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3Department of Biomedical Engineering, Boston University, Boston, MA, United States, 4Anhui
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(USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei,
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Background: Coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM)

are closely related. The function of immunocytes in the pathogenesis of CAD and

T2DM has not been extensively studied. The quantitative bioinformatics analysis

of the public RNA sequencing database was applied to study the key genes that

mediate both CAD and T2DM. The biological characteristics of associated key

genes and mechanism of CD8+ T and NK cells in CAD and T2DM are our

research focus.

Methods: With expression profiles of GSE66360 and GSE78721 from the Gene

Expression Omnibus (GEO) database, we identified coremodules associated with

gene co-expression relationships and up-regulated genes in CAD and T2DM

using Weighted Gene Co-expression Network Analysis (WGCNA) and the ‘limma’

software package. The enriched pathways of the candidate hub genes were then

explored using GO, KEGG and GSEA in conjunction with the immune gene set

(from the MSigDB database). A diagnostic model was constructed using logistic

regression analysis composed of candidate hub genes in CAD and T2DM.

Univariate Cox regression analysis revealed hazard ratios (HRs), 95%

confidence intervals (CIs), and p-values for candidate hub genes in diagnostic

model, while CIBERSORT and immune infiltration were used to assess the

immune microenvironment. Finally, monocytes from peripheral blood samples

and their immune cell ratios were analyzed by flow cytometry to validate

our findings.

Results: Sixteen candidate hub genes were identified as being correlated with

immune infiltration. Univariate Cox regression analysis revealed that NPEPPS and

ABHD17A were highly correlated with the diagnosis of CAD and T2DM. The
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results indicate that CD8+ T cells (p = 0.04) and NKbright cells (p = 3.7e-3) are

significantly higher in healthy controls than in individuals with CAD or CAD

combined with T2DM. The bioinformatics results on immune infiltration were

well validated by flow cytometry.

Conclusions: A series of bioinformatics studies have shown ABHD17A and

NPEPPS as key genes for the co-occurrence of CAD and T2DM. Our study

highlights the important effect of CD8+ T and NK cells in the pathogenesis of

both diseases, indicating that they may serve as viable targets for diagnosis and

therapeutic intervention.
KEYWORDS

cardiovascular disease, type 2 diabetes, bioinformatics, hub gene, CD8+T cells, NK
cells, immune
Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder

characterized by hyperglycemia resulting from defects in insulin

secretion, insulin resistance, or a combination of both (1, 2). This

condition can lead to the long-term damage to organs, nervous

system, and blood vessels, which further develop into organ

dysfunction or even failure (3). The global prevalence of DM is

increasing each year, with predictions indicating that the number of

individuals with DM will reach 5.92 billion by 2035 (4, 5), over 90%

of which will be type 2 diabetes mellitus (T2DM) (6). While T2DM

can be effectively controlled clinically with antidiabetic drugs such

as metformin and insulin (7, 8), the inherent metabolic

abnormalities contribute to a wide range of diseases and

predisposes to complications that threaten human health (9, 10).

For this reason, most medical research has focused on the

relationship between T2DM and other diseases (11–13).

Over the past 15 years, coronary artery disease (CAD) has

become the leading cause of death worldwide, accounting for 15

million deaths in 2016 alone (14), and it is the primary reason of

morbidity and death rate among individuals with T2DM (15, 16).

There is a strong correlation between the occurrence of CAD and

T2DM (1, 17). In their analysis of the Framingham Heart Study,

Fox et al. reported that for each ten-year expand in the duration of

T2DM, the morbidity and death rate of CAD in patients with

T2DM increased by 1.38 and 1.86 times, respectively, compared to

those without T2DM (18). The primary pathology underlying CAD

is atherosclerosis, a chronic inflammatory response leading to

plaque formation and can result in stable angina, unstable angina,

sudden cardiac death, and myocardial infarction (MI) (19, 20).

Immune cells including monocytes, macrophages, endothelial cells,

smooth muscle cells and adipocytes are attracted to atherosclerotic

plaques and are considered critical determinants of the disease

progression (21, 22). The transition from stable plaques to unstable,

rupture-prone plaques is associated with an increased number of T
02
cells displaying signs of early activation within the plaque (23–25).

Studies have shown that the number of apoptotic NK cells in the

peripheral blood of patients with CAD is significantly increased (26,

27), and that the phenotype of CD8+ T cells correlates with the rate

of disease progression after the onset of T2DM (28–30). Despite the

rapidly increasing prevalence of T2DM, which has proved to be a

major account of morbidity and death rate in patients with MI (31,

32), research into the associated inflammation and changes in

immune cell function between the two conditions is limited.

Therefore, it is crucial to investigate the pathogenesis of MI and

T2DM as well as determine the mechanisms of inflammation and

immune regulation (33).

