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There exists a bidirectional relationship between oral health and general well-

being, with an imbalance in oral symbiotic flora posing a threat to overall human

health. Disruptions in the commensal flora can lead to oral diseases, while systemic

illnesses can also impact the oral cavity, resulting in the development of oral

diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum,

known as pathogenic bacteria associated with periodontitis, play a crucial role in

linking periodontitis to accompanying systemic diseases. In periodontal tissues,

these bacteria, along with their virulence factors, can excessively activate the host

immune system through local diffusion, lymphatic circulation, and blood

transmission. This immune response disruption contributes to an imbalance in

osteoimmune mechanisms, alveolar bone resorption, and potential systemic

inflammation. To restore local homeostasis, a deeper understanding of

microbiota–host interactions and the immune network phenotype in local

tissues is imperative. Defining the immune network phenotype in periodontal

tissues offers a promising avenue for investigating the complex characteristics of

oral plaque biofilms and exploring the potential relationship between periodontitis

and associated systemic diseases. This review aims to provide an overview of the

mechanisms underlying Porphyromonas gingivalis- and Fusobacterium

nucleatum-induced alveolar bone resorption, as well as the immunophenotypes

observed in host periodontal tissues during pathological conditions.
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Introduction

Oral health is an indispensable element of general health and

well-being ensuring the fulfillment of basic daily human functions.

However, according to the 2015 Global Burden of Disease (GBD)

study, about 3.5 billion people worldwide suffer from oral

conditions (1). The pronounced global prevalence and severity of

oral diseases have sparked significant concern among the public.

These progressive chronic clinical diseases affect the teeth and

various tissues within the oral cavity. Dental caries, periodontal

diseases, oral mucosal diseases, and oral cancer are the main types

of oral diseases, exhibiting high prevalence and severe adverse

prognosis for individuals, communities, and society (2).

Beyond their prevalence and public concern, oral diseases are

believed to have bidirectional associations with systemic health (3–

7). Simultaneous or sequential occurrences of oral diseases and

systemic diseases (8–19), such as gastrointestinal, immune,

cardiovascular, and nervous system diseases, have been reported.

Moreover, the tight relationship between human microbial

communities and human health has drawn significant interest

from researchers, with the oral microbiome considered to play a

vital role in oral diseases and the connection between oral and

general well-being.

Oral pathogens colonize the surfaces of different habitats within

the oral cavity and form functional groups with pathogenic roles.

Typical representatives of these groups include Porphyromonas

gingivalis and Fusobacterium nucleatum. These two periodontal

pathogens can disrupt bone homeostasis by excessively activating

host immune responses. The resulting microbial–host interaction-

induced local inflammation may spread throughout the body,

leading to systemic diseases. In this review, we elucidate the

mechanisms behind Porphyromonas gingivalis-and Fusobacterium

nucleatum-induced bone resorption, construct the immune defense

phenotypes of the human body against the invasion of oral

pathogenic microorganisms, and further explore the interaction

between oral microbial communities and the host.
Oral microbial ecological guilds and
oral diseases

The oral cavity is an open system where microbes are

ingested with every breath, meal, and drink, colonizing through

close contact with other humans, animals, or the physical

environment. It provides a habitat for microbes, with suitable

temperature, humidity, and nutrition. Despite there being

millions of microbial species on Earth, only approximately 760

have been identified as major oral residents (20). In typical oral

ecology, there are only 296 species-level microbial taxa (21), which

are collectively referred to as the human oral microbiota (22).

Alongside planktonic forms, the oral microbiota tends to assemble

into complex spatial structures and form symbiotic communities

to adapt to environmental changes and maintain microbial

community and host homeostasis.
Frontiers in Immunology 02
Oral microbial dysbiosis and its
pathogenic pathway

Microbial dysbiosis is generally considered a state that mediates

the associations between microbiota patterns and disease states

(23). As the oral cavity is an open ecosystem, oral microbial

homeostasis is often challenged by many factors, such as genetics,

gender, habitat, age, diet, living habits, and environment. Long-term

nongenetic factors may cause genetic variation, resulting in

dramatic changes in the structure of the bacterial flora (24).

The bidirectional association between oral microbial dysbiosis

and general disease states might occur three distinct manners (25).

Oral bacteria and their products can be transferred into the

circulatory system via open or closed foci, such as inflammatory

and ruptured epithelium or infection around the root apices. This

transfer can cause transient bacteremia, resulting in systemic

inflammation and metabolic and functional disorders (6, 26).

Bacterial products, such as gingipains secreted by the typical

periodontal pathogen P. gingivalis, have the potential to promote

such pathological processes by degrading tight junction proteins,

not only in periodontal tissues but also in vascular endothelial

cells (27).

Oral pathogens can also be disseminated through non-

hematogenous processes. Routes such as oro-pharyngeal or oro-

digestive pathways may lead to ectopic colonization in the gut,

disrupting the local microbial composition, triggering inflammation,

compromising the intestinal mucosal barrier function, and inducing

systemic diseases (28–31). An imbalance in gut homeostasis can

promote the colonization of oral bacteria in the intestines (32–34). In

addition, immune cells and factors responsive to oral pathobionts in

the gut or other parts of the body can migrate to the oral cavity,

exacerbating oral inflammatory conditions like periodontitis (35, 36).

These processes illustrate the probability of an oral-systemic axis that

regulates human health and disease conditions.
Oral microbial niches and ecological guilds

Microbes in the oral cavity are not uniformly distributed. Only a

few dozen species are abundant and constitute the core of the oral

microbial community, whereas others are less abundant (37, 38).

