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Background: Given the lack of research on disulfidptosis, our study aimed to
dissect its role in pan-cancer and explore the crosstalk between disulfidptosis
and cancer immunity.

Methods: Based on TCGA, ICGC, CGGA, GSE30219, GSE31210, GSE37745,
GSE50081, GSE22138, GSE41613, univariate Cox regression, LASSO regression,
and multivariate Cox regression were used to construct the rough gene signature
based on disulfidptosis for each type of cancer. SsGSEA and Cibersort, followed
by correlation analysis, were harnessed to explore the linkage between
disulfidptosis and cancer immunity. Weighted correlation network analysis
(WGCNA) and Machine learning were utilized to make a refined prognosis
model for pan-cancer. In particular, a customized, enhanced prognosis model
was made for glioma. The siRNA transfection, FACS, ELISA, etc., were employed
to validate the function of c-MET.

Results: The expression comparison of the disulfidptosis-related genes (DRGs)
between tumor and nontumor tissues implied a significant difference in most
cancers. The correlation between disulfidptosis and immune cell infiltration,
including T cell exhaustion (Tex), was evident, especially in glioma. The 7-gene
signature was constructed as the rough model for the glioma prognosis. A pan-
cancer suitable DSP clustering was made and validated to predict the prognosis.
Furthermore, two DSP groups were defined by machine learning to predict the
survival and immune therapy response in glioma, which was validated in CGGA.
PD-L1 and other immune pathways were highly enriched in the core blue gene
module from WGCNA. Among them, c-MET was validated as a tumor driver gene
and JAK3-STAT3-PD-L1/PD1 regulator in glioma and T cells. Specifically, the
down-regulation of c-MET decreased the proportion of PD1+ CD8+ T cells.
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Conclusion: To summarize, we dissected the roles of DRGs in the prognosis
and their relationship with immunity in pan-cancer. A general prognosis
model based on machine learning was constructed for pan-cancer and
validated by external datasets with a consistent result. In particular, a
survival-predicting model was made specifically for patients with glioma to
predict its survival and immune response to ICls. C-MET was screened and
validated for its tumor driver gene and immune regulation function (inducing
t-cell exhaustion) in glioma.
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1 Background

Regulated cell death (RCD) refers to a controlled and orderly
type of cellular death (1, 2). The subtypes of these death modalities
have been enriched with more and more RCDs uncovered, for
instance, apoptosis (3-5), autophagy (6-8), necroptosis (9),
ferroptosis (10), pyroptosis (11), cuproptosis (12), disulfidptosis
(13), etc. Disulfidptosis is the latest type of RCD proposed in 2023
by Gan et al. (13). What distinguishes it from other forms of cell
death is the feature that the aberrant accumulation of disulfides
without enough nicotinamide adenine dinucleotide phosphate
(NADPH) supply from glucose can induce this specific cell death
(13-17). Disulfidptosis holds potential as an alternative therapeutic
tactic for patients resistant to existing therapies.

Cancer is a notoriously formidable disease that is characterized
by abnormal growth and division. Many types of cancer can
metastasize to surrounding tissues or even distant organs. Until
now, 14 hallmarks of cancer have been discovered, which have been
summarized well by Douglas Hanahan (18). Resisting cell death, as
one of the classical hallmarks, is always the fundamental and final
objective for all other hallmarks. With each discovery of an
innovative modality of cell death from apoptosis to cuproptosis,
our understanding of cancer will be expanded further in that
perspective. Numerous RCD-related prognostic signatures have
been made and validated by different researchers. In the recent
decade, ferroptosis (19, 20), pyroptosis (21-23), cuproptosis (24—
27) have been well-explored in many types of cancer based on the
cancer genome atlas (TCGA), gene expression omnibus (GEO),
international cancer genome consortium (ICGC), etc. These studies
give us a deeper understanding of RCD in the context of cancer.

Machine learning (ML), a subdomain of artificial intelligence
(AI), can be divided into supervised, unsupervised, and
reinforcement learning. In the era of big data, it can be applied
everywhere (28, 29). And in oncology, ML techniques have also
been employed to gain insights into the complex interactions
between tumors and the immune system. For instance, in
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lymphoma, artificial neural networks were taken advantage of to
construct an immune-oncology panel to differentiate molecular
subtypes and predict prognosis (30). In solid tumors, ML-assisted
analysis based on genomics or radiomics also gives us better models
to identify treatment success rates (31-34).

However, to our knowledge, there are only limited studies on
disulfidptosis. Given the lack of research on this phenomenon, our
study aimed to delve into the role of disulfidptosis in pan-cancer
relying on well-recognized databases by constructing a prognostic
signature related to disulfidptosis. We mainly focused on
investigating the crosstalk between disulfidptosis and tumor

immune responses.