Drawing on public data and bioinformatics methods, this study

identified 16 candidate hub genes linked with immune genes, MI

and T2DM. Gene Ontology(GO) and Gene Set Enrichment

Analysis (GSEA) were applied to detailed examine the organic

procedure and gateways. Stepwise regression and Univariate Cox

regression analysis were accomplished to create diagnostic models

of CAD and T2DM and examine sixteen candidate hub genes in

diagnostic models, which were authenticated in two specimen

datasets, GSE66360 and GSE78721. These models have good

potential diagnostic performance value in the clinical diagnosis of

CAD and T2DM, and the measurement results of Area Under the

Curve values indicated this. As T2DM is an important factor

influencing cardiovascular disease and have high correlation with

immune cell function. Consequently, we additionally investigated

the distribution of immunocytes of specimens and the relevance of

various immunocytes with these differentially expressed genes

(DEGs), then performed correlation validation analyses of the

abnormalities of the above DEGs. For further research, we

performed correlation validation analyses of the abnormalities of

the above candidate hub genes and immune cells in blood samples

from 38 clinical CAD, T2DM patients and 9 healthy individuals.

The results indicate a strong association between CAD and the

prevalence of CD8+ T and NK cells, also suggest the risk of T2DM
frontiersin.org
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combined with CAD, providing insights for targeted treatment and

control. The article design is shown in Figure 1.
Results

Identification of CAD and T2DM related
gene modules

The Weighted Gene Co-expression Network Analysis

(WGCNA) was employed to identify interconnected gene clusters

or modules with a close relationship to CAD. The most suitable soft

threshold power, b = 16.087, was selected based on scale

independence (R^2 = 0.87) and mean connectivity (the minimum

of about 0) (Figure 2A). Following this, module merging was

performed, resulting in 20 gene co-expression modules related to

CAD, each represented by a different color (Figures 2B, C). These

colors depict the relationship between the modules and CAD, with

turquoise indicating the most positive correlation (232 genes;

[CC] = 0.65; P = 6.3e-29) and light green showing the strongest

negative correlation (66 genes; [CC]=-0.78; P=4.7e-48) with T2DM.

In addition, significant correlations were observed between both the

turquoise (r = 0.68) and light green (r = 0.72) module memberships

and gene significance for CAD (Figure 2D). Consequently, 298

genes within the turquoise and light green modules, which exhibited

the strongest associations with CAD, were chosen for further study.

The details of the identification of gene modules associated with

T2DM can be found in Supplementary Figure 1.
Identification of hub genes associated with
immunological signature genes, CAD,
and T2DM

In the comparison between the T2DM and normal population,

1567 DEGs were acknowledged, and the comparison between the

CAD and healthy control groups, 1414 DEGs were found. These

genes were validated using the “limma” package. In the T2DM group,
Frontiers in Immunology 03
1384 of these genes were upregulated and 183 were downregulated,

while in the CAD group, 815 were upregulated and 599 were

downregulated. The top 20 upregulated and downregulated DEGs

are depicted in the heatmap (Figure 3A), and all DEGs are

represented by volcano plots, with red or blue grids reflecting genes

which were upregulated and downregulated, separately (Figure 3B).

Red or green triangles implied genes which were upregulated and

downregulated, separately. From the Immunologic Signature gene

sets (ImmuneSigDB; MSigDB; Liberzon et al., 2011, Bioinformatics),

immune_GENEs were extracted. The ImmuneSigDB contains gene

sets representing comprehensive regulatory dynamics of cell types,

states, and disturbances within the immune system. These signatures

were created through the manual curation of published human

immunology studies. Subsequently, an intersection of 298 module

genes associated with CAD as identified by WGCNA combined with

1414 DEGs detected by the “limma” package, 3907 immune_GENEs

extracted from MSigDB, and 1567 T2DM DEGs associated with

T2DM progression led to the selection of 16 candidate hub genes:

PI4KA, YWHAZ, ERRFI1, ABHD17, LRRC40, PLSCR4, NPEPPS,

SEL1L3, MAP3K2, ZBED5, EIF2B1, CAPN2, ZNF146, BCHE,

UQCRC2, USP34. All 16 candidate hub genes are protein-coding

and their distribution varies in the human body, mainly concentrated

in the brain and lymph nodes (Figure 3C; Table 1).
Functional enrichment analysis and
biological process of DEGs

GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)

annotations were utilized for more detailed biological research

of DEGs. GO manifested that the DEGs were chiefly

distributed in several biology procedures including 1) platelet

alpha granule, maintenance of DNA methylation, positive

regulation of multicellular organism process, and regulation of

phosphatidylinositol 3-kinase signaling; 2) ATP binding, secretory

granule, enzyme binding, and purine nucleotide binding; and 3)

Alzheimer’s disease, inositol phosphate metabolism, oxidative

phosphorylation, and apoptosis (Figures 4A–C). KEGG pathway

enrichment analysis demonstrated that these genes were chiefly

enriched in endopeptidase activity, hydrolase activity, and cysteine-

type endopeptidase activity (Figure 4D). GSEA was employed to

identify activation pathways in CAD and T2DM, and to distinguish

differential regulatory pathways between the high and low expression

groups of candidate hub genes. GSEA of hub genes suggested that

they were associated with several protein biological processes such as

ubiquitin-mediated proteolysis, protein export, and RNA polymerase,

neurological related activities like neuroactive ligand-receptor

interaction, and other biological processes like olfactory

transduction, ubiquitin-mediated proteolysis, nucleotide excision

repair, endocytosis, and limonene and pinene degradation

(Supplementary Figure 2). Among these candidate hub genes,

ERRFI1, SEL1L3, ZBED5, ZNF146, ABHD17A, and YWHAZ were

implicated in the biological process of protein output. ERRFI1,

PI4KA, ZBED5, UQCRC2, and ZNF146 were implicated in the

biological process of olfactory transduction. ZNF146 and

ABHD17A were implicated in the biological process of the
FIGURE 1

Structure of workflow chart.
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spliceosome. ERRFI1 was implicated in the biological process of RNA