Heterogeneous colonization of oral microorganisms can be

attributed to the uniqueness of oral niches, including the saliva,

tongue, oral mucosa, mineralized tooth surfaces, and periodontal

tissues (22). The spatial organization of oral microbes is in a state of

dynamic equilibrium, maintained by opposing forces such as

salivary flow, microbial adhesion, shedding and colonization, and

crucially, microbe–microbe and microbe–host interactions (25, 39,

40). The microbiome colonizing the surface of mineralized teeth

exists in the form of biofilms. Depending on their composition,

nutritional background, ecological site anatomy, and antigen and

immune exposure, plaques can be classified as subepithelial or

subgingival (41, 42). Microorganisms within plaque biofilms

rarely live independently; instead, they interact to form different
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functional groups and cooperate as ecological guilds to perform

higher physiological functions (43). This applies to periodontal

pathogens in subgingival plaques, where dominant species in the

periodontal ecological guilds can determine the overall function of

the group or play a crucial auxiliary role.
Periodontal pathogens and
bone remodeling

The role of periodontal pathogens in amplifying systemic

inflammation and organ dysfunction has recently been established

in several systemic diseases (44–46), such as inflammatory bowel

disease (IBD), stroke, chronic renal diseases, cardiovascular diseases

(47–49), diabetes (47), pneumonia, meningitis, rheumatoid arthritis

(47, 50), cognitive disorders (51), as well as poor pregnancy outcomes

(52, 53) and cancer (54). Porphyromonas gingivalis, a keystone

periodontal pathogen, can ferment amino acids and grow deep in

the glucose-poor periodontal pocket. P. gingivalis also invades

gingival tissues and epithelial cells, promoting cell proliferation and

causing epithelial radicular proliferation, which is a typical

manifestation of periodontitis. The interaction between P. gingivalis

and local host immune responses can have two contrasting outcomes,

speculated to be related to the concentration of P. gingivalis and its

virulence factors, mainly lipopolysaccharide (LPS), fimbriae, and

gingipains. The concentration of virulence factors is high in the

superficial layer, leading to immune escape, and low in the deep layer,

resulting in a pro-inflammatory response that increases nutrient

(heme) requirements (55). P. gingivalis employs unique and

complex pathogenic mechanisms. These include strong invasive

properties to allow it to enter the circulatory system, induce cell

apoptosis, initiate oxidative stress, influence the host innate immune

response by inducing dysfunction in neutrophils and macrophages,

and facilitate the expression of acute phase proteins and numerous

pro-inflammatory cytokines (52). Furthermore, P. gingivalis has the

ability to regulate the innate immune response, ensuring the growth,

colonization, and invasion of other opportunist and symbiont

bacteria such as F. nucleatum, Firmicutes, C. rectus, Streptococci,

Staphylococci, Enterobacteriaceae, Prevotella, Hemophilus

parainfluenza, and Dialister (56–58). The dysbiotic microbiome

induced by P. gingivalis is inherently resilient and can be stably

transferred and easily restored even after antibiotic therapy is

discontinued (59), making the local and systemic disease conditions

triggered by P. gingivalis difficult to cure.

The obligate anaerobes Fusobacterium nucleatum, another core

member of dental plaque, is believed to play a significant role in

plaque maturation and dental plaque diversity (60). Its ability to co-

cluster with various taxa serves as a physical bridge between early

and late colonization of dental plaque organisms (60). Other

hypotheses suggest that F. nucleatum acts as an indicator of

establishing an anaerobic microenvironment and promoting

plaque maturation (61–63), and has long been considered an

initiating factor in periodontal disease. F. nucleatum tend to

synergistically aggravate periodontitis and other systemic diseases

when combined with P. gingivalis (52). However, despite being

recognized as a periodontal pathogen, recent studies on
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F. nucleatum mostly discuss its role in tumorigenesis and

immune evasion, with relatively few studies linking it to

periodontal bone destruction.

The involvement of P. gingivalis and F. nucleatum in bone

remodeling has always been a concern because of periodontitis.

Periodontitis is a chronic inflammatory disease of the mouth that

primarily develops from gingivitis. The accumulation of subgingival

biofilm drives the progression from gingivitis to periodontitis, leading

to the loss of periodontal supporting tissues. This progression occurs

through continuous and complex interactions between the subgingival

biofilm and the host’s immune response (21, 64, 65). Different clinical

phenotypes of periodontitis have been associated with oral flora

exhibiting different characteristics (66). While commensal gut

microbes also have the capacity to regulate osteoimmune processes

in the alveolar bone (67), P. gingivalis and F. nucleatum, which are

oriented toward the commensal oral microbiota, have been shown to

independently contribute to alveolar bone remodeling, separate from

the systemic microbiome (39).
Pathological mechanisms of alveolar
bone resorption induced by
periodontal pathogens

Bone homeostasis in periodontal tissues

Pathogenic bacteria flourish in the gingival sulcus owing to their

immune resistance, and their secretion of virulence factors or

parasitic behavior can stimulate the immune response in the

gingival tissues. This immune response effectively transmits

virulence signals to the bone marrow cavity, leading to enhanced

bone marrow hematopoiesis (39), which is an important pathway

for immune cell generation. Under the dual stimulation of

dysregulated bacterial flora and an excessive immune response,

the homeostasis of alveolar bone tissue is unbalanced. To further

demonstrate the roles of P. gingivalis and F. nucleatum in bone

resorption, it is necessary to briefly review the mechanisms of

osteoimmunology and the key regulatory axis of bone

homeostasis, the receptor activator of nuclear factor-kappa B

ligand (RANKL)–receptor activator of nuclear factor-kappa B

(RANK)–osteoprotegerin (OPG) axis.

The term ‘osteoimmunology,’ coined by Arron and Choi in

2000 (68), refers to the field that investigates the interactions

between immune cells and bone cells. These interactions mediate

skeletal development, modification, and homeostasis under both

physiological and pathophysiological conditions. Both innate and

adaptive immune cells participate in bone turnover through direct

contact or expressing a range of immune molecules, such as

cytokines, chemokines, and immunoglobulins.

Recently, a research group provided a cellular atlas of specific

oral mucosal positions in health and disease conditions, revealing a

distinct stromal–immune responsive axis that dysregulates under

inflammatory conditions. This axis may be capable of mediating

periodontal osseous tissues homeostasis (69). The major cell types

within healthy gingival tissues include epithelial cells, endothelial
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cells, fibroblasts, and immune cells. Within healthy gingival tissues,

the immune category can be divided into five major clusters: T, NK,

B/plasma, granulocyte, and myeloid cells, with T cells being the

most numerous. T cells in gingival tissues can be subdivided into ab
CD4+T, TH17, mucosal-associated invariant T (MAIT), ab CD8+T,

gd T, Treg, and NKT cells. The second largest population was

myeloid linages, including neutrophils—which dominated this

compartment—macrophages (Mj), and myeloid dendritic cells

(mDC). This result suggests that neutrophil-mediated innate

immune responses are activated even when the periodontium is

healthy. Sustained and highly coordinated neutrophil chemotaxis

from the gingival vessels to the healthy gingival sulcus constitutes

one of the major protective mechanisms against colonization by

pathogenic microorganisms (65). Proper neutrophil monitoring

targeting dental plaque biofilms has a dual benefit, conferring

resistance to microbial colonization in periodontal tissues while

maintaining an appropriate microbial composition for normal

periodontal tissues function (70).