2 Methods
2.1 Data collection

Clinical features and gene expression of TCGA, ICGC, and
PCAWG patients were obtained in UCSC Xena (http://
xena.ucsc.edu). The validated transcriptomic data and clinical
characteristics from glioma were fetched from CGGA (http://
www.cgga.org.cn). The external gene expression and prognosis
datasets of LUAD, UVM, and HNSC (GSE30219, GSE31210,
GSE37745, GSE50081, GSE22138, GSE41613) were downloaded
from GEO (https://www.ncbi.nlm.nih.gov/geo/). DRGs (ACTB,
TLN1, CAPZB, STN, FLNB, IQGAP1, ACTN4, MYL6, FLNA,
MYH9, MYH10, PDLIM1, CD2AP, and INF2) were extracted
from Gan et al.” disulfidptosis paper (13). Different immune cell
infiltration markers were obtained from the cancer immunome atlas
(TCIA) (35), Genecard (https://www.genecards.org/), GEPIA
(http://gepia2.cancer-pku.cn/#index), Cibersot (https://
cibersortx.stanford.edu/). The prognosis of different c-MET level
glioblastoma patients treated with anti-PD1 therapy was obtained
from Kaplan Meier-plotteR (http://kmplot.com/analysis/
index.php?p=background).
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2.2 Bioinformatic analysis

2.2.1 Pathway score calculation and immune
cell infiltration

ssGSEA was used to assess immune activity, function, and
programmed cell death pathways in each sample. Immune cell
marker genes were used for analysis. ESTIMATE calculated
immune, stromal, estimate scores, and tumor purity based on
immune and stromal cell proportions. TIMER and CIBERSORT
predicted infiltrating immune cell composition. Immune
checkpoint inhibitors were compared across clusters and risk
groups. By analyzing ssGSEA, ESTIMATE, immune cell
infiltration, and immune checkpoints, we gained a comprehensive
understanding of the tumor immune landscape. Infiltration
immune cell fractions were calculated in CIBERSORT in R4.2.0,
and the estimate package in R4.2.0 predicted the immune score.

2.2.2 Prognosis model construction

Univariate Cox regression, LASSO regression, and multivariate
Cox regression were used to construct the gene signature. The
previous survival and ROC analyses were made using survival and
survivalROC packages in R4.2.0.

2.2.3 DRGs-based subgroups identification

ConsensusClusterPlus package in R4.2.0 was used to perform
consensus clustering analysis based on the DRGs (parameter:
maxK=10, reps=50). Al modeling for DRGs-based prognosis
model was developed by six AI functions, including extreme
gradient boosting (XGboost, xgboost package in R4.2.0), support
vector machine (SVM, el071 packages in R4.2.0), multi-logistic
(nnet packages in R4.2.0), random forest (RF, randomForest
package in R4.2.0), deep learning (DL, h20 package in R4.2.0)
and K-Nearest Neighbor (KNN, kknn package in R4.2.0). During
the model construction, randomly select 75% as the training cohort
and randomly select 25% as the testing cohort. Gene expression
value was standardized to range “0~1” with preProcess function
(caret and tidyverse packages).

2.2.4 Tumor mutation analysis

We analyzed somatic mutations in TCGA data using “maftools”
and calculated TMB for each group. Furthermore, we visualized
somatic mutations of selected genes in the signature using
cBioPortal. This analysis helped understand mutations and their
potential role in disulfidptosis.

2.2.5 Drug sensitivity prediction

Drug sensitivity prediction was performed by the oncoPredict
package in R4.2.0. This package leverages machine learning
algorithms trained on large datasets of cancer cell lines to
estimate the response of individual patient tumors to a wide
range of therapeutic agents. By analyzing the gene expression
profiles of the tumor samples, oncoPredict can identify potential
therapeutic targets and guide personalized treatment strategies.
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2.3 Biological experiments

2.3.1 Cell culture and reagents

Ln299 and Jurkat cell lines were purchased from the Chinese
Academy of Science cell bank with STR matching analysis. Cells
were cultured in recommended conditions. Co-culture was done by
placing the transwell containing Jurkat cells (2.5x 10°) or
alive PBMC (2.5 10°) in the 6-well plate seeded with 1n299
cells (20 x 10%). Cabozantinib (BMS-907351) was purchased
from Selleck.

2.3.2 SiRNA transfection

Ln299 cells were transfected with c-MET small interfering RNA
(siRNA) (5-AAG GAC CGG UUC AUC AAC UUC-3') or non-
targeting negative control siRNA (RiboBio, China) using
LipofectamineTM 3000 (Invitrogen, USA) according to the
manufacturer’s protocol.

2.3.3 5-ethynyl-2’-deoxyuridine and live/
dead staining

The live/dead staining kit was purchased from YEASEN
Biotech, the Edu staining kit was purchased from APExBIO
(K1077), and OPTI-MEM was purchased from (ThermoFisher,
Gibco). 1x10° In299 cells were seeded into 24-well plates. The
treated cells were stained according to the kits’ instructions and
then observed under an inverted microscope.

2.3.4 Western blotting

Total cellular proteins were extracted using lysis buffer (5 mM
EDTA, 300 mM NaCl, 0.1% NP-40, 0.5 mM NaF, 0.5 mM Na3VO4,
0.5mM PMSF, and 10 ug/mL each of aprotinin, pepstatin, and
leupeptin; Sigma-Aldrich). 30-50 pg protein was separated using
10% SDS-PAGE and transferred to polyvinylidene difluoride
membranes (Millipore, Bedford, MA, USA). Then immunoblotting
was performed using antibodies against ¢-MET (25869-1-AP,
Proteintech), PD-L1 (28076-1-AP, Proteintech), p-JAK3 (29101-1-
AP, Proteintech), JAK3 (80331-1-RR, Proteintech), p-STAT3 (#9145,
Cell Signaling Technology), STAT3 (#9139, Cell Signaling
Technology), GAPDH (AF7021, Affinity Biosciences), IL-2 (16806-1-
AP, Proteintech), INF-y (15365-1-AP, Proteintech), PD1 (18106-1-AP,
Proteintech), beta-tubulin (10068-1-AP, Proteintech). The
immunoblots were visualized using an enhanced chemiluminescence
detection system (Amersham Pharmacia Biotech, Uppsala, Sweden).