polymerase. Among these candidate hub genes, SEL1L3 was involved

in most biological pathways, including ubiquitin-mediated

proteolysis, protein export, pyrimidine metabolism, nucleotide
Frontiers in Immunology 04
excision repair, pathogenic Escherichia coli infection, and

neuroactive ligand-receptor interaction. In contrast, PLSCR4 was

only involved in the biological process of limonene and

pinene degradation.
A B

C

FIGURE 3

Recognition of differential genes associative with CAD patients and healthy cohorts, T2DM patients and healthy cohorts. (A) The top 20 up- and
down-regulated differential gene discovered between the CAD and healthy groups, as well as T2DM and healthy groups, are represented by red and
blue squares in the heat map, respectively. (B) The red and green triangles in the volcano map represent the up- and down- differential genes. (C)
Venn diagram shows gene intersection of immune gene, the differential genes of T2DM and the differential genes of CAD combined with WGCNA-
identified module genes.
A B

DC

FIGURE 2

Determination of gene modules related to coronary heart disease. (A) Constructing Soft Threshold Power (b) based on dimension independence and mean
connectivity. (B) Gene block mass related to CAD are displayed in various colors under the gather dendrogram. (C) The correlation between gene modules
and CAD is depicted through heat maps. The upper left side displays the coefficient of correlation, and the lower right side displays the P-value. (D) The
correlation between the most positively correlated and negatively correlated modules in CAD, different member relationships, and gene conspicuousness.
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Construction and validation of diagnostic
models and hub genes

Two predictive models incorporating candidate hub genes were

developed using the logistic regression algorithm, drawing from

GSE66360 and GSE78721 datasets. The prediction model built from

the GSE66360 dataset exhibited strong diagnostic capabilities, with

an AUC value of 0.80 (Figure 5A). Univariate Cox regression

analysis of the expression of candidate hub genes from prediction

model was conducted. The results suggested that high expression of

ABHD17A (p=2.9e-3) was associated with diagnostic rates of
Frontiers in Immunology 05
patients with MI compared to that of healthy individuals.

(Figure 5B). For the GSE78721 dataset, the model displayed an

AUC value of 0.75 (Figure 5C). Univariate Cox regression analysis

of the expression of candidate hub genes suggested that high

expression of NPEPPS (p=0.04) was associated with diagnostic

rates of patients with T2DM compared to that of healthy

individuals (Figure 5D). When selecting pathological samples for

CAD, blood samples prove to be more appropriate than adipose

tissue samples, mainly because peripheral blood samples are easier

to obtain in vivo. The results from peripheral blood specimens

suggest that the GSE66360 dataset has predictive value for CAD
A B

D

C

FIGURE 4

Functional enrichment study of differentially expressed genes and hub genes related to CAD and T2DM progression. (A–C) Gene Ontology analysis
of CAD and T2DM-associated differential gene. The top 10 enriched Gene Ontology sorts (bioprocess, cell constituent, and molecular function) are
revealed. Gene proportions and different ontologies are represented by the X and Y coordinates. The circle extent indicates gene count. (D) Kyoto
Encyclopedia of Genes and Genomes analysis of the candidate hub genes related to CAD and T2DM progression, immune genes. The left and right
portion means the enriched differentially expressed genes and most considerable ontologies, respectively.
TABLE 1 The type and expression of the 16 hub genes.

Genes Gene type Expression

PI4KA
YWHAZ
ERRFI1
ABHD17A
LRRC40
PLSCR4
NPEPPS
SEL1L3
MAP3K2
ZBED5

EIF2B1
CAPN2
ZNF146
BCHE
UQCRC2
USP34

protein coding
protein coding
protein coding
protein coding
protein coding
protein coding
protein coding
protein coding
protein coding
protein coding

protein coding
protein coding
protein coding
protein coding
protein coding
protein coding