The epithelial and stromal cells present in the oral mucosa

exhibit inflammation-related antimicrobial defense functions and

can express transcriptional signatures of periodontitis inflammation

and recruitment factors for neutrophils (69). This may be one of the

reasons for the significantly elevated proportion of neutrophils in

the oral mucosa. Stromal and immune cells can interact with each

other through the expression of periodontitis susceptibility genes,

becoming potential drivers of periodontal inflammation and

immune cell over-recruitment, ultimately forming the basis of

destructive hyperreactive immune responses (69).

Under healthy conditions, alveolar bone homeostasis is

maintained by neutrophil-mediated innate immunity and T cell-

mediated adaptive immunity. The cells and molecules involved

stimulate bone remodeling cells, such as osteoblasts, osteoclasts, and

their precursors, regulating their generation, development,

function, and survival, ultimately maintaining bone homeostasis.

Osteoclasts and osteoblasts in bone homeostasis
Bone homeostasis is maintained by the coordinated action of

mesenchymal-lineage-derived bone-forming osteoblasts and myeloid-

lineage-derived bone-resorbing osteoclasts (71). Osteoclasts resorb

osseous tissues by secreting hydrogen ions and lytic enzymes, while

osteoblasts support mineralization by secreting unmineralized bone

matrix and non-collagenous proteins (72).

Osteoclasts originate from monocyte–macrophage precursor cells,

which are originally differentiated from HSCs. Studies have

demonstrated that M1 macrophages contribute to osteoclastogenesis

(73–75) under pathogenesis, and immature dendritic cells can develop

into osteoclasts mediated by RANKL–RANK signaling (76, 77).

Macrophage colony-stimulating factor (M-CSF) activates its cognate

receptor c-Fms, inducing the expression of RANK on pre-osteoclasts

(78), and consequently, induces the expression of NFATc1, a

transcription factor that results in osteoclast proliferation and

differentiation (79–82). Dendritic cell-specific transmembrane protein

(DC-STAMP) (83, 84) and osteoclast stimulatory transmembrane

protein (OC-STAMP) (85) are crucial for osteoclast maturation in a

RANKL-dependent manner. RANKL-induced expression of the
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integrin-b3 subunit guarantees the aVb3-mediated cell adhesion,

which can seal certain podosomes, providing a critical

microenvironment for osteoclast physiological functions such as

motility and bone degradation/resorption (40–42). The secretion of

cathepsin K, tartrate-resistant acid phosphatase (TRAP), and

proteolytic enzymes occurs via the NFATc1-mediated RANKL

signaling pathway (40–42).

Osteoblasts are mesenchymal lineage-originated osteogenic cells

that eventually become bone-lining cells or osteocytes. Osteoblast

differentiation and function are regulated by the transcription factors

osterix and activating transcription factor 4 (ATF4), with the support of

WNT, bone morphogenetic protein (BMP), fibroblast growth factor

(FGF), insulin-like growth factor (IGF) signaling,. A recent study

revealed that RANKL contributes to the osteogenic direction of bone

marrow mesenchymal stromal cell (MSC) differentiation (86),

indicating that membrane-bound RANKL, as a member of TNF

superfamily, possesses the capability to act as a receptor for vesicular

RANK derived from mature osteoclasts (87) or apoptotic bodies (88),

performing reverse signaling from osteoclasts to osteoblasts and

contributing to osteogenesis, and consequently promote the coupling

of bone resorption and formation (87). This specific function is

regarded as bidirectional signaling transportation, which might be

closely related to the intracellular proline-rich motif (87). Given that

membrane-bound RANKL is an easy-clustering-featured molecular

and the clustering of this type of receptor was proven to induce cell

activation (89–93), the accumulation and clustering of RANKL seems

to be the critical mechanism triggering RANKL reverse signaling (94).

Vesicular RANK binding to RANKL activates osteoblasts and

promotes osteogenesis through mammalian target of rapamycin

complex 1 (mTORC1) signaling and Runt-related transcription

factor 2 (Runx2) activation (87). However, OPG, as a competing

receptor for RANKL, cannot stimulate osteoblast activation owing to

its characteristic of disturbing RANKL clustering (94).

Thus, the RANKL–RANK–OPG axis produces essential signals

that mediate intercellular communication in osteoclast–osteoblast

coupling by regulating effector gene expression that drives cell

proliferation, differentiation, maturation, function, and

survival (Figure 1).

RANKL, RANK, and OPG
The receptor activator of nuclear factor-kappa B ligand (RANKL)

and the receptor activator of nuclear factor-kappa B (RANK) were

first discovered during the study of T-cell activation, and were found

to be essential regulators of T cell and DC activation, thereby

influencing T cell-mediated immune responses (95, 96).

Subsequently, their critical role in osteoclast differentiation and

bone remodeling was revealed (97, 98). RANKL, along with other

biological mediators, regulates osteoclast differentiation, and under

pathological conditions, it directly upregulates the expression of pro-

osteoclastic cytokines and indirectly signals stromal-osteoblastic cells

(99–101). Simultaneously, independent research groups identified

RANKL as the osteoclast differentiation factor (ODF) from mouse

myelo-monocytic cell lines and bone marrow-derived stromal cell

lines (102, 103). Similarly, RANK was identified as the osteoclast

differentiation factor receptor from mouse macrophage-like cell line
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(104, 105). Additionally, OPG was discovered to be an inhibitor of

osteoclast differentiation (106, 107). These findings laid the

foundation for understanding the regulatory effect of the RANKL–

RANK–OPG axis in bone homeostasis.

