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CD5 is a member of the scavenger receptor cysteine-rich superfamily that is

expressed on T cells and a subset of B cells (B1a) cell and can regulate the T cell

receptor signaling pathway. Blocking CD5 function may have therapeutic

potential in treatment of cancer by enhancing cytotoxic T lymphocyte

recognition and ablation of tumour cells. The effect of administering an anti-

CD5 antibody to block or reduce CD5 function as an immune checkpoint

blockade to enhance T cell anti-tumour activation and function in vivo has not

been explored. Here we challenged mice with poorly immunogenic 4T1 breast

tumour cells and tested whether treatment with anti-CD5 monoclonal

antibodies (MAb) in vivo could enhance non-malignant T cell anti-tumour

immunity and reduce tumour growth. Treatment with anti-CD5 MAb resulted

in an increased fraction of CD8+ T cells compared to CD4+ T cell in draining

lymph nodes and the tumour microenvironment. In addition, it increased

activation and effector function of T cells isolated from spleens, draining lymph

nodes, and 4T1 tumours. Furthermore, tumour growth was delayed in mice

treated with anti-CD5 MAb. These data suggest that use of anti-CD5 MAb as an

immune checkpoint blockade can both enhance activation of T cells in response

to poorly immunogenic antigens and reduce tumour growth in vivo. Exploration

of anti-CD5 therapies in treatment of cancer, alone and in combination with

other immune therapeutic drugs, is warranted.
KEYWORDS

CD5, immune checkpoint inhibitors, immunotherapy, cancer, T cell, drug
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1256766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1256766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1256766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1256766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1256766/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1256766/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1256766&domain=pdf&date_stamp=2024-02-29
mailto:jkoropatnick@gmail.com
https://doi.org/10.3389/fimmu.2024.1256766
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1256766
https://www.frontiersin.org/journals/immunology


Alotaibi et al. 10.3389/fimmu.2024.1256766
1 Introduction

CD5 is a type 1 transmembrane glycoprotein and a member of

the scavenger receptor cysteine-rich superfamily expressed on T

cells and a subset of B cells (B1a) (1). It can be detected early in the

“double-negative” stage of T cell development and its level increases

during T cell development (2). CD5 co-localises with TCR during

the immunological synapse with antigen-presenting cells and

regulates TCR signaling and promotes development of high-

affinity antigen binding (3). In non-solid tumours, the majority of

T and B cell malignancies are CD5-positive (4). Therefore, it has

been used as a targetable tumour antigen for T and B cell

malignancies (5). Several passive and active immunotherapeutic

approaches have implemented the use of ant i -CD5

immunoconjugates linked to cytotoxic molecules (6–12) and CD5

CAR T cells (13–22) to treat CD5+ hematologic malignancies.

On the other hand, strategies to target CD5 on immune cells

rather than tumour cells themselves is not well-investigated.

Nevertheless, current evidence suggests that this may be a useful

therapeutic approach. When solid B16F10 syngeneic tumour

homografts were grown in CD5 knockout mice, those mice

exhibited increased anti-tumour immunity and delayed tumour

growth compared to tumours grown in wild type mice (23).

Furthermore, we have reported that differential CD5 levels among

T cells in tumours and lymphoid organs can be associated with

different levels of T cell activation and effector function (24). In

addition, mice with transgenic expression of soluble human CD5

had delayed B16F10 tumour homograft growth compared to

control mice (25). Because CD5 is also a ligand for CD5 (26), the

sCD5 may act to block CD5 from binding to the TCR/CD3 complex

and reduce the ability of CD5 to impair TCR signaling capable of

activating T cells. Furthermore, tumour-infiltrating lymphocytes

with low CD5 expression exhibited high anti-tumor activity

compared to cells with CD5 high expression (24, 27). These

results suggest that reducing CD5 function could result in

increase anti-tumour activity and enhance immune activation.