Ubiquitous expression in brain (RPKM 52.3), testis (RPKM 23.0) and 24 other tissues
Ubiquitous expression in esophagus (RPKM 248.0), brain (RPKM 160.0) and 25 other tissues
Broad expression in liver (RPKM 123.7), gall bladder (RPKM 60.1) and 20 other tissues
Ubiquitous expression in spleen (RPKM 12.7), bone marrow (RPKM 10.4) and 25 other tissues
Ubiquitous expression in brain (RPKM 8.0), testis (RPKM 8.0) and 25 other tissues
Ubiquitous expression in fat (RPKM 22.0), gall bladder (RPKM 21.1) and 24 other tissues
Ubiquitous expression in esophagus (RPKM 43.2), brain (RPKM 28.6) and 25 other tissues
Broad expression in lymph node (RPKM 28.3), stomach (RPKM 23.4) and 20 other tissues
Ubiquitous expression in bone marrow (RPKM 11.2), thyroid (RPKM 10.3) and 25 other tissues
Ubiquitous expression in lymph node (RPKM 23.1), endometrium (RPKM 21.4) and 25 other tissues
Ubiquitous expression in lymph node (RPKM 22.1), skin (RPKM 20.5) and 25 other tissues
Ubiquitous expression in lung (RPKM 90.0), gall bladder (RPKM 66.0) and 25 other tissues
Ubiquitous expression in thyroid (RPKM 20.8), endometrium (RPKM 19.9) and 25 other tissues
Biased expression in liver (RPKM 60.4), brain (RPKM 16.9) and 12 other tissues
Ubiquitous expression in heart (RPKM 179.2), duodenum (RPKM 111.5) and 25 other tissues
Ubiquitous expression in testis (RPKM 17.6), lymph node (RPKM 17.0) and 25 other tissues
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diagnosis in practical disease treatment. Using univariate Cox

regression analysis to validate candidate hub genes in the

GSE66360 prediction models of MI and GSE78721 prediction

models of T2DM. This validation revealed that only two hub

genes, ABHD17A and NPEPPS, were noticeably up-regulated in

CAD and T2DM predictive diagnostic models. Box plots showed

that five genes: PI4KA, ERRFI1, LRRC40, ABHD17A and ZNF146
Frontiers in Immunology 06
were noticeably expressed in MI, while the remaining eleven genes

were expressed to a lesser extent such as SEL1L3, UQCRC2 and

USP34. Obviously, the genes expression level of BCHE was the

lowest (Figure 5E). In the T2DM dataset, nearly all candidate genes

were highly expressed. Among them, the proportion degrees of

ABHD17A and UQCRC2 were particularly pronounced, but the

proportion degrees of BCHE was again the lowest (Figure 5F).
A B

D

E

F

C

FIGURE 5

Expression and receiver operating characteristic curves values of samples and key genes from two diagnostic models. (A) Construction of the candidate
genes-based diagnostic prediction model of CAD. (B) Univariate Cox regression analysis showing the HRs with 95% CIs and p values for candidate hub
genes in CAD. (C) Construction of the candidate genes-based diagnostic prediction model of T2DM. (D) Univariate Cox regression analysis showing the
HRs with 95% CIs and p values for candidate hub genes in T2DM. (E) Representation of candidate diagnostic genes in MI individuals of blood specimens
in GSE66360. (F) Representation of candidate diagnostic genes in T2DM individuals of depots of adipose structure specimens in GSE78721.
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The composition of immunocytes and
immune infiltration

The microenvironment of the sample, consisting of lymphocytes,

monocytes, macrophages, granulocytes, and inflammatory factors,

has a significant impact on disease diagnosis and clinical therapeutic

sensitivity. For this investigation, the composition of 22 types of

immunocytes in different sample groups, including 49 MI cases, 50

normal cases, 105 DM cases, and 95 normal cases, were estimated

using the CIBERSORT algorithm. This composition is illustrated in

the histograms (Figures 6A, B). Comparisons were made between the

immunocyte infiltration in the MI and normal groups, as well as

between DM and normal specimens, and these comparisons are

presented in the box plots (Figures 6C, D). The results suggest that in

the GSE66360 dataset, there was a conspicuously higher proportion

of CD8 cells (p = 0.04), CD4 memory resting T cells (p = 2.7e-5), and

gamma delta T cells (p = 2.3e-4), as well as a lower proportion of

activated mast cells (p = 4.2e-10) and neutrophils (p = 9.3e-9) in the

normal group compared to the MI group. In the GSE78721 dataset,

the normal group exhibited conspicuously higher proportions of

resting NK cells (p = 3.7e-3), CD4 naive T cells (p = 1.6e-3), and

activated dendritic cells (p = 5.4e-3), but lower proportions of M0

macrophages (p = 6.7e-6) contrast with the DM group. Furthermore,

an analysis of the relationship between infiltration estimation and

gene expression in gene modules revealed that T-cell CD4+ Th1 in

genes ERRFI1, ZBED5, UQCRC2, ZNF146, ABHD17A, YWHAZ,

and especially PLSCR4 showed a negative correlation in nearly 40

types of cancer. Many of these cancers are associated with CAD or

T2DM, including UCEC, BRCA, PRAD, COAD, PAAD, and others.

Modules that investigate the relationship between immune infiltrates

and genomic alterations or clinical outcomes in TCGA are displayed

in Supplementary Figure 3.
Frontiers in Immunology 07
Study of immune cells in CAD, T2DM, and
healthy individuals