RANKL, encoded by the tumor necrosis factor superfamily

member 11 (TNFSF11) gene, is a type II homotrimeric membrane

protein. It is produced by a variety of cell types, including

osteoblasts, osteocytes, bone stromal cells, and immune cells

within skeletal tissues. RANKL exists in three isoforms, with

RANKL1 and RANKL2 being membrane-bound forms (108) that

can be converted to soluble forms through proteolytic shedding

(109, 110). RANKL3 lacks a transmembrane domain and is

considered a soluble form (108). The membrane-bound form of

RANKL can basically fulfill the function of this protein, but the

soluble form contributes to physiological bone remodeling (111).

RANK, encoded by the tumor necrosis factor receptor

superfamily member 11a (TNFRSF11A) gene, is a type I

membrane receptor mainly expressed by hematopoietic cells, but

also by osteoclasts and their precursors (78). It can also be detected on

the surface of mesenchymal stem cells (86, 112). The intracellular

domain of RANK contains a binding site for TNF receptor-associated

factor (TRAFs) (113), which regulates the expression of genes

associated with osteoclast function through the TRAF pathway (114).

OPG, encoded by the tumor necrosis factor receptor superfamily

member 11b (TNFRSF11B) gene, is a member of the TNFR

superfamily. It is primarily expressed by bone marrow stromal cells

and osteoblasts, but can also be expressed in B cells, DCs, and follicular

DCs. OPG exists only in its secretedmolecular form and acts as a decoy

receptor, competitively binding RANKL to block RANKL–RANK

interaction (106). Local OPG is considered more crucial for skeletal

and immune homeostasis compared to circulating OPG (115). In
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addition to RANK and OPG, LGR4 has been identified as a third

competitive receptor that negatively regulates osteoclastogenesis

through the GSK3-b signaling pathway by restraining NFATc1

expression (116). However, the binding affinity between RANKL and

LGR4 is thought to be lower than that between RANKL and OPG,

making OPG the main inhibitor of RANKL–RANK signaling (117).

The RANKL–RANK–OPG axis is a crucial signaling pathway for

maintaining bone homeostasis through osteoblast-osteoclast

coupling, with the concentration of soluble RANKL playing the key

role. Disruptions in this pathway, caused by various stimulatory

signals targeting RANKL secretion, can lead to an imbalance in bone

homeostasis and contribute to pathogenic bacteria-induced bone

resorption. In the following section, we will explore the virulence

factors of major periodontal pathogens and their abilities to interfere

with RANKL secretion through specific pathways.
Virulence factors of periodontal pathogens
and their pathogenic pathways

P. gingivalis and F. nucleatum possess various virulence factors

that contribute to their pathogenicity. These factors play a

significant role in the development and progression of

periodontal disease. In recent years, there has been increased

research interest in the role of bacterial extracellular vesicles

(BEVs) in the pathogenic mechanisms of these microorganisms.

We will explore these separately.

The virulence factors of P. gingivalis
P. gingivalis, an opportunistic pathogen and member of

Socransky’s red complex, produces several virulence factors that
FIGURE 1

The RANKL–RANK axis produces essential signals that mediate intercellular communication in osteoclast–osteoblast coupling by regulating effector
gene expression that drives cell proliferation, differentiation, maturation, function, and survival. OPG, primarily expressed by bone marrow stromal
cells (BMSCs) and osteoblasts, acts as a decoy receptor, competitively binding RANKL to block RANKL–RANK interaction. (By Figdraw).
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induce detrimental effects on the host. The main virulence factors of

P. gingivalis are LPS, fimbriae, and gingipains, which are crucial for

the survival and metabolism of the bacterium.

LPS is an outer membrane component of gram-negative

bacteria. It interacts with host cells, triggering a series of

intracellular signaling events. LPS molecules consist of core

polysaccharides, O-antigens, and lipid A; the latter two in P.

gingivalis are highly diverse regions that confer antigenic

differences and alter the interaction with pattern recognition

receptors (PRRs), mainly TLR2, TLR4, and CD14. The disparity

in LPS molecules depends on microenvironmental conditions (117)

and sometimes leads to opposing immunological actions, immune

evasion, or pro-inflammatory responses. This demonstrates that by

manipulating the host immune activities, P. gingivalis can ensure its

adaptation and survival (118, 119).

P. gingivalis LPS stimulates bone resorption in experimental

models and activates various cell types, including mono-

macrophages, endothelial cells, and epithelial cells, leading to

the release of pro-inflammatory mediators and triggering

immunoinflammatory reactions in the host tissues (120, 121). In

vitro studies have also shown that P. gingivalis LPS increases the

expression of pro-inflammatory cytokines in monocytes and

macrophages, promoting bone resorption. In vivo, P. gingivalis

LPS can activate mono-macrophages, endothelial cells, and

epithelial cells through pathogen-associated molecular pattern

(PAMP)-PRR recognition, resulting in the activation of cell

signaling pathways like NF-kB and MAPK. These pathways

ultimately stimulate the synthesis and release of IL-1, IL-6, TNF-

a, NO, and other inflammatory mediators, contributing to a series

of immunoinflammatory reactions in host tissues. In vitro, P.

gingivalis LPS has also been proven to increase the expression of

pro-inflammatory cytokines, such as IL-1, IL-6, IL-8, TNF-a, and
IL-18, in monocytes and macrophages (122–125). These pro-

inflammatory cytokines, including IL-1b, IL-6, and TNF-a, have
been shown to stimulate bone remodeling cells and influence the

RANKL–RANK–OPG axis, thereby promoting bone resorption.

Fimbriae are slender filamentous protrusions on the surface of P.

gingivalis that that play a role in adherence and have pro-inflammatory

capabilities (126–128). These fimbriae can stimulate signal generation

through either TLR2 or TLR4, activating two distinct intercellular

pathways. This activation leads to the production of pro-inflammatory

factors andmatrix metalloproteinases (MMPs), including TNF-a, IL-1,
IL-6, IL-8, and MMP-9 (129, 130). Fimbriae also promote the

expression of cell adhesins such as ICAM-1 (131). Moreover,

fimbriae can interact with and activate the binding capacity of

Complement Receptor 3 (CR3) through “inside-out” signaling (132,

133), facilitating the internalization of P. gingivalis bymacrophages and

reducing IL-12 production, whichmay inhibit bacterial clearance (133).