2.3.5 PBMCs extraction

Simply, PBMCs were isolated via Ficoll-Paque density gradient
centrifugation: 5 mL of peripheral blood was collected from healthy
female volunteers, diluted with PBS at a 1:1 ratio, followed by gentle
mixing. Add 10 mL of the diluted blood to 2 mL of Ficoll liquid
(density 1.077). The clear stratification of blood and Ficoll liquid
confirmed success. Carefully transferred the sample to the
centrifuge and spin at 500 g for 15 minutes. Removed the
centrifuge tube with care, aspirate the white thin film layer in the
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middle, representing individual nucleated cells. Wash the isolated
nucleated cells with 10 mL of PBS, centrifuge at 250 g for 10
minutes, and discarded the supernatant. Repeat the washing step
once and the suspended cells were frozen in vials at 100 million
cells/mL in HI FBS with 5% DMSO after washing. Stored in liquid
nitrogen, they were revived gradually and washed in pre-warmed
RPMI with FBS and pen/strep. Following a 4-5 hour incubation at
37°C, viability was assessed using Trypan blue (0.1%).

2.3.6 Flow cytometry

The co-cultured PBMC were stained with Fixable Viability Stain
(Thermo, L34965) and Fc receptor blocking reagent [Ultra—LEAFTM
Purified anti-mouse CD16/32 (101320, BioLegend)]. Next, they
were stained with CD-3 (BD 557943), PD-1 (BD 561273), and
CD8 antibody (thermo, A15448). The prepared single-cell
suspensions were filtered through 40-um nylon meshes (352340,
Corning). Results were then acquired using BD Calibur, BD
Fortessa, or Miltenyi MACSQuant systems. Data were analyzed
with FlowJo_V10 software (TreeStar).

2.3.7 ELISA

Supernatants from PBMC co-cultured with glioma cell line were
collected and analyzed using ELISA Kkits for IL2(Proteintech,
KE00017), IFN-y (Proteintech, KE00146), CXCR9 (Proteintech,
KE00165). The levels of each cytokine were compared between
the ¢-MET knockdown group and control groups.

2.4 Statistical analysis

Statistical analyses were performed with R (4.2.0) and
GraphPad Prism (version 8.0.1). Discontinuous data were
expressed as numbers/percentages, and continuous data were
expressed as mean + standard deviation (SD). P < 0.05 was
considered a statistically significant difference.

3 Results

3.1 The expression landscape and
prognosis significance of DRGs in
pan-cancer

In TCGA, the 14 validated disulfidptosis-related genes (DRGs) -
ACTB, TLNI1, CAPZB, STN, FLNB, IQGAP1, ACTN4, MYL6,
FLNA, MYH9, MYH10, PDLIM1, CD2AP, and INF2 - were
generally expressed in all 33 types of cancer (Figure 1A). The
correlation analysis between the DRGs indicated that MYH9 and
ACTN4 were the most positively related gene pair, while MYH10
and PDL1MI were the most negatively related (Figure 1B). And the
DRGs’ expression comparison between tumor and nontumor
tissues implied a significant difference in most types of them
(Figure 1C). MYHI10 showed the highest 2.34-fold change
between glioma and normal brain tissues among all the DRGs
(Figure 1D). Moreover, the univariate Cox regression of the DRGs
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showed that almost all 14 DRGs could predict prognosis well in
patients with glioma, kidney carcinoma (KCA), kidney renal clear
cell carcinoma (KIRC), etc. (Figure 1E). Interestingly, DRGs were
the completely hazardous factors in glioma (Figure 1F).

3.2 The correlation between immunity and
disulfidptosis in pan-cancer

Following the ssGSEA analysis of different immune cell
infiltration and programmed cell death, the correlation analysis
indicated a strong association between disulfidptosis and most
immune cells. For the most significant glioma, the R-value
between disulfidptosis and exhausted T cells (TEX_Genecard),
central memory CD8 T cell, effector memory CD8 T cell, gamma
delta T cell, regulatory T cell, macrophage was over 0.5 (Figure 2A).
Interestingly, the correlation between disulfidptosis and other
modalities of cell death like ferroptosis (R-value = 0.651),
necroptosis (R-value = 0.612), pyroptosis (R-value = 0.609),
immunogenic cell death (ICD) (R-value = 0.559) are also very
high in glioma compared with other types of cancer (Figure 2A).
The univariate Cox regression indicated that T cell exhaustion
(Tex), immature B cell infiltration, etc., were the dangerous
factors in glioma patients. In contrast, the activated NK cells’
infiltration was a beneficial factor for survival (Figure 2B). More
importantly, a higher T cell exhaustion (TEX_GEPIA or
TEX_Genecard) could predict a lousy prognosis in the glioma
cohort from TCGA (Figure 2C).