Following the bioinformatics analysis of immune cell

expression in CAD and T2DM, clinical samples were collected for

the clinical validation of immune cells using flow cytometry. Prior

to the flow cytometry analysis, suitable gating strategies were

utilized to identify cells with live/dead staining in CD8 T cells

and NK cells using fresh cells (freshly isolated from peripheral

blood), as some biomarkers such as CD16 may undergo

downregulation or detachment after thawing. Blood counts of

CD8+ T and NK cell lymphocytes were detected by flow

cytometry in 38 patients from the First Affiliated Hospital of

Anhui University of Chinese Medicine, categorized as those with

CAD, T2DM, CAD Combined with T2DM, and 9 healthy subjects

(Tables 2–4). The CD8+T and NK cells in CAD, CAD Combined

with T2DM, and normal venous blood were observed through flow

cytometry (Figures 7A–D). Combined with Tables 3 and 4, the

results demonstrated that noticeably higher percentages of CD8+T

cells are typically present in healthy subjects (Figure 7A) compared

to those with CAD (Figure 7B), and higher levels of NKbright cells in

healthy subjects compared to those with CAD or T2DM

(Figure 7C). It was observed that healthy subjects typically have

conspicuously higher proportions of NKbright cells than those with

CAD combined with T2DM (Figure 7D).
Discussion

Early diagnosis of CAD combined with T2DM is challenging

due to its complicated etiology and risk factors. Therefore, it is

crucial to develop new diagnostic models to identify the drivers of
A

B D

C

FIGURE 6

Distribution of immunocytes between diseased and normal specimens. (A) Relational proportion of 22 immunocytes in each specimen in GSE66360.
(B) Relative proportion of 22 immunocytes in each specimen in GSE78721. (C) Variation in Immunocyte proportion expression between MI and
Normal specimens. (D) Variation in Immunocyte proportion expression between T2DM and Normal specimens.
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CAD associated with T2DM. In this study, bioinformatics research

identified 16 candidate hub genes associated with gene co-

expression relationships and up-regulated genes in CAD and

T2DM. NPEPPS and ABHD17A were identified as key genes in

CAD combined with T2DM patients and were highly associated

with the diagnosis of CAD and T2DM. Subsequently, we

highlighted the important roles of CD8+ T cells and NK cells in

the pathogenesis of these two diseases using CIBERSORT and

immune infiltration, suggesting that they may be viable targets for

diagnosis and therapeutic intervention. The discovery of key

diagnostic genes and significant changes in immune cells,

specifically CD8+ cells and NK cells, in CAD combined with

T2DM provides new insights into potential targets for diagnostic

and therapeutic interventions.

Further bioinformatics analysis revealed that these 16 candidate

hub genes were associated with various protein biological processes.

The key diagnostic gene, ABHD17A, is associated with the biological

process of protein export and ubiquitin-mediated proteolysis.

ABHD17A has significant catalytic activity to play a key role in

membrane localization, and promotes N-Ras deacylation, leading to

changes in the subcellular localization of N-Ras. Additionally, it

promotes palmitate turnover on proteins such as PSD95 and N-

Ras, which are important processes that control protein localization

and signal transduction (34). The other diagnostic key gene,

aminopeptidase (NPEPPS) is an important zinc metallopeptidase

belonging to the oxytocinase subfamily of the M1 aminopeptidase

family (35, 36). It contributes to the machining of the proteosome-

acquired peptide pool, following closely behind pruning of antigen

peptides by ERAP1 and ERAP2 for emergence on major

histocompatibility complex (MHC) class I molecules (35, 37).

Several GWAS analysis have presented relevances of these NPEPPS
Frontiers in Immunology 08
with multifarious immunity-induced disorders for instance

inflammatory bowel disease, and diabetes mellitus, the genetic

interactions between some aminopeptidases and HLA class I loci

are closely related to these diseases (38–43). In this study, multiple

bioinformatic analyses have established that CAD and T2DM are

tightly associated through the hub genes ABHD17A and NPEPPS.

Unfortunately, these analyses and subsequent validation, by applying

clinical samples, are not sufficient to elucidate whether ABHD17A

and NPEPPS are a cause or a consequence of T2DM or CAD. Both

ABHD17A and NPEPPS are related to cell metabolism and play

important roles in phosphatidylinositol metabolism, which may be

significant in promoting T2DM progression. In addition, NPEPPS is

closely associated with various autoimmune diseases. Despite these

findings, since T2DM is a long-term chronic metabolism disease, it

affects the metabolic changes in the body, which will affect the

function of the immune system, and the progression of CAD,

especially the occurrence of MI, is closely related to the abnormal

function of the immune system. Therefore, when focusing on

ABHD17A and NPEPPS in CD8+ T cells and NK cells, we tend to

believe that the abnormalities of these hub genes in these immune

cells are caused by long-term metabolic changes caused by T2DM.

Subsequently, these abnormalities in immune cells caused by T2DM

contribute to the progression of CAD and increase the risk of MI.

These are considerations based on disease characteristics and known

hub gene functions. Additional research is required to clarify the

pathogenic mechanisms of ABHD17A and NPEPPS in CAD and

T2DM and establish specific causal relationships.

This study found that CD8+ T cell ratios was higher in healthy

individuals than in CAD patients and CAD complicated with T2DM

patients. Notably, the proportion of NKbright cells in healthy

individuals is usually significantly higher than CAD or T2DM
TABLE 2 The demographics and clinical characteristics of individuals.