Notably, fimbriae play a significant role in inducing bone destruction in

experimental periodontitis models (134), and may be a target for

immunotherapy aimed at reduce bone resorption (135, 136).

Gingipains, a series of cysteine proteinases generated by P.

gingivalis, can be categorized into two types: arginine-specific (Arg-

X) and lysine-specific (Lys-X) gingipains (137, 138). These

gingipains can be present either on the cell surface or secreted in

a soluble form. They are considered vital virulence factors of P.
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gingivalis but exhibit contradictory effects on innate immunity. On

one hand, gingipains can activate protease-activated receptors

(PARs) and act as pro-inflammatory stimulators and enhancers

(139, 140) in neutrophils (141), gingival fibroblasts, gingival

epithelial cells (142) and T-cells (143). They stimulate the

production of IL-6 in oral epithelial cells (142) and IL-8 in

gingival fibroblasts (144), and promote the recruitment of

polymorphonuclear neutrophils (PMNs) through complement

system activation (145, 146). On the other hand, gingipains can

hinder the host immunity by cleaving several TCRs (147) and

proteolytically inactivating factors such as IFN-g, IL-4, IL-5, and IL-
12 (148–151), even reducing bacterial opsonization (152) to cause

increased resistance to bactericidal activity in P. gingivalis. Apart

from manipulating host immunity, gingipains have also been

shown to facilitate the adherence and invasion of fibroblasts and

gingival epithelial cells (153–155), as well as increase vascular

permeability and hemin availability in periodontal tissues,

creating favorable conditions for P. gingivalis growth (156).

The virulence factors of F. nucleatum
F. nucleatum, a member of the Socransky’s orange complex, is a

symbiont, opportunistic pathogen, and oncobacterium (157–159).

Several virulence factors of F. nucleatum have been characterized,

including FadA (160–164), which regulates adhesion and invasiveness;

the heat-shock protein GroEL, which triggers host inflammatory

factors (161); the endotoxin LPS, which activates NLRP3 and

induces the release of inflammatory cytokines such as IL-1b (165);

the metabolite butyric acid, which promotes the production of reactive

oxygen species (ROS) and induces apoptosis of histocytes and immune

cells (166); and multiple outer membrane adhesins (167) that can

mediate the adhesion and coaggregation with various oral microbiota

species, including Streptococcus gordonii (168), Streptococcus sanguis

(169), Streptococcus mutans (170, 171), Staphylococcus aureus (172), P.

gingivalis (173–177), and Candida albicans (178, 179). These virulence

factors contribute to the expression of certain virulence factors,

promote the formation and stability of plaque biofilm, and mediate

the adhesion to immune cells (167).

F. nucleatum possesses various adhesins, which can be

categorized into two types: amino acid inhibitors (e.g., RadD,

CmpA, Aid1, FomA) associated with coaggregation with gram-

positive bacteria, and lactose inhibitors (e.g., Fap2) associated with

gram-negative bacteria. Coaggregation between F. nucleatum and P.

gingivalis is mediated not only by a variety of adhesins but also by

the capsular polysaccharide (CPS) and LPS, resulting in increased

expression of virulence factors and altered energy metabolism in

both species (180).

FadA is the most representative virulence factor of F.

nucleatum, playing a crucial role in the adhesion and invasion of

host cells. FadA exists in two forms: secretory and non-secretory.

These two forms work together to regulate the adhesion and

invasion of F. nucleatum. Through the interaction of the secretory

autonomous transporter RadD and membrane occupation and

recognition nexus protein 2 (MORN2) (181), F. nucleatum can

invade gingival epithelial cells by binding to epithelial cadherin (E-

cadherin). FadA can also help interact with the intracellular

receptor retinoic acid-inducible gene I (RIG-I), activating the NF-
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kB signaling pathway to induce inflammatory responses and cause

periodontal tissues destruction. Furthermore, F. nucleatum can

promote epithelial–mesenchymal transition of gingival epithelial

cells, up-regulating Snail-1 expression, down-regulating E-cadherin

expression, and disrupting the integrity of the gingival epithelium.

This promotes the invasion of pathogenic bacteria into deeper

periodontal tissues (182). Recent research has discovered that F.

nucleatum can secrete FadA-containing outer membrane vesicles

(OMVs) which stimulate inflammatory bone loss in RA via the

FadA–Rab5a–YB-1 axis in macrophages (183), and may have

similar effects in periodontitis.

Bacterial extracellular vesicles
BEVs are spherical nanostructures encapsulated in bacterial

lipid bilayers. They range in size from 20 to 300 nm and contain

various functional active substances secreted by bacteria, including

bacterial virulence factors and sRNA (184). Since the first discovery

of extracellular vesicles in Vibrio cholerae in 1967 (185), BEVs have

been considered an important mode of physiological and

pathological functions in bacteria. They facilitate bidirectional

communication between bacteria–bacteria and bacteria–cells, in

addition to direct contact (186), and play crucial roles in bacterial

colonization, survival, inflammation, pathogenesis, and regulation

of host metabolism and immunity (187–194). At present, the field

of cancer-related research believes that BEVs in the tumor

microenvironment can be used as a new target for the diagnosis

and monitoring of tumors and related diseases (195). Although

research on BEVs in the oral pathological microenvironment is

limited, these vesicles have the potential to provide valuable insights

into the pathogenesis and pathological state of oral diseases, as well

as the development of more efficient treatment methods.

Pathogenic pathways of virulence factors
The interaction between the oral microbiome (including living

bacteria, virulence factors, and BEVs) and human immunity, known

as the oral host–microbial interactome, promotes homeostasis under

healthy conditions. The commensal microbiota educates and

facilitates the immune system (196), imprinting innate and

adaptive immunity memory to mount rapid and effective resistance

against massive PAMP invasion. However, this immune memory can

lead to overreactions and become a major cause of tissue destruction,

including periodontal bone loss (6).

