

of the individuals based on their transcriptomic profiles (P>0.05;

Supplementary Figures S2, S3, ESM2). To investigate variation

among house finch populations in their responsiveness to MG

infection, we first performed a general analysis on the whole dataset

(model 1). In total we identified 1228 DEGs (Figure 1; Table 1;

heatmap is provided in Supplementary Figure S4, ESM2). Among
FIGURE 1

UpSet plot depicting the common differentially expressed genes in conjunctival tissue across the investigated house finch populations and the
Mycoplasma gallisepticum (MG) treatments. The house finch populations namely, Arizona (AZ), Iowa (IA) and Hawaii (HI) are compared with the
Virginia (VA) population, the MG treatments (VA1994 and VA2013) are compared with the controls. The gene set size is represented by the bar
height, and the population-treatment interaction by the lines connecting the main category dots.
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the 23 genes which were differentially expressed between sexes,

none showed any interaction with the MG treatment, and none

were involved in immunity, indicating no sex-specific variation in

immune responses to MG in the conjunctival gene expression.

Therefore, sex effects were not further considered in our analysis.

Regardless of the MG treatment status, compared to the VA

population, most DEGs were observed in the IA population (464),

indicating baseline differences between these two populations in

conjunctival gene expression. Though high number of DEGs were

detected between both the MG treatments and controls (548 for

VA1994 and 772 for VA2013), there was little interaction between

MG treatment and house finch population origin (Table 1). To

indicate the overlaps between the populations and MG treatments,

we provide the UpSet plot in Figure 1. Among the 154 genes on the

overlap of all groups, the majority of the genes were lacking any

annotations (representing novel transcripts) and there were no

genes annotated with any immune function.

While we identified in total 900 DEGs related to MG infection

(across all population, combining VA1994 and VA2013, with the

main effects and interactions), only 793 were annotated

(Supplementary Table S5, ESM1), and among those we identified

113 DEGs involved in immunity (Supplementary Table S6, ESM1).

There were 158 annotated DEGs down-regulated in their

expression during MG infection. For example, CHRNB2, ATP2B1,

SCN2A, RYR2, NKAIN1 and CACNA1C are important for the ion

transport [GO:0006811], synaptic signalling [GO:0032225] and

response to muscle activity [GO:0014850] (Supplementary Figure

S5, ESM2). Only 11 out of the 158 down-regulated genes showed

clear links to immunity, including IL12B and RAG1 that are

involved in Th1/Th17 immune response activation [GO:0032735,
Frontiers in Immunology 06
GO:0032740], positive regulation of T cell differentiation

[GO:0045582], pre-B cell allelic exclusion [GO:0002331] and

adaptive immune response [GO:0002250]. Among the 457

annotated DEGs up-regulated during MG infection, we were able

to identify 91 genes with immune function. In the MG-treated

individuals, we observed increased expression of, e.g. IL17RA and

IL17RE involved in inflammatory response [GO:0050729],

regulat ion through IL17-mediated signall ing pathway

[GO:0097400], CXCL12 involved in defence response

[GO:0006952], TLR1B activating toll-like receptor TLR6:TLR2

signaling pathway [GO:0038124], a leukocyte marker PTPRC

(CD45) regulating T cell proliferation [GO:0042102], ACOD1

involved in positive regulation of antimicrobial humoral response

[GO:0002760] and negative regulation of the inflammatory

responses (56), and CD74 involved in antigen processing and

presentation [GO:0019882]. The main pathways in which the

genes were up-regulated during MG infection are shown in

Figure 2. Interestingly, while not statistically significant, IL22 gene

that plays a critical role in modulating tissue responses during

inflammation [GO:0005125, GO:0006954], was found to be close to

significance with increased expression in the birds treated with the

VA2013 isolate (padj cut-off value = 0.07).

There were few genes for which we detected significant

interact ions between populat ion and MG treatment

(Supplementary Table S7, ESM1). Out of these, only 3 genes were

involved in immune regulation. BCL10 (positive regulation of

interleukin-6 production [GO:0032755]; positive regulation of

interleukin-8 production [GO:0032757], positive regulation of

NFKB transcription factor activity [GO:0051092]; having roles in

both innate immune response [GO:0045087] and adaptive immune
TABLE 1 Results of the general differential gene expression (DGE) analysis for conjunctival tissue collected 3 days post inoculation with Mycoplasma
gallisepticum (MG) treatment (model 1).