NOR Control (n=9) CAD (n=13) T2DM (n=11) CAD-T2DM (n=14)

Female/Male 4/5 7/6 6/5 7/7

Mean age 62.8 ± 4.5 61.8 ± 4.6 64.1 ± 4.4 62.7 ± 5.0

BMI 22.5 ± 2.5 24.3 ± 2.1 25.4 ± 3.0 23.0 ± 2.6

HbA1c, % 5.32 ± 0.55 5.29 ± 0.44 8.90 ± 1.57 7.49 ± 1.18

TC, mmol/L 5.18 ± 1.09 4.91 ± 0.73 6.21 ± 1.05 6.16 ± 1.21

TG, mmol/L 1.81 ± 0.68 1.61 ± 0.79 3.3 ± 0.96 3.17 ± 1.38

LDL-c, mmol/L 2.78 ± 0.96 2.65 ± 0.94 3.03 ± 1.27 2.89 ± 1.31
TABLE 3 The levels of CD8+ T and NK cells in patients.

Group
CD8+T Cell NK Cell

High low CD56bright CD56dim

Normal 7(77.8%) 2(22.2%) 6(66.7%) 3(33.3%)

CAD 5(38.5%) 8(61.5%) 4(31.0%) 9(60.0%)

T2DM 8(72.7%) 3(27.3%) 4(36.4%) 7(63.3%)

CAD & T2DM 4(28.6%) 10(71.4%) 3(21.4%) 11(78.6%)
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patients. Recent studies revealed that CAD patients have a high

number of CD8+ T cells expressing CD56 or CD57, which exhibited

typical pro-inflammatory features (44–46). Dilated CD8 IL-6Ra+ low

T cells were associated with increased incidence of failure, cytotoxic

CD8CD57 T cells, and elevated IL-6 levels. The expression of IL-6Ra
by human CD8+ T cells has been considered to define a distinct T cell

subset that produces Th2 cytokines (47). Simultaneously, In patients

with CAD, NK cell apoptosis, a key factor in initiating and regulating

the immune response, is reduced (48). Furthermore, a potential

negative impact on immunomodulatory defenses during the

development of atherosclerosis may result from the sustained loss

of NK cells (26, 49, 50). NK cells from the patients had suppressed

both TNF-a secretion and particle capability as evidenced by CD107a

reflection (51).

T2DM is known to be a major risk factor for CAD. Among

T2DM patients, CAD is more likely to be a complicated disorder

characterized by small, extensive, calcified, multivessel disease

(MVD) and often requires coronary revascularization apart from

definitive medical treatment to control angina pectoris (52).

Research has shown that insulin resistance, hyperinsulinemia, and

vascular calcification are common complications in diabetes

patients (53). Promotive factors, such as diabetes-induced ROS

overexpression, secretion of inflammatory factors, improved

conversion rate of aldose reductase (AKR1B1) basement (54), and

activation of protein kinase C b, d, and q, can accelerate the

transformation of stable plaque into unstable plaque or plaque

rupture (51, 52), which subsequently leads to thrombosis and the

manifestation of adverse coronary events (51).

Inevitably, the above study has limitations. Diagnostic models

were constructed for the diagnostic prediction of patients with CAD

combined with T2DM based on retrospective data from the GEO

database. The model is based on 16 candidate hub genes.

Prospective data is needed to validate the clinical application

value of the model. Further investigation is needed to determine

the specific mechanism of action of ABHD17A and NPEPPS in

CD8+ and NK cells.
Frontiers in Immunology 09
Materials and methods

Study design and data collection

The NCBI Gene Expression Comprehensive Public Database

(GEO) provides source support for data collection and subsequent

analysis. GSE66360 annotated HG-133U from GPL570 in

peripheral blood_PLUS_2 microarray measurement of gene

expression, which included 49 myocardial infarction groups and

50 healthy cohorts. GSE78721 was annotated by GPL15207 from

different adipose depots (thigh, visceral and subcutaneous) of

patients suffering from type 2 diabetes.
WGCNA of T2DM and CAD

The Sangerbox 3.0 software package, which includes “WGCNA,”

was used to produce a gene co-expression network to explore the co-

expression relevances between genes in the sample and the relevance

of genes and their expressions. This process required a Pearson

correlation matrix and an average linkage method for all pairs of

genes. A weighted adjacency matrix was constructed using the power

function A_Mn = |C_Mn|^b. When the soft threshold is 16.087, the

R^2 has a significant improvement, reaching 0.9. At this point, the

network has already followed a scale-free distribution. After choosing

a power of 16.087, the contiguity was changed into a Topological

Overlap Matrix (TOM). This matrix determined the network

relevancy of genes, considered as the summation of their contiguity

to all others in the network relative to the gene proportion, and

calculated the associated diversity (1-TOM). To group genes with

comparable description characteristics into gene modules, mean

integration collecting was conducted according to the TOM-based

diversity estimation. The minimal size for the gene dendrogram (tree)

was set at 30. For further module analysis, we evaluated the module’s

own genetic diversity, picked a cut-off for the module dendrogram,

and combined certain modules. Each module was represented by a

different color. The gene expression profile of each module was

expressed by three factors: module eigengene (ME), module

membership (MM), and gene significance (GS). MEs were applied

to estimate the relevance between different modules and phenotypes.