3.3 Gene signature construction based on
disulfidptosis for prognosis of patients
with cancer

The univariate Cox regression, least absolute shrinkage and
selection operator (LASSO) regression, and multivariate Cox
regression were used to construct a gene signature for each type
of cancer. Except for thyroid cancer (THCA) and uveal melanoma
(UVM), the gene signatures that could predict the prognosis for
patients with all other types of cancer, respectively, were
successfully made (Figure 3). For the top 6 gene signatures
ranked by c-index, i.e., the gene signature in adrenocortical
carcinoma (ACC), pheochromocytoma and paraganglioma
(PCPG), lymphoid neoplasm diffuse large B-cell lymphoma
(DLBC), prostate adenocarcinoma (PRAD), kidney chromophobe
(KICH), and thymoma (THYM), the receiver operating
characteristic (ROC) curves showed a very high area under the
curve (AUC) for 1-year, 2-year, 3-year, 4-year, and 5-year survival
(Figure 3). And in glioma that showed the most outstanding
relation between disulfidptosis and immune cell infiltration
(Figures 2A, B), its 7-gene signature (risk score = 1.56709174 *
APOBEC3C + (-3.2556028) * GLUDI1 + (-2.0800874) *
KIAA1671 + 1.08729963 * KIF4A + (-7.9141641) *
RPL3 + 1.83720741 * TAGLN2 + 1.89252831 * TSPAN31)
(Figures 4A-C) was further validated by dividing the TCGA
cohort into a training group and a testing group. And both the
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FIGURE 1

The pan-cancer landscape of DRGs. (A) The expression of 14 validated DRGs in all types (36) of cancer from TCGA. (B) The expression correlation
analysis of DRGs, in which no significance of correlation was observed between MYH9 and MYH10, DSTN and TLN1, CD2AP and MYL6, IQGAP1 and
MYL6, DSTN and ACTB. (C) The expression difference of DRGs between tumor samples (TCGA) and non-tumor samples (para tumor from TCGA +
normal tissues from GTEX) in each type of cancer, expression difference existed in all DRGs in GBM, PAAD, PRAD, and TGCT. (D) The expression
comparison between glioma tissues from TCGA and normal brain tissues from GTEXx. (E) Univariate Cox regression analysis of DRGs in each type of
cancer. (F) Univariate Cox regression analysis of DRGs in glioma, in which all DRGs were risk factors in glioma (HR>1, P<0.001).

Kaplan-Meier (KM) analysis and ROC curve (0.5-year, 1-year, 3-
year, 5-year, and 10-year) indicated significant results in the
training group, testing group, and the whole group (Figures 4D,
E). Then, the multivariant Cox analysis of the gene signature and
the clinical characteristics implied that the gene signature was an
independent hazard factor for the prognosis of patients with glioma
(Figure 4F). The nomogram indicated the relation of age, gender,
DRGs gene signature, and the survival probability (0.5-year, 1-year,
3-year, 5-year, 7-year, and 10-year) for glioma patients (Figure 4G).
Furthermore, the model based on age, gender, and DRGs gene
signature was validated in the Chinese Glioma Genome Atlas
(CGGA) with AUC over 0.72 (Figure 4I). In both glioma patients
from TCGA and CGGA, there was a consistency between the
predictive model and survival rate in the real world (Figures 4], K).

3.4 Unsupervised pan-cancer clustering
analysis based on DRGs and tumor
mutation burden comparison

The unsupervised clustering analysis based on the 14 DRGs’
expression was used to categorize the TCGA cohort into
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disulfidptosis (DSP)1, DSP2, and DSP3 groups (Figures 5A-E).
The KM analysis suggested the DSP groups had significantly
different survival in the disease-free interval (DFI), disease-
specific survival (DSS), overall survival (OS), and progression-free
interval (PFI) (Figure 5F). In line with the KM analysis of pan-
cancer, the KM analysis or univariate Cox regression in individual
cancer type indicated that the 3 DSP clusters could serve as a
significant survival-related factor in colon adenocarcinoma
(COAD), CRCA [COAD + rectum adenocarcinoma (READ)],
glioblastoma multiforme (GBM), glioma, head and neck
squamous cell carcinoma (HNSC), kidney chromophobe (KICH),
kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma
(LUAD), lung carcinoma (LCA), stomach adenocarcinoma
(STAD), uterine corpus endometrial carcinoma (UCEC), and
uveal melanoma (UVM) (Figures 5G-I). Next, the top 10
mutated genes (TP53, TTN, MUCI16, etc.) were listed and
compared among DSP1, DSP2, and DSP3 groups (Figures 6A, C).
Besides, the disulfidptosis, stromal score, immune score, tumor
purity, Tex, and tumor mutation burden (TMB) were significantly
different among the 3 DSP groups (Figure 6B). Since the previous 7-
gene model included APOEBC3C, the TMB between APOBEC-
enriched and APOBEC-unenriched groups was also compared in
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FIGURE 2