In this study we investigated the capacity of anti-CD5 MAb to

enhance T cell anti-tumour immunity. We administrated blocking,

non-depleting anti-CD5 MAb in mice challenged with poorly

immunogenic CD5-negative 4T1 mouse breast tumour cell

homografts and investigated the effect on immune T cell

activation and function and tumour growth. The data show that

in vivo anti-CD5 MAb treatment enhanced T cell anti-tumour

immunity and delayed tumour growth. These results suggest the

therapeutic potential of using anti-CD5 MAb as an immune

checkpoint blockade to promote anti-tumour T cell immunity.
2 Materials and methods

2.1 Mice and cells

Female BALB/c mice were purchased from The Jackson

Laboratories (Jackson Laboratories, Bar Harbor, ME). All animals

were between 8 and 12 weeks of age and housed in the Animal Care

and Veterinary Services Facility at the Victoria Research Building,
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Lawson Health Research Institute, according to guidelines of the

Canadian Council for Animal Care and under the supervision of the

Animal Use Subcommittee of the University ofWestern Ontario. 4T1

mouse breast mouse tumour cells were purchased from the American

Type Culture Collection (ATCC, Manassas, VA), and cultured in

Dulbecco modified Eagle medium supplemented with 10% fetal

bovine serum (FBS)(Invitrogen). All cells were kept at 37°C in 5%

CO2. 4T1 tumour cells were counted by Coulter counter and

resuspended into sterile PBS for further experiments.
2.2 In vivo treatment design

This experiment is designed to assess the impact of anti-CD5

MAb and tumour growth. To assess tumour growth after treatment,

mice were injected subcutaneously with 5000 4T1 tumour cells on

day 0. Mice were then randomly divided into two groups and

received one of the following treatments by peritumoural injection:

Group 1: isotype control (Anti-fluorescein mouse IgG2A, Fc,

Silent™, Kappa, [Ab00102-2.3]; Absolute Antibody, Ltd, Oxford,

UK), 25 mg/mouse on day 0 and every three to four days thereafter

for a total of 11 injections. Group 2: anti-CD5 Mab (Anti-CD5

IgG2a, Fc, Silent™, Kappa, [Ab00208-2.3]; Absolute Antibody Ltd.,

Oxford UK), 25 mg/mouse on day 0 and every three to four days

thereafter for a total of 11 injections.
2.3 Animal health

To determine the safety and efficacy of anti-CD5 Mab in vivo,

mice were injected with anti-CD5 Mab (200 mg/mouse) on day 7

post subcutaneously tumour injection (50000 cells) and every three

to four days thereafter for a total of four injections. Mice were

monitored daily for potential adverse effects of tumour growth and/

or antibody injection by qualified animal care technicians in the

Animal Care and Veterinary Services Facility. When tumours

reached the endpoint, mice were euthanized and tumour-

infiltrating lymphocytes (TILs), spleens, and draining lymph

nodes (DLN) were collected for immune profiling.
2.4 Preparation of splenocytes,
lymphocytes and tumour
infiltrating lymphocytes

Mice were euthanized when tumour reach 1500 mm3 and

splenocytes, lymphocytes, and tumour-infiltrating lymphocytes

(TILs) were obtained from tissues using a modification of our

previously-reported method (28). Briefly, single cell suspensions of

lymphocytes were obtained from mice by pressing spleens or lymph

nodes through a 70 mm Falcon Cell Strainer (VWR, Mississauga,

ON) into RPMI 1640 medium (GIBCO). Cells were then

centrifuged (300xg, 10 mins, 4°C), and erythrocytes were lysed

using Ammonium-Chloride-Potassium (ACK) red cell lysis buffer.

The resulting live (trypan blue-negative) splenocytes and

lymphocytes were counted manually by microscopy after
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dropping onto a glass slide. Cells obtained were stained for flow