Factors Total DEG Total Up Total Down Immune DEG Immune Up Immune Down

AZ 309 141 168 17 15 2

HI 431 151 280 29 24 5

IA 464 131 333 18 15 3

VA1994 548 310 238 76 71 5

VA2013 772 444 328 91 81 10

AZ : VA1994 5 0 5 0 0 0

AZ : VA2013 1 0 1 0 0 0

HI : VA1994 6 2 4 2 0 2

HI : VA2013 2 0 2 1 0 1

IA : VA1994 1 0 1 1 0 1

IA : VA2013 0 0 0 0 0 0

SEX 23 15 8 0 0 0

VA1994:SEX 0 0 0 0 0 0

VA2013:SEX 0 0 0 0 0 0
The table shows the total numbers of differentially expressed genes (Total DEG) and the total numbers of differentially expressed immune genes (Immune DEG) across different comparisons as
well as numbers of up-regulated (Up) and down-regulated (Down) genes for the two infection treatments (VA1994 and VA2013) compared to controls and the populations Arizona (AZ), Hawaii
(HI) and Iowa (IA) when compared to the Virginia (VA) population, including interactions.
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response [GO:0002250]) was significantly differentially expressed in

interaction between both HI and IA population and treatment with

the MG isolate VA1994. During MG infection, BCL10 was down-

regulated in these populations. CNN2 (actomyosin structure

organization [GO:0031032]) and TRIM13 (innate immune

response [GO:0045087]; positive regulation of cell death

[GO:0010942]) were detected differentially expressed in

interaction between HI population and VA1994.

In the same analysis, a large number of DEGs were revealed

between different house finch populations, regardless of the MG

infection. In AZ birds, out of the 309 DEGs identified

(Supplementary Table S8, ESM1) we were able to annotate 106

genes with expression higher and 35 genes with expression lower

than in the VA population. There were 17 genes with immune-

related functions, out of which 15 genes showed higher expression

in AZ than in VA, including e.g., BCL10, IL17D involved in positive

regulation of interleukin-8 production [GO:0032757] and CASP6

involved in activation of innate immune response [GO:0002218].

The main immune gene with lower expression in AZ versus VA

birds was NR1H4 involved in negative regulation of IL1

[GO:0032692] production and inflammatory response

[GO:0050728]. For HI birds, we found 431 DEGs, out of which

130 annotated genes had higher and 81 genes lower expression than

in the VA population (Supplementary Table S9, ESM1). There were

28 genes linked with immune functions, again most of them (23

genes) having higher expression in HI than in the VA population.

Like in AZ, these genes included BCL10 and CASP6, but also

MAST2 involved in negative regulation of IL12 production
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[GO:0032655]. The immune genes with lower expression in HI

relative to VA were NR1H4, RAG1 and KPNA6 involved in positive

regulation of cytokine production involved in inflammatory

response [GO:1900017]. In the IA population we found as many

as 464 DEGs compared to the VA population (Supplementary Table

S10, ESM1), among which 114 annotated genes showed higher

expression and 80 genes lower expression than in the VA

population. Among the 17 genes annotated with immune

function, 15 (including again BCL10 and CASP6, and TRIM13)

had higher expression and two genes (RAG1 and NR1H4) lower

expression in IA than in VA. Thus, our results indicate that there is

important variation between the house finch populations in

immune gene expression in conjunctival tissue that is

independent of the actual MG treatment (no significant effect of

the interaction between the MG treatment and population).

As an alternative approach, we also checked for the relative

DGE changes in selected key immune genes with regulatory roles in

immunity (target-gene analysis; Supplementary Table S11, ESM1)

between the control and treatment groups of birds from different

populations. Our results (statistics provided in Supplementary

Table S12, ESM1) find that IL1B, IL6, IL10, IL12B, IL17D, IL18,

IL22, CXCL8, CCL4, ACOD1, TLR1, TLR4 and TLR7 show clear

distinction between the controls and the MG treatment groups

(Figure 3), and at the same time CCL4, TLR1, TLR4, TLR7 show also

significant variation in expression between the populations. In

TLR1, we even detected significant interaction between the MG

treatment and population (AZ, HI) indicating differences in DGE

between the populations in response to MG infection.
FIGURE 2

The gene interaction network for the differentially expressed genes (DEGs) up-regulated in conjunctival tissue 3 days post inoculation (DPI) with
Mycoplasma gallisepticum (infected vs. non-infected birds across all house finch populations), showing the most significant pathways in the GO
category Biological process. Immune genes grouped in the pathways of our interest are highlighted with red rectangles. Node colour intensity
indicates significance of gene enrichment, node size indicates number of significant DEGs.
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Immune genes differentially expressed
between populations in the
unstimulated controls

Since the differences between the house finch populations in

expression of immune genes were largely independent of MG

infection status, indicating potential population-specific

adaptations to MG, we also checked for differences in immune
Frontiers in Immunology 08
regulation in the unstimulated control individuals across

populations (model 2). Our analysis showed 748 DEGs in the

control individuals, with 71 genes (out of the 498 genes with

defined annotations) being involved in immunity (Table 2).