The correlation of immunity and other PCDs with disulfidptosis. (A) The correlation analysis between disulfidptosis and immune cell infiltration/other
PCDs, in which disulfidptosis score was positively correlated with PCDs, including ferroptosis, ICD, necroptosis, and pyroptosis, and disulfidptosis
was positive correlated with TEX, CD8+ T cells. (B) The univariate Cox regression of disulfidptosis, immune cell infiltration, and other PCDs in glioma,
LGG, GBM, and pan-cancer. (C) The Kaplan—Meier survival analysis of Tex_GEPIA and Tex_GeneCard in pan-cancer, a higher score of both
parameters was accompanied by worse prognosis in glioma (p<0.0001) evaluated by K-M analysis or unicox regression analysis.

each DSP group (Figure 6D). Immune cell infiltration and immune
molecules differed greatly among the 3 DSP groups (Figures 6E, F).
Each cancer type’s total T-cell infiltration ratio was also listed to
give a whole landscape (Figure 6G). In particular, the glioma, in
which DRGs models showed the most significant relationship with
survival and immunity, implicated a significant difference in
disulfidptosis, Tex_GEPIA, Tex_genecard, CD8 (+) T cell
subtypes, immune score, and tumor purity between the two DSP
subgroups (Figures 6H-]).

3.5 Refined DSP models construction and
validation by WGCNA and machine
learning in pan-cancer

The weighted correlation network analysis (WGCNA) was used
to extract the gene module most associated with disulfidptosis,
immune cell infiltration, etc. (Figures 7A-C). Next, the ten hub
genes (PRSS8, CRB3, ILDR1, ELF3, TMEM184A, AP1M2, TMC4,
TJP3, CLDN7, HOXB7) within this cyan module were further
abstracted by the STRING database and cytoHubba (Figures 7D,
E). The refined DSP models based on the ten hub genes were then
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constructed by employing the best method of machine learning-
randomForest, in which the training and testing cohorts have the
highest AUC (Figure 7F). Moreover, compared with the original
DSP groups, it could better predict the prognosis in pan-cancer
patients (Figure 7G). The refined DSP models could differentiate the
prognosis more evidently in patients with glioma (Figure 7H). After
that, the new DSP model was also validated in pan-cancer cohorts
from PCAWG and ICGC, glioma from CGGA, LUAD from GEO
(GSE30219, GSE31210, GSE37745, GSE50081), and UVM from
GEO (GSE22138) with significant p-value (Figures 8A-F).

3.6 Enhanced refined DSP models
construction in glioma

Since the refined DSP model performed exceptionally well in
glioma among all the types of cancer, the unsupervised consensus
clustering and non-negative matrix factorization (NMF) clustering
were further utilized to categorize the DRGs into different groups
(Figures 9A, C). Finally, the more practical and evident two-DSP-
group classification by the NMF method was chosen for further
construction of gene signature. Compared with a lack of
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DRGs-based prognosis model and ROC curve. The DRGs-based gene signature for prognosis was constructed for each type of cancer (the left part),
and the multi-gene-based model index was greater than 0.9 in ACC, DLBC, KICH, KIRP, PCPG, THYM, and TGCT. Multi-gene-based models for all
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made for patients with ACC, PCPG, DLBC, PRAD, KICH, and THYM, respectively (the right part). * p<0.05, **p<0.01, ***p<0.001.

significance between the survival of some subtypes by the consensus
clustering (Figure 9B), the KM analysis indicated a significant
difference (p < 0.0001) between DSP1 and DSP2 with Hazard
Ratio (HR) equal to 5.47 (Figure 9D). Furthermore, the blue
module, most correlated with DSP subtypes classification and
immune cell infiltration, was extracted by WGCNA (Figures 9E-
G). Ten hub genes (IL2RB, CD96, CD3D, HOXC9, HOXCS5,
SLAMF6, GZMH, CD3E, GZMK, and GZMA) from this module
were screened by cytoHubba to construct an enhanced refined DSP
clustering model by ML in glioma (Figure 9H). Surprisingly, the
glioma-customized DSP model trained from TCGA could predict
survival well in the glioma cohort from CGGA (Figures 91, ]).
Moreover, The DSP1 has a 3-fold immune therapy response rate
than the DSP2 group by oncoPredict package prediction (R.4.2.0).

3.7 The c-MET mechanism exploration
by experiments

The pathway enrichment of the blue gene module implied that
these genes might be involved in PD1 regulation (Figures 10A-C).
The c-MET inspired us to explore its function further since it was
one of the top 2 genes in both the blue module and tumor driver
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genes (TDG) (36) (Figure 10D). High expression of c-MET was
associated with poor survival among glioma patients from TCGA
and CGGA (Figures 10D, E). More importantly, the survival
tendency in glioblastoma patients receiving anti-PD1 therapy
agreed with the previous two cohorts (Figure 10F). Interestingly,
its expression differed significantly between tumor and nontumor
samples in over 90% of cancer types (Figure 10G). Interestingly,
most immune markers in glioma had an expression difference
between the high-c-MET and low-c-MET groups (Figures 10H,
I). The expression of c-MET was positively linked with PD-L1, PD2,
IL-10, IRF1, JAK3, and STAT3 (Figure 10]). Furthermore, the in-
vitro experiment results indicated that the knockdown of c-MET
could decrease the survival (Figure 11A) and proliferation
(Figure 11B) of glioblastoma cell line 1n299, which could be
further enhanced by the combination treatment with cabozantinib
(2uM, a c-MET inhibitor) (Figures 11A, B). In line with our
previous data, the decrease of c-MET could down-regulated the
p-JAK3, p-STAT3, and PD-L1 (Figure 11C). Furthermore, the
Jurkat T cell co-cultured with the In299 of c-MET knockdown
obtained a higher level of IL-2, IFN-v, and PD-1 (Figure 11D).