cytometric analysis as described below. TILs were obtained from

freshly-resected tumour lesions, which were isolated immediately

after mice euthanization. Tumours were cut into 2-3 mm3

fragments, and each tumour fragment was placed into an

individual well of a 6 well plate and incubated in 2 ml of an

enzyme digest mix consisting of RPMI1640 complete media

containing 5% fetal bovine serum (FBS)(Invitrogen) and

10 mgml−1 collagenase A (all from Sigma-Aldrich, Gillingham,

UK) and incubated for 2 hours at room temperature under

continuous rotation. Cells were then centrifuged (300xg, 10 mins,

4°C), and erythrocytes were lysed using Ammonium-Chloride-

Potassium (ACK) red cell lysis buffer. The resulting live (trypan

blue-negative) TILs were counted manually by microscopy after

dropping onto a glass slide. Cells obtained were stained for flow

cytometric analysis as described below.
2.5 Flow cytometry

To assess the levels of CD69, CD107a, CD137 and FasR on T

cells by flow cytometry, lymphocytes obtained as described above

were stained with the following antibodies: Brilliant Violet

711™ anti-mouse CD3 (BioLegend, San Diego, CA), Alexa

Fluor® 700 anti-mouse CD4 (BioLegend, San Diego, CA), PerCP/

Cyanine5.5 anti-mouse CD8a (BioLegend, San Diego, CA), FITC

Rat Anti-Mouse CD5 (BD Biosciences), PE Hamster Anti-Mouse

CD69 (BD Biosciences), PE anti-mouse CD95 (Fas) Antibody

(BioLegend, San Diego, CA), Brilliant Violet 421™ anti-mouse

CD107a (LAMP-1) (BioLegend, San Diego, CA), PE anti-mouse

CD137 (BioLegend, San Diego, CA). All flow cytometric analyses

were performed as described previously (29) using appropriate

isotype controls (Biolegend, San Diego, CA). Flow cytometry was

performed using a BD™ LSR II Flow Cytometer (BD Biosciences)

and data analyzed using Flowjo software (BD Bioscience). To assess

the level of the indicated markers, organs were collected from

tumour-bearing mice when mice were euthanized at the end of

tumour growth. Cells were prepared as previously described (29,

30), and 2X105 cells were stained and analyzed by flow cytometry as

described above. Cells were treated with purified anti-mouse CD16/

32 antibody (Clone 93) (Biolegend, San Diego, CA) for 15 min at

21°C in the dark to block CD16/CD32 interactions with the Fc

domain of immunoglobulins. Cells were then stained with

appropriate antibodies for 25 mins on ice in the dark, washed

twice with FACS staining buffer, suspended in 0.5 ml FACS staining

buffer, and analyzed by flow cytometry.
2.6 Statistical analysis

Statistical differences were assessed using a Student’s unpaired

one-tailed t-test (GraphPad Prism 8.2.1). Data points indicate

means of n values ± standard deviation (SD). Differences between

data sets where p ≤ 0.05 were considered to be significant. Asterisks

represent statistical significance.
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3 Results

3.1 Animal health

No difference in mean animal weights between the isotype

control MAb-treated group and the anti-CD5 MAb-treated group

were observed (Supplementary Figure 1), and no overt adverse

health effects (poor grooming, immobility, skin lesions, etc.) were

observed in mice in either group.
3.2 Treatment with anti-CD5 MAb in vivo
reduced 4T1 tumour growth in mice

The concentration of anti-CD5 MAb selected for repeated

treatment (25 mg/mouse) was selected to avoid activation-induced

T cell death (AICD). Preliminary experiments where mice were

treated with 100 or 200 mg anti-CD5 MAb increased markers of T

cell activation in spleens (increased CD69, fraction of CD8-positive

T cells relative to CD4-positive T cells, etc.) but also increased

activation-induced T cell death (AICD) as shown by increased Fas

receptor in section 4 below. The lower concentration was therefore

selected for treatment of tumour-bearin+g mice (Figure 1A). Mouse

4T1 breast tumour homograft growth was measured after treatment

with anti-CD5 MAb. Tumours in mice treated with anti-CD5 MAb

mice grew more slowly than in isotype control antibody-treated

mice (Figure 1B). These data indicate that anti-CD5 MAb

administration reduced 4T1 tumour growth in mice when

administered in vivo and, as described in Section 1 (above), that

the treatment had no overt adverse effects on mouse health.
3.3 Increased T cell activation after
treatment with anti-CD5 MAb

In our previously-reported study we reported that splenocytes

stimulated ex vivo with anti-CD3/anti-CD28 or 4T1 tumour lysate

and treated with anti-CD5 MAb had an increased fraction of

CD8+CD69+ T cells compared to cells stimulated with anti-CD3/

anti-CD28 or 4T1 tumour lysate and isotype control ex vivo (28). To

investigate whether in vivo administration of anti-CD5 MAb

enhanced T cell activation we isolated spleen, draining lymph

nodes, and TILs and assessed the level of CD69 on T cells

(Figure 2 for gating strategy). We observed an increased fraction

of CD69+CD8+ T cells after anti-CD5 Mab treatment in spleen and

draining lymph nodes of mice compared to mice treated with

isotype control MAb (Figure 3A). Furthermore, CD8+ TILs

isolated from anti-CD5 MAb-treated mice had an increased level

of CD69 compared to mice treated with isotype control MAb

(Figure 3A). Furthermore, we found an increased level of CD69

on CD69+CD4+ T cells in spleen and draining lymph nodes in anti-

CD5 MAb-treated mice (Figure 3B). Similar to CD8+ TILs, the

mean fluorescence intensity (MFI) of CD69 was higher in CD4+

TILs in anti-CD5 MAb-treated mice (Figure 3B). It is important to

note that MFI indicates the degree of CD69 positivity of T cell

populations and not the number of CD69+ cells and is a measure of
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activation distinct from assessment of the number of activated cells.