Module membership (MM) indicates the correlation between a gene

and its corresponding module. Gene significance (GS) represented

the relationship between a gene and phenotype, and was determined

by the log10 transformation of the P value in the linear regression

between gene expression and phenotype.
Identification of differentially
expressed genes

Perform expression analysis of diverse genes on CAD

(GSE66360) and T2DM (GSE78721) samples using the “limma”

software package from the online website Sangerbox 3.0. P_ Genes

with adj < 0.05 and multiple variation (FC) | > 1.5 were regarded as

distinctively described genes. Create heat maps and volcanic maps
TABLE 4 Changes in CD8+ T and NK cell levels in peripheral blood (%).

Group n CD8+T Cell NKbright Cell

Normal 9 26.77±2.96 89.02±2.87

CAD 13 14.71±4.22 40.81±3.98

T2DM 11 31.45±3.76 42.05±2.80

CAD-T2DM 14 11.64±4.33 17.87±6.08
**p<0.01; ****P<0.0001; ns, no significance.
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of differentially expressed genes using the “pheatmap” and

“ggplot2” software packages. Use the online Venn chart tool to

obtain their common 16 DEGs.
Functional enrichment analysis

The online website sangerbox carries out GO analysis and

KEGG analysis, in which GO analysis includes BP (Biological

Process), MF (Molecular function), CC (Cellular configuration),

cardiovascular disease samples and diabetes samples, as well as hub

gene enrichment investigation. GSEA was served as reveal the

respective functions of central genes. Using the Gene Ontology

footnote in R program procedure (edition 3.1.0) for the technical

support, enrichment analysis of gene set functions was conducted,

genes are plotted to the backdrop set, Enrichment investigation was
Frontiers in Immunology 10
conducted enacting R program clustering archive (edition 3.14.3) to

derive gene set enrichment outcomes. Setting the minimum gene set

to 5 and the maximum gene set to 5000, with a P value of < 0.05 and

an FDR value of < 0.25, is considered statistically relevantly.
Production of receiver operating
characteristic curves and description of
hub genes in samples

We operated R program pROC (edition 1.15.0.1) to conduct

ROC estimation to acquire AUC. Specifically, we obtained the CAD

and T2DM gene expression of patients, used the ROC function of

pROC to conduct ROC analysis at 365 time points, and used the ci

ability of pROC to estimate AUC and confidence intermission to

acquire the final AUC outcomes.
A

B

D

C

FIGURE 7

Gating strategy for immune cells of CAD, T2DM patients and healthy people. (A) The blood count of CD8+T and NK cells in healthy people. (B) The
blood count of CD8+ T and NK cells in CAD patients. (C) The blood count of CD8+ T and NK cells in T2DM patients. (D) The blood count of CD8+ T
and NK cells in CAD combined with T2DM individuals.
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Gene set enrichment investigation

We assembled GSEA (http://software.broadinstitute.org/gsea/

index.jsp). The web page obtained GSEA program (edition 3.0) and

separated the models into two series according to disease types. The

various immune gene samples were collected from the

immunologic signature gene sets (http://www.gsea-msigdb.org/

gsea/downloads.jsp). The kegg characters subset was downloaded

to estimate relative pathways and molecular mechanisms of action.

According to gene reflection profiling and phenotype subsets, set

the minimal genomes and utmost genomes, and collect samples

again, P numerial number of < 0.05 and an FDR of < 0.25 were

consistent statistically significance relevant.
Immunocyte infiltration and level in diverse
cancer types

CIBERSORT is used to evaluate the infiltration of immunocytes

in the human microenvironment. This reagent includes 547

biomarkers and 22 humanity immunocytes, comprising

lymphocytes (T cells and B cells), Monocyte, neutrophils,

macrophages, etc. The figures were Presented as stacked bar

charts through the online platform Sangerbox (http://

vip.sangerbox.com/home.html). Various cancer types in Immune

infiltration level were presented as heatmap, and figures will

indicate the fineness-restructured spearman’s rho pass through

assorted cancer categories through the online platform (http://

timer.comp-genomics.org/timer/).
Diagnosis standard for CAD and T2DM

According to the diagnostic criteria by the American Diabetes

Association and International Society of Hypertension, our study

employed an case–control design, which included the selection of

the 38 most rapidly progressing CAD, T2DM and CAD combined

with T2DM cases from the clinical study. CAD was defined as: (1)

Male patients aged over 40 and female patients aged 45 and above;

(2)Coronary artery stenosis≥50% based on CAG or CCTA

examination; (3)Symptoms such as chest tightness or chest pain

undergo a comprehensive evaluation on admission. T2DM was

defined as: (1)FPG ≥ 7.0mmol/L; (2)PBG ≥11.1mmol/L; (3)

HbA1c≥6.5%. Controls included participants with no evidence of

T2DM and no evidence of CAD by 65 years of age.
Detection of immunocytes infiltration in
patients and healthy cohorts

We screened 38 patients with CAD or T2DM from the

Department of Cardiology of the First Affiliated Hospital of Anhui

University of Chinese Medicine, as well as 9 eligible healthy

volunteers, and conducted flow cytometry immune examinations.