To further verify the regulation of ¢-MET on PD1/PDLI,
peripheral blood mononuclear cells (PBMC) were extracted from
healthy females. Through the co-culture of PBMC and glioma cells,
our data showed that down-regulation of c-MET in Ln299 significantly
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FIGURE 4

The gene signature of prognosis based on DRGs in glioma. (A) The flow chart and the LASSO regression results were listed, after which 29 genes
were screened out, and (B) their effect on the prognosis of glioma was evaluated by univariate Cox, attached with HR and p-value. (C) The gene
signature of glioma prognosis was made by multivariate Cox regression, in which APOBEC3C, GLUD1, KIAA1671, KIF4A, RPL3, TAGLN2, and TSPAN31
were input into the model. (D) The Kaplan—Meier curves were made in the training, testing, and all glioma cohorts from TCGA, and all displayed a
similar result that a higher risk score was accompanied by a worse prognosis in glioma. (E) The ROC curves of 0.5-year, 1-year, 3-year, 5-year, and
10-year were presented in the training, testing, and all glioma cohorts from TCGA. (F) The gene signature based on DRGs and clinical characteristics
for glioma were shown with HR value, in which age, gender, and multi-gene-based risk score were input into the model. (G) The glioma nomogram
of gene signature based on DRGs and clinical characteristics. The glioma ROC curve of gene signature based on DRGs and clinical characteristics in
TCGA (H) and CGGA (1). The glioma nomogram prediction of gene signature based on DRGs and clinical characteristics in TCGA (J) and CGGA (K).

*p<0.05, **p<0.01, ***p<0.001.

decreased the activation of STAT3 and the expression level of PDLI in
this cell (Figure 12A). In contrast, the expression level of IL2, IFN-y,
CD8 and CXCR9 were elevated in PBMC (Figure 12A). Furthermore,
extracellular level of IL2, IFN-y, and CXCL9 were also significantly
increased in the culture media (Figure 12B). Next, FACS was applied to
detect the c-MET-mediated CD8+ T cell immunity inhibition. In
Figure 12C, we found that the proportion of CD8+ T cells was
increased a little after co-culture with glioma cells while it could
return to normal level (Figure 12C). However, this phenomenon was
very marginal compared with the PD1 change in CD8+ T cells. The
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CD3+ CD8+ T cells with high PD-1 expression elevated from 8.8% to
16% after co-cultured with In299 cells. In contrast, the knockdown of
¢-MET almost reversed the T-cell exhaustion completely (Figure 12D).

Discussion

Disulfidptosis was a new modality of programmed cell death
coined by Gan et al. in 2023 (13), with very little further research on
cancer immunity. Our study explored the DRGs’ role in 33 types of
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Refined prognostic model construction in pan-cancer by WGCNA and Machine learning. (A) Gene modules correlated with DSP pathways and
immune cell infiltration by WGCNA, in which (B, C) module gene cohorts were most linked with DSP grouping and disulfidptosis (Cor=0.79, p<le-
200), while deep blue module gene cohorts were most correlated with immune cell infiltration (Cor=0.77, p<le-200). (D) Gene interaction network
about top 50 DSP grouping related genes in cyan module gene cohorts (E) Hub genes of the cyan gene module. (F) Refined prognostic model
construction based on pan-cancer by supervised machine learning, in which random forest algorithm displayed as the most efficient (Training
AUC=0.9082). (G) K-M analysis indicated the prognosis differences amongst DSP groups in the training cohort, testing cohort (original groups), and
predicted group (Al-identified group using test cohort data). (H) Refined prognostic model performance in the OS analysis of COAD, CRCA, GBM,

glioma, HNSC, LUAD, LCA, STAD, and UCEC.

cancer in detail. The limma package and univariate Cox regression
indicated that the 14 validated DRGs did not only manifest
significantly different expressions between tumors and normal +
para tumor tissues, but they could also predict differential survival
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in glioma, KCA, KIRC, MESO, and UVM (Figures 1C, E). In
particular, each gene of the 14 DRGs could play a significant role
in the prognosis of patients with glioma (Figure 1F). Although some
genes in the DRGs had been reported to be involved in glioma, our
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FIGURE 8

Validation of the refined prognostic model in external datasets. Expression of DRGs and validation of the refined prognostic model in pan-cancer
from (A, B) PCAWG (p<0.0001) or ICGC (p=0.022), both of them showed significant prognosis differences in Al-identified DSP subgroups. (C) The
Glioma cohort from CGGA manifested significant prognosis differences amongst Al-identified DSP groups (p=0.027). (D), LUAD from GEO datasets
(GSE30219, GSE31210, GSE37745, GSE50081) presented significant prognosis differences amongst Al-identified DSP groups (p=0.0013), (E) UVM
from GSE22138 showed significant prognosis difference amongst Al-identified DSP groups (p=0.019) (F) HNSC from GSE41613 (exhibited
insignificant prognosis difference amongst Al-identified DSP groups (p=0.8). ****p<0.0001

results implicated how the disulfidptosis pathway is regulated by
these genes in glioma deserves more research (37-42).