These data indicate that treatment with anti-CD5 MAb enhances T

cell activation in vivo.
3.4 Increased level of Fas receptor on T
cells after anti-CD5 MAb treatment

Increased T cell activation can lead to upregulation of Fas

receptor (28, 31). To assess whether anti-CD5 MAb treatment

resulted in increased FasR on T cells, cells isolated from spleen,

draining lymph node and TILs were stained with anti-Fas receptor

MAb to determine the level of Fas receptor on T cells. Anti-CD5

MAb treatment increased Fas receptor levels in CD8+ T cells from

draining lymph nodes and the tumour microenvironment, but not

spleens, of mice (Figure 4A). Treatment with anti-CD5 MAb also

induced an increased level of Fas on CD4+ T cells in draining lymph

nodes (Figure 4B).
3.5 Increased T cell tumour-reactivity and
degranulation after treatment with
anti-CD5 MAb in vivo

We further determined the cytotoxic T lymphocyte (CTL)

effector function after treatment with anti-CD5 MAb in vivo.

Here, CTL effector function was assessed by determining the
Frontiers in Immunology 04
number of CD8+ cells positive for CD107a (a surrogate marker

for degranulation) (32). An increased fraction of CD107a+CD8+ T

cells among all CD8+ T cells were isolated from mice treated with

anti-CD5 MAb, compared to mice treated with isotype MAb

control in spleens and draining lymph nodes (Figure 5A upper

panel). The MFI was also higher in spleens, draining lymph nodes,

and TILs in anti-CD5 MAb-treated mice (Figure 5A lower panel).

Furthermore, the fraction of CD107a+CD4+ T cells and the MFI of

CD107a were higher in spleens, draining lymph nodes, and TILs

from anti-CD5 MAb-treated mice (Figure 5B upper panel and

lower panel). In addition, antigen-specific T cells were further

assessed by determining the level of CD137, a member of the

TNFR-family with costimulatory function and a surrogate marker

for antigen-specific activation of T cells (33). The data show an

increase in the fraction of CD137+CD8+ T cells in spleen and TILs

(Figure 6A upper panel), and a trend (insufficient to indicate

significance) toward an increase in the fraction of CD137+CD8+

T cells in draining lymph nodes (Figure 6A upper panel). The MFI

of CD137 was higher in CD8+ T cells in spleen, draining lymph

nodes, and TILs isolated from anti-CD5 MAb-treated mice

(Figure 6A lower panel). Moreover, anti-CD5 MAb-treated mice

had an increased fraction of CD137+CD4+ T cells in spleen and

draining lymph nodes but not in TILs (Figure 6B upper panel). The

MFI of CD137 was upregulated in CD4+ TILs after treatment with

anti-CD5 MAb (Figure 6B lower panel). Together these data

indicate that antigen-specific and effector functions of CD8+ T

and CD4+ T cells are enhanced after treatment with anti-CD5MAb.
A

B

FIGURE 1

Treatment with anti-CD5 MAb delays 4T1 homograft tumour growth in host mice. 4T1 tumour-harbouring mice received 25 mg/mouse of anti-CD5
MAb on day 0 at the same time of subcutaneous injection of 4T1 tumour cells (every two days and over the course of 24 days) (A) Scheme for
treatment plan. (B) Tumour volume. Data are mean ± SEM (n = 7 mice), one representative experiment of two, *p < 0.05 (Student’s unpaired one-
tailed t-test).
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4 Discussion