Studies have shown that dental biofilm plaque-induced bone loss

in the periodontal tissues has an ‘effective radius of action’ known as

the range of effectiveness. This range typically spans from 0.5 mm to

2.7 mm, with 2.5 mm being the precise measure (197–199). The

constant distance between the base of the gingival groove and the

alveolar crest, known as the biological width, is approximately 2 mm,

falling within the range of effectiveness. This indicates that antigens

and virulence factors present in biofilm plaque can traverse the

epithelial barrier of the gingival tissues and penetrate the

underlying connective tissues. Consequently, this triggers the

release of paracrine signaling molecules, thereby affecting the

balance of alveolar bone remodeling (65, 200). Research has

demonstrated that the stimulation of PAMPs derived from

subgingival plaque can elicit characteristic activation signals of
Frontiers in Immunology 07
bone marrow hematopoiesis, indicating the generation of immune

cells derived from the myeloid lineage and the activation of associated

immune responses (39). Meanwhile, innate immune cells present in

the gums can uptake bacterial antigens from subgingival plaque and

migrate to adjacent cervical lymph nodes, where they present

antigens to activate the adaptive immune response. As a result,

cytokines and immune cells, including T cells and memory T cells,

may disseminate to the local gum tissues or even the entire body

through the circulatory or lymphatic system (39, 201).

The oral microbial–host interactome can also transmit signals that

extend beyond local tissues and contribute to the development of extra-

oral comorbidities by initiating systemic inflammation or ectopic

colonization in distant parts of the digestive tract (28, 36, 51, 196).

Interestingly, a recent study suggested that the majority of healthy

individuals do not exhibit detectable microbes in their blood, and even

when a few species are detected, the microbial community patterns

differ among various samples, with no apparent correlation between

microbial species and the phenotype of healthy individuals (202). This

implies that local disruption of the mucosal barrier serves as the initial

step towards systemic comorbidities. Transient bacteremia facilitates

the dissemination of microorganisms, such as oncobacteria, along with

their virulence factors, to susceptible sites, thereby initiating or

exacerbating disease progression at multiple sites. On a positive note,

the microbial profile of gingival tissues in pathological conditions holds

potential for aiding the diagnosis and treatment of extra-oral

complications through blood microbial detection.
Pathological osteoimmunity: activation of
immune cells and cytokines

Under pathophysiological conditions, the subsets of immune cells

that exist in a healthy state, such as T/NK, B/plasma, and granulocyte/

myeloid cells, do not undergo significant changes in their overall

categories. However, there are alterations in their proportions,

particularly an increase in neutrophils and plasma cells (69).

The oral mucosal surface constantly faces microbial challenges,

and neutrophils play a crucial role in maintaining alveolar bone

homeostasis through innate immunity (203). Gingivitis is

characterized by decreased neutrophils and bone activation factors,

suggesting protective responses of the gingival tissues and bone

during inflammation (66). However, as gingivitis progresses to

periodontitis, there is an excessive inflammatory response leading

to an increase in the number of neutrophils in local tissues. The

quantity of neutrophils in the gingival tissues is more closely

associated with the health or disease status of the periodontal

tissues rather than their bactericidal function, which can be

compensated by innate immune cells such as macrophages (204).

Numerous studies have shown a positive correlation between the

number of neutrophils in gingival tissues and the severity of

periodontitis (205–207). In chronic periodontitis, dysfunctions in

chemotactic accuracy, increased recruitment, and prolonged survival

of neutrophils contribute to their extensive infiltration in periodontal

tissues (204, 208, 209). These spontaneous hyperreactive neutrophils

release various inflammatory factors (such as TNF, IL-1b, and IL-8),

cytotoxic mediators, matrix metalloproteinases, and RANKL, which
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worsen periodontal tissues damage and bone resorption (210–213).

Neutrophils can also migrate to the lymph nodes, where they interact

with DCs to regulate antigen presentation and activate adaptive

immunity (214). In the presence of CCL20, neutrophils can induce

Th17 recruitment to inflamed tissues (215). They also promote B cell

survival, proliferation, and differentiation into plasma cells by

secreting B lymphocyte stimulator (BLyS) and a proliferation-

inducing ligand (APRIL) (216, 217). Excessive neutrophils

contribute to the progression of periodontitis and skeletal tissues

destruction by initiating periodontal tissue lesions, exacerbating

immune responses, and secreting local inflammatory factors and

osteoclast-related factors. However, neutrophils deficiency in gingival

tissues can also lead to periodontitis (218–220). Animal experiments

have shown that impaired neutrophils recruitment associated with

leukocyte adhesion deficiency Type I leads to increased periodontal

inflammation, bone loss, and abnormal expression of IL-17 (221).

This phenomenon might be related to a homeostasis mechanism of

neutrophils recruitment, clearance, and generation, known as

‘neutrostat,’ which involves the IL-23–IL-17–granulocyte-colony

stimulating factor (G-CSF) negative feedback loop (222). Impaired

neutrophils recruitment results in unrestricted expression of IL-23,

IL-17, and G-CSF in local tissues, leading to excessive inflammation

and tissue damage (221).

Plasma cells are also significantly increased in patients with

periodontitis compared to that in healthy individuals. The majority

of plasma cells express IgG, while a minority express IgA (69). IgG

is the main force in humoral immunity; it undergoes opsonization

and antibody-dependent cell-mediated cytotoxicity (ADCC), and

can activate the complement system through the classical pathway.

These autoimmune responses may be the main factors contributing

to periodontal destruction. Plasma cells may play a role in

neutrophils recruitment by binding to the IgGFcR on the surface

of neutrophils.

B cells have a dual role in periodontitis-related bone loss, which

may depend on the activated B cell type. Certain B cell subsets

exacerbate the severity of periodontal bone loss. In addition to IgG-

and IgA-generated B cells, IgD- and IgM-generated B cells can also

be associated with bacteria-induced periodontal bone loss, possibly

through RANKL expression (223, 224). Memory B cells can

promote osteoclast differentiation and maturation by expressing

RANKL and various pro-inflammatory factors, such as TNF, IL-6

and IL-1b, and by increasing Th1 and Th17 production (225–228).

Recent studies have highlighted the role of B cell activating factor

(BAFF) in promoting periodontitis development by enhancing

inflammatory conditions and macrophages activity (229).