Besides other types of PCDs, the correlation analysis showed that
the disulfidptosis was also closely related to immune cell infiltration,
including Tex_Genecard, Tex_GEPIA, CD8 (+) T cells, regulatory T
cells, and macrophages (Figure 2A). Our data even suggested that
disulfidptosis-postively-related Tex by both gene cards and GEPIA
was a harmful factor in the prognosis of glioma (Figure 2B). PCD of
different cells in the tumor microenvironment (TME) has been found
to complicate cancer therapy. On the one hand, evidence suggested
that cancer cells undergoing PCD in TME might render them more
difficult to survive (43-46). On the other hand, other immune
components undergoing RCD in the TME could alter immune
attacks on tumor cells. For instance, the necroptosis induced in the
TME was reported to enhance the immune surveillance from the
BATF3 (+) conventional dendritic cells 1 (¢cDC1) and CD8 (+) T
cells, leading to the release of many immunostimulatory cytokines
(47-51). However, necroptosis induction in pancreatic cancer was
found to protect the tumor cell from attacks by immune cells (52).
While pyroptosis could induce antitumor effects by increasing the
infiltration of dendritic cells (DC), CD4 (+) T cells, and CD8 (+) T
cells (53, 54). For ferroptosis, it was reported to promote
immunogenicity, induce DCs” phenotypic development, and elicit a
vaccination-like response (55). The expression of cuproptosis-related
genes was positively correlated with PD-L1 expression and negatively
associated with regulatory T-cell infiltration in melanoma (56). To
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our knowledge, our study was the first to explore disulfidptosis and
tumor immune infiltration in pan-cancer patients and gave a
complete picture of disulfidptosis’ role in immune regulation.

Our study even constructed a rough gene signature based on
disulfidptosis genes to predict the survival of all patients of every
cancer from TCGA (Figure 3). In ACC, PCPG, DLBC, PRAD, KICH,
and THYM, the DRGs-based model could predict 1-year, 2-year, 3-
year, 4-year, and 5-year survival with over 0.9 AUC (Figure 3). The
gene signature based on PCD-related genes has always been a popular
research direction. However, there is still a lack of the DRGs-related
prognostic gene signature (57-62). Our research is the first to make a
gene signature for each type of cancer patient from TCGA. Moreover,
we further analyzed the DRGs-based model in glioma in which Tex
and immune cell infiltration was strongly associated with
disulfidptosis (Figure 2B). In both the TCGA and CGGA glioma
cohorts, the gene signature’s predictive effect was significant and
consistent (Figures 4D, E, H-K). To further dissect the role of
disulfidptosis in pan-cancer, we clustered the 14 validated DRGs by
their expression pattern in pan-cancer. The three DSP groups had
significantly different OS, DSS, PFI, and DFI in pan-cancer
(Figure 5F). More importantly, DSP groups also had disparate DFI
and OS in COAD, CRCA, GBM, glioma, HNSC, LUAD, LCA, STAD,
UCEC, and UVM (Figures 5F-TI). The consistent survival significance
of DSP clustering indicated that this new form of PCD was important
in these types of cancer. Further tumor mutation burden (TMB)
analysis suggested that the TP53, TTN, and IDH1 mutations may be
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FIGURE 9
Enhanced prognostic model in glioma by WGCNA and machine learning. (A) Unsupervised consensus clustering of 14 validated DRGs (B) and its
survival analysis in the glioma cohort, which displayed a significant difference in prognosis (p=6.7e-10). (C) The clustering of 14 validated DRGs by
Non-negative Matrix Factorization (NMF) divided the glioma cohort into two groups with (D) significantly different prognoses (p=5e-44). (E) WGCNA
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involved in the disulfidptosis. Despite the regulation on nearly all
previously reported PCD by TP53, no studies have explored its role in
disulfidptosis until now (63). Our data provided many possible
candidates to uncover more mechanisms of disulfidptosis.
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Consistent with the previous immune cell infiltration analysis, our
result showed that there was a higher Tex within the DSP2 than DSP1
in glioma patients (Figure 6G), which gave more evidence that
disulfidptosis was closely linked with Tex (Figure 6I).
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Down-regulation of c-MET within glioma enhanced the PBMC-derived CD8+ T cell function and proportion in the co-culture system. Glioma cell line
Ln299 cells were treated with c-MET siRNA for 24h and co-cultured with PBMC for another 24h. (A) WB was used to detect the relevant protein
expression in Ln299 and PBMC, in which PDL1, STAT3, pSTAT3, and pSTAT3 were down-regulated in Ln299. At the same time, IL2, IFN-y, and CXCR9
were up-regulated in PBMC. (B) ELISA was applied to detect extracellular protein levels in the co-culture system, in which IL2, IFN-y, and CXCL9 were
higher in the si-c-MET group than those in the NC group. (C) The proportion of PD1+ PBMC was decreased by the down-regulation of c-MET in
In299 a little. (D) PD1+ CD3+CD8+ T cells were reduced evidently in the si-c-MET group than those in the NC group. **p<0.01, ***p<0.001.