CD5 has been targeted as a tumour antigen expressed by non-

solid tumours using depleting, toxin-conjugated anti-CD5 Mab (6–

12, 34) and most recently by using CD5 CAR T cells (13–22, 35). It

is also upregulated during human T cell activation and negatively

regulates the T cell receptor on cytotoxic T cells, limiting their

ability to recognize poorly immunogenic tumour antigens (2). We

have shown previously that blocking CD5 ex vivo resulted in

increased CTL activation and tumour cell cytotoxicity (28) and

we have shown that T cells with low CD5 levels isolated from

tumour homografts in mice exhibit increased activation and effector

function (24). Here, we determined whether blocking CD5 in vivo

could increase activation of non-malignant T cells and enhance

detection of poorly immunogenic tumour antigen. 4T1 mouse

breast cancer cells were used as a model of poorly immunogenic

and highly metastatic triple negative breast cancer in humans (36).
Frontiers in Immunology 05
These tumours and host mice were used to determine whether anti-

CD5 MAb in vivo could enhance T cell activation and ability to

recognize poorly immunogenic tumour antigen(s). Mice were

injected with 4T1 mouse tumour cells and treated with anti-CD5

MAb. The activation and function of T cells isolated from spleen,

draining lymph nodes, and tumours were further assessed for

markers of activation by flow cytometry.

The data show that administration of anti-CD5 MAb in vivo

increases the ratio of CD8+/CD4+ T cells in draining lymph nodes

and tumours. CD8+ and CD4+ T cells were activated in spleens,

draining lymph nodes, and TILs, suggesting that anti-CD5

treatment mediates enhanced activation by influencing CD5

effects on TCR signalling. The predominating CD8+ T cells and

smaller number of CD4+ T cells were activated in spleens, draining

lymph nodes, and TILs as assessed by the activation marker CD69

(37), suggesting that anti-CD5 treatment mediates enhanced

activation by influencing CD5 effects on TCR signalling. Our data
FIGURE 2

Gating strategy. Cells were gated side scatter area vs forward scatter area then Zombie Aqua dye (which penetrates non-viable cells but not viable
cells; Biolegend, San Diego, USA) was used to gate on live cells only. After that, cells were gated on side scatter height vs side scatter area to
exclude duplicate cells. Cells were then gated on CD3 marker and then on CD4 and CD8 markers. Lastly, cells were gated based on marker of
interest (CD69, FasR, CD137 and CD107a) as shown on the following figures. The arrows indicate stepwise progression through each of the
gating steps.
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are consistent with our previous report showing increased Fas

receptor levels in CD8+ T cells (a marker of T cell activation)

after treatment with anti-CD5 MAb ex vivo (28). We observed

increased Fas receptor levels on the surface of CD8+ T cells isolated

from draining lymph nodes and TILs after in vivo treatment with

anti-CD5 MAb. Because increased Fas receptor levels occur in
Frontiers in Immunology 06
response to TCR stimulation (31), treatment with anti-CD5 MAb

may led to TCR sensitivity to tumour antigen and resulting

increased activation. These results suggest that treatment with

anti-CD5 MAb could also enhance the effector function of T cells.

We found higher effector function in both draining lymph nodes

and TILs, as shown by increased levels of surrogate markers of T cell
A B

FIGURE 3

Fraction of CD8+/CD69+ T and CD4+/CD69+ T cells after treatment with anti-CD5 Mab in vivo. (A) The fraction of CD8+/CD69+ T and MFI of CD69
on CD8+ T cell isolated from spleens, draining lymph nodes, and TILs isolated from 4T1 tumour-bearing BALB/c mice treated with anti-CD5 MAb or
isotype Mab control. (B) The fraction of CD4+/CD69+ T and MFI of CD69 on CD4+ T cell isolated from spleens, draining lymph node, and TILs
isolated from 4T1 tumour-bearing BALB/c mice treated with anti-CD5 MAb or control isotype MAb. Data are mean ± SD (n = 3 mice), one
representative experiment of three. *p < 0.05 (Student’s unpaired one-tailed t-test). MFI, mean fluorescence intensity. ns, non significant.
A B

FIGURE 4

Level of Fas receptor on CD8+ T cells and CD4+ T cells after treatment with anti-CD5 MAb in vivo. (A) The MFI of Fas receptor on CD8+ T cells
isolated from spleens, draining lymph node, and TILs isolated from 4T1 tumour-bearing BALB/c mice that were treated with anti-CD5 MAb or
isotype MAb control. (B) The MFI of Fas receptor on CD4+ T cells isolated from spleens, draining lymph nodes, and TILs isolated from 4T1 tumour-
bearing BALB/c mice treated with anti-CD5 MAb or control isotype MAb. Data are mean ± SD (n = 3 mice), one representative experiment of three.
*p < 0.05 (Student’s unpaired one-tailed t-test). MFI, mean fluorescence intensity. FMO, Fluorescence Minus One. ns, non significant.
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degranulation and antigen-specific T cell activation (CD107a and

CD137, respectively). Together, these data suggest that treatment

with non-depleting anti-CD5 MAb in vivo increases T cell

activation and effector function.