The lists of genes with lower expression in AZ, IA and HI

populations compared to the VA population (Supplementary Table

S13, ESM1) were mostly consistent (Supplementary Figure S6,

ESM2), indicating generally increased expression of the genes in
TABLE 2 Results of the general differential gene expression (DGE) analysis in conjunctival tissue of control individuals (model 2).

Factors Total DEG Total Up Total Down Immune DEG Immune Up Immune Down

AZ 342 152 190 40 18 22

HI 270 55 215 31 8 23

IA 281 63 218 39 11 28
The table shows the total numbers of differentially expressed genes (Total DEG) and the total numbers of differentially expressed immune genes (Immune DEG) across the Arizona (AZ), Iowa
(IA) and Hawaii (HI) and Virginia (VA) populations. Up = up-regulated (increased expression) in the tested population compared to VA, Down = down-regulated (decreased expression) in the
tested population compared to the VA population.
FIGURE 3

Heatmap showing variation in gene expression in selected inflammation-regulating genes (cytokines and receptors) in conjunctiva across house
finches from four different populations belonging to two types of Mycoplasma gallisepticum (MG)-infected treatments (VA1994 and VA2013) and
controls. Y-axis provides the information on individual birds (including population name and treatment group); X-axis shows the gene names; colour
indicates the gene expression levels shown as a logarithm of the scaled-normalized read count varying from low expression (dark blue) to high
expression (red). Please note that the scaling is not relative and, therefore, the colour pattern is common to all genes (highly as well as
lowly expressed).
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the VA birds: out of the 31 DEGs with immune function, 19 were

shared between AZ, IA and HI birds. Notably, these included LIF

(having role in regulation of immune response [GO:0050776] and

anti-inflammatory properties; (57)], IL12B and IL7 [positive

regulation of T cell differentiation [GO:0045582] and cytokine-

mediated signaling pathway [GO:0001961]). Among the 184 genes

(Supplementary Table S14, ESM1) that were consistently expressed at

higher levels in other populations compared to VA, 35 genes

(Supplementary Table S15, ESM1) were shared between the AZ, HI

and IA, indicating decreased expression in the VA population. There

were 25 DEGs annotated with immune function which had higher

expression across these three populations when compared to VA

birds. Out of them, however, only 4 genes were shared: BCL10, GGT5

(role in inflammatory response [GO:0006954]), RABGEF1 (negative

regulation of inflammatory response [GO:0050728]) and SYNCRIP

(cellular response to interferon-gamma [GO:0071346]) (Figure 4).

The main uniquely up-regulated immune genes (18 genes) in

the AZ population included IL17D, IL17C (inflammatory response

[GO:0006954]), IRF6 (immune system process [GO:0002376]),

TLR15 (toll-like receptor signaling pathway [GO:0002224]) and

TLR1B genes (up-regulated and down-regulated pathways are

shown in Supplementary Figures S7, S8, ESM2). In contrast to

AZ, the HI and IA populations (up-regulated and down-regulated

pathways for IA and HI birds, respectively, are shown in

Supplementary Figures S9–S12, ESM2) showed almost identical

sets of DEGs in the control birds: out of a total of 40 DEGs with

immune function revealed in these populations, 28 genes were

shared between these two populations, including TRIM13, PPARD

(negative regulation of inflammatory response [GO:0050728]) and

BCAR1 (antigen receptor-mediated signaling pathway

[GO:0050851]) that were different from the AZ population. These
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genes are involved in immune pathways involved in cytokine

production by mast cells and B cells.
Immune genes differentially expressed
between individuals inoculated with
different MG isolates

Our third analysis (model 3) showed only 160 DEGs for the

MG VA1994 isolate, but 1229 DEGs for the VA2013 isolate

(Table 3). Considering only the genes with annotations related

to immune function, there were 54 genes differentially

expressed during the infection with VA1994 and 230 genes

during the infection with VA2013. In birds infected with

VA1994, all the differentially expressed immune genes

showed higher expression when compared to control birds.

In birds infected with VA2013, there were 191 genes with

higher expression and 39 genes with lower expression when

compared to the controls (full list of the genes is provided in

Supplementary Tables S16, S17, ESM1).

Since the DEGs common to infections with both isolates are

consistent with those already discussed in the first analysis (model

1), here we focus only on the differences between the isolates. We

found 20 specific genes differentially expressed on 3 DPI after

inoculation with the VA1994 isolate, out of which only two genes

were related with any defined immune functions: NFATC3 and

PTAFR, both involved in inflammation [GO:0006954] (Figure 5).