Conversely, regulatory B cells, also known as B10 cells, can

reduce bone loss by upregulating IL-10 expression and

downregulating IL-17 and RANKL expression (230–232).

In addition to neutrophils and B cells, T cells can be activated by

antigens from P. gingivalis and F. nucleatum via TCR recognition

and can differentiate into various subsets. Under pathologic

conditions, T cells can affect bone remodeling by directly

increasing the expression of pro-osteoclastic cytokines such as

RANKL or indirectly signaling stromal–osteoblastic cells (99–

101). Among all T cell subsets, gd T cells (233); regulatory T cells

(Treg) (234, 235); and helper T cells (Th, also known as CD4+T
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cells), including Th1 and Th2 (236, 237), Th9 and Th22 (238), Th17

(239), may be more closely associated with alveolar bone

resorption (237).

Th1 and Th2 cells have been implicated in bone resorption in

periodontitis, although the specific mechanisms have not been fully

elucidated. The presence or absence of Th1 and Th2 cells may both

contribute to bone resorption (240–243). The Th1/Th2 ratio was

historically considered an important factor in evaluating the degree

of bone resorption in periodontitis, as Th1 cells were believed to

mediate the establishment of early periodontitis lesions, while Th2

cells gradually became quantitatively dominant as periodontitis

progressed (236, 237). Interestingly, Th2 cells can promote the

transformation of B cells into plasma cells by secreting IL-4, which

may explain the increased proportion of plasma cells in gingival

tissues under pathological conditions.

Current studies on bone remodeling have shifted focus from the

Th1/Th2 balance to the Th17/Treg paradigm (67, 244, 245). Th17 has

been closely associated with periodontitis and bone loss since their

discovery (246, 247), and recent studies have shown that dysbiotic

microbiomes activate Th17 cells to mediate oral mucosal

immunopathology and periodontitis-induced bone destruction

(239). Previous studies have demonstrated increased levels of Th17

and IL-17 in gingivitis and periodontitis (248–252), which are not

necessarily related to the active or inactive stage of periodontitis (253–

255). IL-23, a cytokine that promotes Th17 differentiation, is also

highly expressed along with IL-17 in periodontitis (248, 253). Th17

cells, derived from naive T cells (also called Th0 cells) after

stimulation by antigen presentation or pro-inflammatory factors

(such as IL-1b, IL-6, and IL-23), are the primary source of IL-17

and can express other pro-inflammatory factors such as IL-21, IL-22,

and TNF (256, 257). Although IL-17 may not directly act on the

RANKL-macrophage colony-stimulating factor (M-CSF)-osteoclast

culture system (258), it can promote osteoclastogenesis through the

expression of RANKL mediated by osteoblastic cells (259).

Interestingly, Th17-related neutrophil mobilization in gingival

tissues can inhibit P. gingivalis-induced periodontal bone loss (260,

261), and IL-17 receptor a-deficient mice show reduced cytokine-

dependent recruitment of neutrophils and increased bone resorption

(262, 263), indicating that Th17 cells also possess bone-protective

potential through neutrophil mobilization. Tregs, a subset of

CD4+CD25+Foxp3+ T cells with anti-inflammatory and

homeostatic functions, can secrete IL-10, IL-12, and TGF to

achieve negative immune regulation. The presence of Tregs in

periodontitis may represent a compensatory mechanism to mitigate

excessive tissue damage caused by immune responses (237). Some

studies have found that Tregs can improve pathological bone

resorption through the CCR4–CCL22 pathway (234, 235).

However, Tregs are highly plastic and can lose their

immunosuppressive ability in chronic periodontitis (264). They

may also differentiate into Th17 cells during the mid-stage of

periodontitis (265). Therefore, the Th17/Treg ratio is a reasonable

parameter to evaluate the dysbiotic microbiome-mediated

periodontal inflammation status to a certain extent.

In addition to T cells, B cells, and neutrophils, other immune

cells may also play a role in bone remodeling. NK cells in

rheumatoid arthritis can promote osteoclastogenesis by expressing
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RANKL and M-CSF (266) and inhibiting osteoblast generation

through a pro-apoptotic pathway (267). The degree of mast cell

degranulation in chronic periodontitis is proportional to the

severity of periodontal disease (268, 269), possibly owing to their

ability to secrete IL-17 (270) and indirectly increase RANKL

expression through IL-33 secretion (271). DCs synthesize and

secrete a series of cytokines to increase RANKL expression (272–

274) and immature DCs can differentiate into mature osteoclasts

through the RANKL–RANK–M-CSF axis (76, 77, 274).

Macrophages are recognized as immune cells that are closely

related to osteoclasts. Macrophages are homologous to osteoclasts,

as mentioned earlier, and in vivo, macrophages are able to

participate in osteoclastogenesis through the RANKL–RANK–

OPG axis, with the assistance of M-CSF.
Concluding remarks and
future perspectives

Oral health and systemic status are intertwined, with lesions in

one affecting the other. Failure to address this cycle can lead to the

progression of systemic diseases. The oral microbial community plays

a crucial role in oral health, and any disruption in the ecological

guilds can contribute to the development of oral diseases, including

periodontal disease and the subsequent loss of periodontal hard

tissues, which poses a significant threat to oral and systemic health.

The imbalance in osteoblast–osteoclast coupling, mediated by

the RANKL–RANK–OPG axis, is at the core of alveolar bone

remodeling disruption. Excessive immunity activation triggered

by host–microbe interactions appears to be the primary reason

for this imbalance. Key members in certain ecological guilds, such

as P. gingivalis and F. nucleatum, drive periodontal inflammation

with. Virulence factors from these pathogens activate the host
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immune system through local diffusion, lymphatic pathways, and

blood transmission. Under chronic inflammatory conditions,

continuous host–microbe interactions lead to an exaggerated

immune response, resulting in periodontal tissues destruction and

alveolar bone resorption (Figure 2).

Osteoimmunity involves intricate interactions between immune

cells and molecules. The excessive osteoimmune response activated

by the major functional microbiota associated with periodontitis

cannot be solely attributed to changes in the proportion or function

of individual immune cells. The phenotypes of the periodontal

immune network must be established by studying the local and

systemic immune status in the context of periodontal inflammation.