The implications of increased markers of activation in multiple

populations of T cells (in spleen and far from the site of anti-CD5

injection and implanted 4T1 tumours; in draining lymph nodes

likely to contain white blood cells that have made contact with
Frontiers in Immunology 07
tumours; and in the tumour microenvironment itself [TILs])

suggests that anti-CD5 therapy has the potential to promote anti-

tumour T cell activity, not only at the site of individual tumours in

close proximity to the site of injection with anti-CD5 molecules, but

systemically. Systemic rather than localized anti-tumour T cell

activity would be expected to have greater capacity to inhibit and/

or ablate growth of tumours at non-primary sites, possibly

including metastatic tumours.
A B

FIGURE 6

(A) The fraction of CD8+/CD137+ T and MFI of CD137 on CD8+ T cells isolated from spleens, draining lymph nodes, and TILs isolated from 4T1
tumour-bearing BALB/c mice that were treated with anti-CD5 MAb or control isotype MAb. (B) The fraction of CD4+/CD137+ T and MFI of CD137 on
CD4+ T cells isolated from spleens, draining lymph nodes, and TILs isolated from 4T1 tumour-bearing BALB/c mice treated with anti-CD5 MAb or
control isotype MAb. Data are mean ± SD (n = 3 mice), one representative experiment of three. *p < 0.05 (Student’s unpaired one-tailed t-test).
MFI, mean fluorescence intensity. ns, non significant.
A B

FIGURE 5

(A) The fraction of CD8+/CD107a+ T cells and MFI of CD107a on CD8+ T cells isolated from spleens, draining lymph nodes, and TILs from 4T1
tumour-bearing BALB/c mice treated with anti-CD5 MAb or control isotype MAb. (B) The fraction of CD4+/CD107a+ T and MFI of CD107a on CD4+

T cell isolated from spleens, draining lymph nodes, and TILs isolated from 4T1 tumour-bearing BALB/c mice that were treated with anti-CD5 MAb or
control isotype MAb. Data are mean ± SD (n = 3 mice), one representative experiment of three. *p < 0.05 (Student’s unpaired one-tailed t-test). MFI,
mean fluorescence intensity. ns, non significant.
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Administration of anti-CD5 in vivo results in increased

numbers of CD8+ cells relative to CD4+ T cells and enhanced

CD8+ T cell activation and effector function. To assess whether

administration of anti-CD5 MAb can delay tumour growth, anti-

CD5 MAb was injected peritumorally (as a strategy to maximize

antitumor activity while potentially limiting systemic overactivation

of T cell and the risk excessive systemic activation-induced cell

death). The result shows delayed tumour growth after treatment

with anti-CD5 MAb.

Although in our model we did not observe severe immune-

related adverse events, the use of therapeutic antibodies can induce

such a reaction in humans (38–40). It is important to manage

such events to maintain treatment efficacy (41–43). Furthermore,

administration of antibodies as drugs may be challenging due to

their potential to induce production of anti-antibodies. It may be

useful to employ delivery vehicles such as exosomes (44–46) or

nanoparticles (47–49) in the future to diminish that potential.

The use of toxin-conjugated anti-CD5 depleting MAb to treat

CD5+ non-solid tumours has been reported (14, 50). However, the

impact of CD5 blocking antibody on normal T cells in CD5- solid

tumour has not been well-studied. Despite one study showing

administration of CD5 polyclonal antibodies to slow the growth

of EL lung cancer (51) there has been no further report of

administration of anti-CD5 MAb in normal T cells in vivo.

Overall, this study is the first to illustrate changes in immune

cell subsets in lymphoid organs as well as in the tumour

microenvironment after in vivo administration of anti-CD5 MAb.

In addition, it illustrates the phenotypic changes that resulted from

anti-CD5 MAb in vivo and its capacity to delay tumour growth.

These results warrant further investigation of anti-CD5 MAb as an

anticancer immunotherapy, including in combination with other

current anti-tumour immunotherapies.
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