For VA1994, there were no genes showing any significant

interaction with the populations. The up-regulated and down-

regulated gene interaction network for MG isolate VA1994 is

shown in Figures S13, S14, ESM2.
FIGURE 4

The gene interaction network for the differentially expressed genes (DEGs) with higher expression in conjunctiva of control birds in Iowa (IA), Arizona
(AZ) and Hawaii (HI) compared to Virginia (VA). The most significant pathways in the GO category Biological process are shown. Immune genes
grouped in the pathways of our interest are highlighted with red rectangles. Node colour intensity indicates significance of gene enrichment, node
size indicates number of significant DEGs.
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Among the 1089 genes differentially expressed after inoculation

with the MG isolate VA2013, there were 139 DEGs involved in

immune function that were up-regulated, including IL1B (cytokine-

mediated signaling pathway [GO:0019221]), IL10 (negative

regulation of cytokine activity [GO:0060302]), IL18 (natural killer

cell activation [GO:0030101)], IL22 (inflammatory response

[GO:0006954]), TLR4 (activation of innate immune response

[GO:0002218]), and TLR7 (positive regulation of interferon-beta

production [GO:0032728]) (see the pathways shown in Figure 6),
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and 39 immune DEGs that were down-regulated, including ILRUN

(negative regulation of defense response to virus [GO:0050687]),

NTS (positive regulation of NFKB transcription factor activity

[GO:0051092]), ROMO1 (defense response to Gram-negative

bacterium [GO:0050829]), AKAP1 (antiviral innate immune

response [GO:0140374]), involved in the innate immune

response, antimicrobial humoral immune response mediated by

antimicrobial peptides, defense response to bacterium and antiviral

innate immune response (Supplementary Figure S15).

Two genes were significantly differentially expressed in VA2013

in interaction with the HI population: CNN2 had lower expression,

involved in wound healing [GO:0042060] and YWHAZ higher

expression than in VA, having role in signal transduction

[GO:0007165]. There was one gene with significant interaction

between the IA population and VA2013 treatment, which is a

long non-coding RNA with unknown function. For the AZ

population, there were two genes with significant interaction to

the VA2013 treatment, again both with unknown functions.
Differentially expressed genes commonly
identified across the analyses

Finally, we searched for the genes that were identified as

differentially expressed in all the three comparisons, i.e., the 1)

DEGs during MG infection, 2) different pre-activation levels of

expression between the populations unrelated to the MG infection,

and 3) variation in expression based on the MG isolate used for

the infection.
TABLE 3 Results of the differential gene expression (DGE) analysis in conjunctival tissue collected 3 days post inoculation with VA1994 and VA2013
isolates of Mycoplasma gallisepticum (MG) analysed separately (model 3).

Factors Total DEG Total Up Total Down Immune DEG Immune Up Immune Down

VA1994 160 148 12 22 22 0

AZ 6 6 0 0 0 0

HI 2 2 0 0 0 0

IA 14 11 3 0 1 0

VA1994:AZ 0 0 0 0 0 0

VA1994:HI 0 0 0 0 0 0

VA1994:IA 0 0 0 0 0 0

VA2013 1229 785 444 178 139 39

AZ 34 26 8 3 3 0

HI 45 28 17 3 2 1

IA 47 37 10 2 2 0

VA2013:AZ 2 0 2 0 0 0

VA2013:HI 2 1 1 0 0 0

VA2013:IA 1 1 0 0 0 0
The table shows the total numbers of differentially expressed genes (Total DEG) and the total numbers of differentially expressed immune genes (Immune DEG) for the MG isolates (Va1994 and
VA2013), populations (AZ, Arizona; HI, Hawaii; IA, Iowa; VA, Virginia) and their interactions. Up = up-regulated compared to controls/increased expression in the tested population compared
to VA, Down = down-regulated compared to controls/decreased expression in the tested population compared to the VA population.
FIGURE 5

Venn diagram showing the number of differentially expressed genes
(DEGs) during infection with the original Mycoplasma gallisepticum
(MG) isolate VA1994 and the evolved isolate VA2013.
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We identified 8 common genes (Figure 7): BCL10 integrating

innate immune response [GO:0045087] and adaptive immune

response regulation [GO:0002250], USPL1 acting in cajal body

organization [GO:0030576] and cell proliferation [GO:0008283],

VPS4B acting in autophagy [GO:0016236] and cholesterol transport

[GO:0030301], RNF114 responsible for cell differentiation

[GO:0030154] and protein polyubiquitination [GO:0000209],

AFMID involved in tryptophan metabolisation to kynurenine,

ELMOD1 positively regulating the GTPase activity [GO:0019441],

CAPRIN1 responsible for negative regulation of translation

[GO:0017148] and positive regulation of dendrite morphogenesis

[GO:0050775] and WDR5B affecting histone H3-K4 methylation

[GO:0051568]. Out of these genes, only BCL10 has any clear role in

immunity. However, seven immune genes were also common DEGs

between the first and second analysis, i.e. involved in the response to

MG and also differentially pre-activated in different populations:

IL12B regulating cellular response to IFNG [GO:0071346] and T-

helper cells differentiation [GO:0042093], PPARD and NR1H4

which are negative regulators of inflammatory responses

[GO:0050728], including cellular responses to lipopolysaccharide

[GO:0071222], RAG1 that is key to immunoglobulin receptor
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recombination conditioning adaptive immune response during T-

cell B-cell differentiation [GO:0002250], RAC2 positively affecting

neutrophil chemotaxis [GO:0090023] and T-cell proliferation

[GO:0042129], TRIM13 involved in positive regulation of NFKB

signaling [GO:0043123] during innate immune responses, and

NCAPH2 involved in T-cell differentiation in the thymus

[GO:0033077]. Finally, three immune genes showed as DEGs

common to the second and third analyses, i.e. differentially pre-

activated in different house finch populations and also involved in

differential immune response to the two different MG isolates:

CDH17 involved in B-cell differentiation [GO:0002314], ACTG1

affecting cellular response to IFNG [GO:0071346] and ROMO1

inducing production of reactive oxygen species (ROS)

[GO:0034614], which is important in antimicrobial immune

responses to bacteria.
Discussion

Using QuantSeq 3’-end RNA transcriptomic sequencing, in this

study we characterised gene expression changes in a house finch
FIGURE 6

The gene interaction network for all the up-regulated differentially expressed genes (DEGs) in conjunctiva 3 days post inoculation (DPI) with
Mycoplasma gallisepticum in birds infected with VA1994 versus VA2013. The network is showing the most significant pathways in the GO category
Biological process across all the house finch populations analysed. Immune genes grouped in the pathways of our interest are highlighted in red
rectangles. Node colour intensity indicates significance of gene enrichment, node size indicates number of significant DEGs.
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periocular lymphoid tissue, the conjunctiva, during the initial phase

of infection (day 3 post inoculation) with a naturally occurring

pathogen, MG. We focused on DPI 3 as a period of innate immune

regulation that later guides the subsequent phases of the response

either towards immunopathology-linked resistance or towards

tolerance. Our focus was on the DEGs involved in the immune

response and showing variation between the house finch

populations differing in their co-evolutionary history with MG, as

this variation may indicate adaptations of the host to MG, including

in response to the increasing pathogen virulence documented

previously (5). We show significant variation in expression of

many inflammatory genes, especially those relevant for regulation

of the Th1/Th17 pathways. In response to MG, gene expression is

up-regulated at the infection site in pathogen-recognition receptors

(e.g. TLR1B), signalling molecules and their receptors (such as

CXCL12 and IL17R), adaptive cell-surface receptors (CD74) and

various other immunomodulators (e.g. ACOD1). Several genes

important for immune response regulation varied between

individuals representing house finch populations differing in their

co-evolutionary history with MG (e.g., IL12B, IL17, CASP6, NR1H4

or IRF6). Most interestingly, our data suggest that in VA, the

population with the longest co-evolutionary history with MG, the

birds decrease the baseline BCL10 gene expression compared to

other populations (irrespective of MG infection in model 1, and

only in controls in model 2). BCL10 also showed significant

interactions between house finch populations and the MG

treatment (model 1). In our analyses, BCL10 was revealed as up-

regulated during MG infection caused by the evolved VA2013
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isolate (model 3). This gene has important roles in NFKB

signalling and activation of both innate and adaptive immune

responses, so down-regulation of its expression in the VA

population may adaptively increase tolerance to infection by

minimizing damaging inflammation.

Previous transcriptomic research of the house finch-MG

interaction suggested that the immediate adaptation of the host to

MG favoured increases in host resistance. Bonneaud et al. (39)

found that house finches from populations naïve to MG experience

reduced splenic immune responsiveness to MG, while the

populations with a 12-year history of MG exposure (at the time

of that study) have up-regulated expression of genes associated with

acquired immunity in the spleen 14 days post inoculation. While

this immune response can be eventually protective, allowing

recovery, important costs are likely associated with such immune

response. Initial results of Adelman et al. (33) indicated that in

populations with longer co-evolutionary history with MG, tolerance

to the infection (defined as minimizing disease severity at a given

pathogen load) can contribute to improving host health. Recently,

this pattern was confirmed by Henschen et al. (20), who

demonstrated tolerance to MG in the eastern house finch

populations with >20-year coevolutionary history with the

pathogen. This study revealed that in the Harderian glands of the

same birds as used in this study, up-regulated expression of some

cytokines and cytokine receptors (CXCL8, CXCL14, CCL20, CSF3R)