To further obtain a refined DSP model, WGCNA, followed by
machine learning, was employed to explore the most relevant gene
modules with disulfidptosis. Ten hub genes, including PRSS8, CRB3,
ILDRI1, ELF3, TMEM184A, AP1M2, TMC4, TJP3, CLDN7, and
HOXB7, were extracted from the most related gene module
(Figure 7E). Next, randomForest machine learning, dependent on
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the ten hub genes, produced the best prognosis model by virtue of
categorizing different DSP groups in pan-cancer, which was even
validated in external databases (Figures 7G, 8A-F). Our study
proposed a generally effective prognosis model for pan-cancer.
Interestingly, it worked exceptionally well in glioma, LUAD, and
UVM. Combined with the abovementioned results, it inspired us to
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continue analyzing disulfidptosis in glioma. A specific prognosis
model for patients with glioma was constructed based on ten hub
genes (IL2RB, CD96, CD3D, HOXC9, HOXC5, SLAMF6, GZMH,
CD3E, GZMK, and GZMA) (Figures 9H, I). Glioma was divided into
DSP1 and DSP2 groups, where the DSP1 group was predicted to
have a much higher response rate to immune checkpoint inhibitors
(ICIs) than the DSP2 group (Figure 9]).

Finally, our further mechanism exploration revealed that c-MET
might play a vital role in the interaction between disulfidptosis and
glioma immunity. The high expression of c-MET could even predict a
poor prognosis in glioblastoma patients receiving anti-PD1 treatment
(Figure 10F). This tumor driver gene also manifested a positive
relation with the JAK3-STAT3-PD-L1 pathway (Figure 10]). JAK/
STAT signaling is reported to play pivotal roles in tumor immunity,
including the maintenance of activated T cells (64-68). This
phenomenon was further validated in in-vitro experiments where
we co-cultured the c-MET-knockdown glioblastoma cell line with the
Jurkat T cell line (Figures 11A-D, 12A-D). The promotion of cell
death and inhibition of cell proliferation by ¢-MET knockdown
indicated that it could serve as a tumor driver gene. Its regulation
on JAK3-STAT3-PD1/PD-L1 in T cells indicated the crosstalk
between disulfidptosis and T-cell exhaustion. Targeting c-MET by
siRNA or cabozantinib might be a promising way to enhance the T
cell function implicated by the decreased high-PD1 T cells proportion
and the increased CXCR9, CXCL9, IL2, and INF-y (Figures 11D,
12A-D). Although we uncovered many potential and exciting
candidates for further research on disulfidptosis and cancer
immunity, more efforts are needed to validate their functions.

Conclusions

To summarize, we dissected the expression of DRGs between
cancerous and noncancerous tissues, their roles in the prognosis,
and their relationship with immunity in pan-cancer. A general
prognosis model based on machine learning was constructed for
pan-cancer and validated by external datasets with a consistent
result. In particular, a DSP prognosis model was made specifically
for patients with glioma to predict its survival and immune
response to ICIs. Many potential candidates were screened,
among which ¢-MET was validated for its TDG and immune
regulation roles (inducing t-cell exhaustion) in glioma.
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Glossary
ACC Adrenocortical carcinoma
AUC Area under the curve
Al Artificial intelligence
CGGA Chinese Glioma Genome Atlas
COAD Colon adenocarcinoma
cDC1 Conventional dendritic cells 1
CRCA COAD + rectum adenocarcinoma
DC Dendritic cells
DFI Disease-free interval
DSS Disease-specific survival
DSpP Disulfidptosis
DRGs Disulfidptosis-related genes
Edu 5-ethynyl-2’-deoxyuridine
GEO Gene expression omnibus
GBM Glioblastoma multiforme
HR Hazard Ratio
HNSC Head and neck squamous cell carcinoma
ICIs Immune checkpoint inhibitors
ICD Immunogenic cell death
ICGC International Cancer Genome Consortium
KCA Kidney carcinoma
KICH Kidney chromophobe
KIRC Kidney renal clear cell carcinoma
LASSO Least absolute shrinkage and selection operator
LUAD Lung adenocarcinoma
LCA Lung carcinoma
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma
ML Machine learning
NADPH Nicotinamide adenine dinucleotide phosphate
NMF Non-negative matrix factorization
0Os Overall survival
PBMC peripheral blood mononuclear cells
PCPG Pheochromocytoma and paraganglioma
PFI Progression-free interval
PRAD Prostate adenocarcinoma
ROC Receiver operating characteristic
RCD Regulated cell death
ssGSEA Single-sample Gene Set Enrichment Analysis
siRNA Small interfering RNA
(Continued)
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Continued
STAD Stomach adenocarcinoma
Tex T cell exhaustion
TCGA The Cancer Genome Atlas
TCIA The Cancer Immunome Atlas
THCA Thyroid cancer
THYM Thymoma
TDG Tumor driver genes
TME Tumor microenvironment
TMB Tumor mutation burden
UCEC Uterine corpus endometrial carcinoma
UVM Uveal melanoma
WGCNA Weighted correlation network analysis
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