Conversely, periodontal immunophenotypes reflect the

characteristics of local ecological guilds. While the human body’s

immunological characteristics are relatively clear and specific

compared to the complexity of symbiotic microbial communities,

the application of immunophenotypes holds promise as a

straightforward method to evaluate the stability of plaque biofilms

and study the symbiotic network of complex ecological guilds.

Although significant progress has been made in understanding the

local immunophenotype of periodontitis and the role of pathogenic

microorganisms, there are still gaps to be filled. Detailed investigations

are needed to interpret the pathogenic effects of periodontal

microorganisms. While the role of P. gingivalis in promoting alveolar

bone resorption is well-established, there is limited research on the role

of F. nucleatum, which has been recently focused as an oncobacterium

in gastrointestinal tumors but not as a periodontal pathogen in alveolar

bone resorption. Additionally, as the vital effect of extracellular vesicles

gradually come into sight, the contents, secretion characteristics, and

roles of P. gingivalis and F. nucleatum vesicles in bone remodeling are

yet to be clarified. Furthermore, the contribution of other members

within the periodontal pathogenic ecological guilds to alveolar bone

resorption remains to be clarified.
FIGURE 2

The bidirectional relationship between oral health and general well-being and the gingival immunophenotype of periodontitis.
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Although the blood of healthy individuals is typically

considered sterile, the presence of BEVs is a possibility. These

vesicles may participate in immune system education in healthy

individuals. However, once susceptible disease sites emerge, BEVs

could potentially contribute to disease development even before the

mucosal barrier is destroyed. Exploring the existence, content, and

functions of vesicles in the blood of healthy individuals is an

important area of investigation. Another aspect that remains to

be elucidated is the immunophenotype of periodontitis. It is

imperative to clarify the interaction network of immune cells and

molecules in the disease state, identify the main functional groups,

and screen characteristic high-expression cell phenotypes.

Maintenance of periodontal bone homeostasis is crucial in oral

treatments that rely on physiological bone remodeling, such as

periodontal therapy, orthodontic treatment, and implant restoration.

How to block the progression of periodontitis, and restore lost bone,

accelerate orthodontic effects by regulating bone remodeling, and how

to reduce peri-implantitis to increase the success rate of implant

surgery are all research focuses as well as difficulties in stomatology.

However, these treatments often introduce various external stimuli to

the teeth and periodontal tissues, resulting in oral hygiene challenges

and disturbances to the periodontal microenvironment. To achieve

optimal therapeutic outcomes, researchers should not simply focus on

regulating the function of osteoblasts or osteoclasts, but aim to correct

the unbalanced periodontal microenvironment and restore it to a

healthy physiological state. By addressing these factors, some of the

aforementioned clinical problems may find solutions.

Enabling patients to aesthetics and function healthfully is the

fundamental principle of stomatology research. Modern medicine

demands that dental practitioners not only control patients’ oral

health during the short-term treatment and follow-up, but also

maintain their lifelong well-being, which aligns with the WHO’s

‘8020’ goal, striving for improved oral health for the overall benefit

of humanity.
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48. Carrizales-Sepúlveda EF, Ordaz-Farıás A, Vera-Pineda R, Flores-Ramıŕez R.
Periodontal disease, systemic inflammation and the risk of cardiovascular disease.
Heart Lung Circ (2018) 27:1327–34. doi: 10.1016/j.hlc.2018.05.102

49. Arsiwala LT, Mok Y, Yang C, Ishigami J, Selvin E, Beck JD, et al. Periodontal
disease measures and risk of incident peripheral artery disease: the atherosclerosis risk
in communities (ARIC) Study. J Periodontol (2022) 93:943–53. doi: 10.1002/JPER.21-
0342

50. Jung ES, Choi YY, Lee KH. Relationship between rheumatoid arthritis and
periodontal disease in Korean adults: data from the sixth korea national health and
nutrition examination survey, 2013 to 2015. J Periodontol (2019) 90:350–7.
doi: 10.1002/JPER.18-0290

51. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al.
Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation
and treatment with small-molecule inhibitors. Sci Adv (2019) 5:eaau3333. doi: 10.1126/
sciadv.aau3333

52. Chopra A, Radhakrishnan R, Sharma M. Porphyromonas gingivalis and adverse
pregnancy outcomes: a review on its intricate pathogenic mechanisms. Crit Rev
Microbiol (2020) 46:213–36. doi: 10.1080/1040841X.2020.1747392

53. Daalderop LA, Wieland BV, Tomsin K, Reyes L, Kramer BW, Vanterpool SF,
et al. Periodontal disease and pregnancy outcomes: overview of systematic reviews. JDR
Clin Transl Res (2018) 3:10–27. doi: 10.1177/2380084417731097

54. Zhang Y, Ren X, Hu T, Cheng R, Bhowmick NA. The relationship between
periodontal disease and breast cancer: from basic mechanism to clinical management
and prevention. Oral Hlth Prev Dent (2023) 21:49–60. doi: 10.3290/j.ohpd.b3904343

55. Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive
opportunistic oral pathogen. FEMS Microbiol Lett (2012) 333:1–9. doi: 10.1111/j.1574-
6968.2012.02579.x

56. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta
harbors a unique microbiome. Sci Transl Med (2014) 6:237ra65. doi: 10.1126/
scitranslmed.3008599

57. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis.
Nat Rev Microbiol (2012) 10:717–25. doi: 10.1038/nrmicro2873

58. Queiros da Mota V, Prodhom G, Yan P, Hohlfheld P, Greub G, Rouleau C.
Correlation between placental bacterial culture results and histological
chorioamnionitis: a prospective study on 376 placentas. J Clin Pathol (2013) 66:243–
8. doi: 10.1136/jclinpath-2012-201124

59. Payne MA, Hashim A, Alsam A, Joseph S, Aduse-Opoku J, Wade WG, et al.
Horizontal and vertical transfer of oral microbial dysbiosis and periodontal disease. J
Dent Res (2019) 98:1503–10. doi: 10.1177/0022034519877150

60. Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz
PI. Bacterial interactions and successions during plaque development. Periodontol 2000
(2006) 42:47–79. doi: 10.1111/j.1600-0757.2006.00187.x
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