was present only in the less-tolerant populations that have not yet

or only recently experienced epidemics with MG (AZ, HI). In

contrast to Henschen et al. (20), our transcriptomic results in

conjunctiva do not indicate clear similarities in gene expression

patterns between birds from the eastern populations that share a

long co-evolutionary history with MG (VA and IA), when

compared to western populations (AZ and HI). This suggests that

each population might have evolved a slightly different mode of

regulation of the immune response to MG at the conjunctival

infection site.

Our results indicate that the immune response triggered by MG

3DPI in conjunctiva represents Th17-directed inflammation. From

the total 109 genes differentially expressed, the majority of immune

genes (58) were up-regulated, including e.g. TLR1B receptor

activating inflammation, IL17 receptor genes IL17RA and IL17RE,

chemokine CXCL12, but also ACOD1, a negative regulator of the

inflammatory response. These immune genes have significant and

interspecifically conserved roles in immune activation and

regulation (59–64). Similar to our results, previous transcriptomic

research in chickens has also shown increases in expression of

TLR1B, CXCL12 and ACOD1 after infection with MG (65–67).

Some genes, such as CD74 expressed on antigen-presenting cells

(68) as a receptor for macrophage migration inhibitory factor (MIF)

(69) inducing inflammation (70), showed patterns of expression

contrasting with previous research in the house finch-MG system.

While our data show up-regulation, Bonneaud et al. (38) reported

down-regulation of CD74 during infection. This contrast could

result from the difference in tissue used, the time of tissue collection

post-infection, or differences in host population coevolutionary

time with MG when the studies were performed: the population
FIGURE 7

Venn diagram showing the genes in common between all the three
comparative analyses performed. We found eight genes differentially
expressed in conjunctiva during Mycoplasma gallisepticum (MG)
infection (model 1), with pre-activation levels that differed among
the four populations (model 2), and that differed in expression in
response to the different MG isolates used for the inoculation
(model 3).
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with noted resistance in Bonneaud et al. (38) had ~12 years of co-

evolution with MG versus 20-25 years of MG coevolution for the IA

and VA populations used in this study. Increased CD74 expression

during MG infection could improve activation of antigen-

presenting cells (68), and through interaction with MIF (70),

could also promote regenerative pathways in the tissue preventing

the host damage. Overall, this could contribute to the observed host

tolerance to MG in certain house finch populations. We found that

only 11 immune genes were down-regulated in conjunctival tissue

in response to MG, including IL12B, an essential mediator of the

Th1 immune response. This is consistent with observations by

Bonneaud et al. (39), suggesting that MG may be manipulating

house finch gene expression during the acute immune response in

order to allow efficient infection establishment. MG was revealed to

cause immune suppression in the initial infection stages in chickens,

suppressing expression of key cytokines involved in inflammation,

including IL8, IL12 and CCL20 (71). Thus, our data support this

hypothesis, indicating that MG may be down-regulating specific

host immune pathways rather than overall immune activation.

Contrary to our expectations and to results fromHarderian gland

transcriptomes in the same birds (20), our general analysis of the

conjunctival transcriptomes (model 1) suggested only limited

interactions between MG infection status and population of origin.

This result indicates tissue-specific differences in the immune

regulation, but also that variation in the responses between

populations may depend only on few key modifiers of the immune

regulation rather than extensive transcriptome alterations. The most

promising immune-controlling gene revealed in our results is BCL10,

a positive regulator of cytokine expression involved in modulation of

adaptive immune responses. In mammals, BCL10 has a vital role in

channelling adaptive and innate immune signals downstream to

CARMA/caspase-recruitment domain (CARD) scaffold proteins

(72). BCL10 oligomerization via the CARD facilitates NFKB

activation (73–75). Previous research in mice showed that BCL10 is

a positive regulator of lymphocyte proliferation inducing antigen

receptor signalling in B and T cells in response to NFKB activation

(76). Impairment in BCL10 function negatively affects the

development of memory B, CD4+ and CD8+ T cells (77). The

immunomodulatory effects of BCL10 are further documented by

the up-regulation of its expression during experimental bacterial

infections in cattle (78) and poultry (79). However, it has to be

noted that there are also additional non-immune functions of BCL10

described in other cells, including its involvement in neuronal

regulation (80). Based on our data the precise role of BCL10 in the

conjunctival tissue and causality of the changes in its expression

cannot be inferred.

Although we did not find strong evidence for population

differences in response to infection treatment, our results showed

high number of immune genes that vary in their conjunctival

expression between the house finch populations, independently of

MG infection. These include key Th17 pathway regulators, such as

the cytokine IL17D that is known to induce expression of other pro-

inflammatory cytokines, including IL6 and CXCL8. This may

suggest population-specific adaptations in conjunctival gene

expression, potentially contributing to optimisation of the
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immune interaction with MG at the infection site. IL17 has a vital

role in the initiation of chemotaxis and the functioning of Th17 cells

(81, 82) and commonly shows up-regulation in birds immunized

with various intracellular pathogens (83). Conjunctiva is colonised

by innate lymphoid cells (ILCs), NK cells, gdT cells (84), abT cells

(85) and memory T cells (86), out of which the gdT cells were

identified as the predominant source of IL17 during inflammation

(87). In our study, IL17D was generally highly expressed in the AZ

population, which, together with increased BCL10, CASP6 and

decreased NR1H4 [a negative regulator of IL1B production; (88)]

compared to the VA birds suggests disposition of the birds to

resistance-oriented response through Th17 pathway pre-activation.

Although the activity of NR1H4 in conjunctiva is presently not

entirely clear, its function at the site may be relevant, as in the gut

this receptor negatively controls expression of a number of genes

that activate inflammatory responses (58, 89, 90). In contrast to

other populations, longer co-evolutionary history with MG may

have selected the VA population to increase NR1H4 and decrease

BCL10 expression, which is in agreement with the tolerance

evolution described in house finches by Henschen et al. (20). This

view is partially supported also by our target-gene analysis focusing

on selected key immune genes with regulatory roles in immunity.

All populations up-regulated IL1B, IL6, IL10, IL18, IL22, CXCL8,

CCL4, TLR1, ACOD1, TLR4, and TLR7 when infected with evolved

MG (VA2013), which would propagate inflammation and facilitate

pathogen transmission through pathological mycoplasmal

conjunctivitis (15, 36). However, the AZ birds, compared to VA

birds, showed a particularly high increase in expression of TLR1 and

TLR4, probably intensifying the resistance-oriented inflammatory

response to MG. Our result thus shows similarity to the findings of

Adelman et al. (33) in which house finches from populations with a

longer coevolutionary history with MG (VA) showed lower

inflammatory signalling and increased tolerance to infection than

birds from populations with recent contact history (AZ) with MG.

Further research is, however, needed to confirm the putative

tolerogenic adaptations in the VA population.

Bonneaud et al. (39) proposed that the variation between house

finch populations in resistance to MG likely results from some

adaptations changing the initial innate immune regulation directing

the subsequent adaptive immune response. This idea is consistent

with the evidence from laboratory rodents showing that the initial

innate immune regulation defines the efficiency of the clearance of

mycoplasmal infections (91). Given the results we obtained from

our general analysis (model 1), we tested this hypothesis using a

subset of the data representing only the control individuals from the

four house finch populations (model 2). From the high number of

genes differentially expressed in the controls between the

populations, 71 genes had clear roles in immunity. Consistent

with our previous result, the control birds from the AZ

population showed higher baseline expression of IL17D, IL17C,

IRF6, TLR15 and TLR1B genes putatively strengthening the overall

Th17 responses, while the VA population showed stronger

expression of IL7, IL12B and LIF, suggesting possible pre-

activated Th1 immune pathway coupled with anti-inflammatory

signalling, which was again linked with decreased BCL10
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expression. We assume that immunological regulation of tolerance

to infection must involve balanced changes of both pro- and anti-

inflammatory pathways to prevent infection-caused mortality.

IL12B, a subunit of IL12, primarily stimulates natural killer (NK)

cells and induces the differentiation of naive CD4+ T lymphocytes

into T helper 1 (Th1) effectors (92). If the IL12B subunit is

dimerized with the IL23A subunit, then functional IL23 is

produced (93), which is necessary for Th17 development and

function (94). Alternatively, IL12B can also mediate anti-

inflammatory regulation increasing expression of other regulatory

cytokines such as IL10 (95), with IL7 supporting the host defence by

regulating immune cell growth and homeostasis (96). Thus,

increased baseline expression of IL12B might have multiple

functional roles in protecting the health of the VA birds during

the onset of MG infection. Birds from the HI and IA populations

showed similar up-regulation of immune-related pathways

activated by mast cells and B cells (TRIM13 and PPARD) when

compared with the VA birds but also with AZ birds. Taken

altogether, the pattern of immune gene expression in the VA

birds was different from all the other three remaining house finch

populations, putatively resulting, at least in part, from long-lasting

adaptation to MG through a combination of resistance and

tolerance (20).

We also examined pathogen contributions to differential

conjunctival gene expression across populations (model 3).

Consistent with previous research (5, 20, 37) we found that the

evolved (VA2013) isolate triggers much stronger conjunctival

immune responses than the original (VA1994) one, here

indicated by the number of DEGs when compared to controls. In

contrast to VA1994, the evolved isolate VA2013 activated pathways

involving differential expression of both pro-inflammatory and

anti-inflammatory genes, including key signal mediators such as

IL1B, IL10, IL18, IL22 and CXCL8. Especially negative regulators of

inflammation, such as IL10, can play important roles in fine-tuning

immunomodulation, since their down-regulation can improve

pathogen clearance, but also increase tissue damage (97–100),

optimising the immunity-immunopathology balance in the

defence (9). Previous research in rodents performed both in vivo

and in vitro shows that Mycoplasma pneumoniae antigens induce

potent immune reactions through enhancement of the Th17

response, but regulatory T cell (Treg) activation linked with IL10

expression simultaneously suppress IL17A expression (101). In

contrast, IL18 is a potent pro-inflammatory cytokine regulating

both innate and acquired immune responses (102). Studies in

chicken show that MG infection increased mRNA levels of IL18

between 3 and 7 DPI, similar to our results (103). Also IL22 is a key

mediator of inflammation that is produced immediately after

stimulation to initiate an immune response, mediating also

mucous production, wound healing, and tissue regeneration

(104). Comparable to our results, IL22 gene has been reported as

up-regulated during Mycoplasma ovipneumoniae infection in

sheep (105).

Overall, comparison of the results from all three analyses

performed identifies BCL10 as a potentially important immune

gene that changes its conjunctival expression during the MG
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infection, varies in its expression between individuals from

different house finch populations, and also varies in expression

depending on the MG isolate infecting the birds. Furthermore,

other genes involved in the response to MG (model 1 or model 3)

and at the same time also differentially pre-activated in distinct host

populations (model 2) may be of high importance for house finch

adaptation to MG. Our results elucidated both positive and negative

regulators of inflammation and Th1 immunity, including IL12B and

possibly also PPARD and NR1H4. Roles of other genes repeatedly

revealed in our analyses are less clear, but they may contribute to

altered leukocyte differentiation, infiltration into the tissue or cell

activation (RAG1, RAC2, TRIM13, NCAPH2, CDH17, ACTG1 and

ROMO1). Thus, all these 11 genes potentially provide adaptations to

the selective pressures posed by MG varying between the house

finch populations.

Our transcriptomic results obtained in conjunctiva apparently

differ from the results obtained earlier by Henschen et al. (20) from

the same experiment but for a different tissue, the Harderian gland.

Most importantly, the pattern of variation between the house finch

populations revealed for the two tissues in response to MG is

different. While we assume that biologically significant differences

in immune regulation between the tissues are responsible for the

differences in gene expression patterns observed, we are,

unfortunately, presently unable to explain them, because for the

two studies different transcriptomic methods were adopted, RNA-

seq and QuantSeq, respectively. The RNA-seq approach can be

biased by more enriched DEGs for longer transcripts than for the

shorter ones (106). Previous research has reported that RNA-seq

identifies in general more DEGs, but QuantSeq can detect more of

the shorter transcripts (46) that often act in immunity (107). Thus,

future research is needed to validate the results and reveal if the

difference in the transcriptomic results obtained for the two house

finch tissues reflect true biological difference between the tissues,

variation in the transcriptomic approaches adopted, or both.
Conclusion

Our results illuminate potential immunological pathways

underlying increased tolerance to MG in birds from the VA

population compared to the other house finch populations.

Notably, they suggest the importance of evolving balance between

the Th1 and Th17 pathway activation during the initial conjunctival

response of the house finches to the MG infection. The populations

in no or only recent contact with MG may have increased tendency

for up-regulation of the IL17-linked pathway (observed in AZ),

while the populations with long-established co-evolutionary history

with MG (VA), could promote IL12 signalling to increase Th1 and/

or anti-inflammatory (possibly B-cell driven) immune responses.

Further research should focus on understanding of specific roles of

various cell types in the immune responses to MG in birds from

populations differing in their co-evolutionary history with MG.

Furthermore, our results also document that infection with a more

recent MG isolate (VA2013) triggers in conjunctiva stronger

expression of immune genes than infection with the original
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isolate (VA1994). Since also non-immune pathways may be affected

by this regulation [e.g. pathways regulating the extent of the

sickness behaviour which might influence MG transmission in

the finches; (36, 108)], further research should also investigate the

expression changes in genes with other functions expressed in non-

lymphoid tissues.
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