Firstly, blood is taken from the human body to prepare samples,

prepare cell suspension, count cells, use EP (1.5ml) tube for sub
Frontiers in Immunology 11
packaging, level rotor 800g, 4°C centrifugation. After completion, use

a Pap pipette to remove the middle white membrane layer, add 5ml

PBS for resuspension, level rotor 250g, 4°C centrifugation and add

appropriate fluorescence-labelled antibodies. Mix well, avoid light

and incubate at 4°C for 30 minutes. After completion, add 1ml PBS to

wash twice and finally resuspend with 200ul PBS. Then adjust the

laser light source, detector and flow rate, and load the prepared cell

sample into the flow cytometer (BD LSR Fortessa) to detect the

expression of CD8+T and NK cells, collect and count the proportion

of CD8+T and NK cells in CAD, T2DM and healthy samples, and

obtain the final results.
Numerical statement manipulation

The data processing were manipulated in R program and loads

of online websites. The selection and use of data in the article are

based on the criterion of significance P < 0.05.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

All human blood samples were collected with informed consent

from patients, and all related procedures were performed with the

approval of ethics boards of the The First Affiliated Hospital of

Anhui University of Chinese Medicine.
Author contributions

CD: Data curation, Methodology, Software, Writing – original

draft, Supervision. DW: Data curation, Methodology, Writing –

original draft, Supervision. QT: Supervision, Writing – original

draft. ZL: Formal analysis, Writing – review & editing. PZ:

Investigation, Writing – original draft. YW: Writing – original

draft, Conceptualization, Data curation, Visualization. MH:

Investigation, Validation, Writing – original draft. SC: Validation,

Conceptualization, Writing – original draft. WQ: Data curation,

Supervision, Writing – original draft. LZ: Writing – review &

editing. HY: Funding acquisition, Visualization, Writing – review

& editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Clinical Research Project of the First Affiliated

Hospital of Anhui University of Chinese Medicine (yfyzc04).
frontiersin.org

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://vip.sangerbox.com/home.html
http://vip.sangerbox.com/home.html
http://timer.comp-genomics.org/timer/
http://timer.comp-genomics.org/timer/
https://doi.org/10.3389/fimmu.2024.1267963
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2024.1267963
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 12
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1267963/

full#supplementary-material
References
1. Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale
CP, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9
million people. Lancet Diabetes Endocrinol (2015) 3:105–13. doi: 10.1016/S2213-8587
(14)70219-0

2. Gillespie KM. Type 1 diabetes: pathogenesis and prevention. CMAJ (2006)
175:165–70. doi: 10.1503/cmaj.060244

3. American Diabetes Association Professional Practice, C. 2. Classification and
diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care (2022)
45:S17–38. doi: 10.2337/dc22-S002

4. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE.
Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res
Clin Pract (2014) 103:137–49. doi: 10.1016/j.diabres.2013.11.002

5. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes
mellitus–present and future perspectives. Nat Rev Endocrinol (2011) 8:228–36.
doi: 10.1038/nrendo.2011.183

6. Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century.
World J Diabetes (2015) 6:850–67. doi: 10.4239/wjd.v6.i6.850

7. Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, et al.
Diabetes medications as monotherapy or metformin-based combination therapy for
type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med (2016)
164:740–51. doi: 10.7326/M15-2650

8. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson
BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers (2017) 3:17016. doi: 10.1038/
nrdp.2017.16

9. Thong EP, Codner E, Laven JSE, Teede H. Diabetes: a metabolic and reproductive
disorder in women. Lancet Diabetes Endocrinol (2020) 8:134–49. doi: 10.1016/S2213-
8587(19)30345-6

10. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev
(2013) 93:137–88. doi: 10.1152/physrev.00045.2011

11. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat
Rev Nephrol (2020) 16:377–90. doi: 10.1038/s41581-020-0278-5

12. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging
complications of diabetes mellitus. Nat Rev Endocrinol (2022) 18:525–39.
doi: 10.1038/s41574-022-00690-7

13. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes
mellitus and its complications. Nat Rev Endocrinol (2018) 14:88–98. doi: 10.1038/
nrendo.2017.151

14. Collaborators, G.B.D.C.o.D. Global, regional, and national age-sex-specific
mortality for 282 causes of death in 195 countries and territories, 1980-2017: a
systematic analysis for the Global Burden of Disease Study 2017. Lancet (2018)
392:1736–88. doi: 10.1016/S0140-6736(18)32203-7

15. International Hypoglycaemia Study, G. Hypoglycaemia, cardiovascular disease,
and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet
Diabetes Endocrinol (2019) 7:385–96. doi: 10.1016/S2213-8587(18)30315-2

16. Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology,
assessment and prevention. Nat Rev Cardiol (2023) 20:685–695. doi: 10.1038/s41569-
023-00877-z

17. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease:
pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J (2013)
34:2436–43. doi: 10.1093/eurheartj/eht149

18. Fox CS, Sullivan L, D'Agostino RB Sr, Wilson PW. The significant effect of
diabetes duration on coronary heart disease mortality: the Framingham Heart Study.
Diabetes Care (2004) 27:704–8. doi: 10.2337/diacare.27.3.704
19. Bhatnagar P, Wickramasinghe K, Williams J, Rayner M, Townsend N. The
epidemiology of cardiovascular disease in the UK 2014. Heart (2015) 101:1182–9.
doi: 10.1136/heartjnl-2015-307516

20. Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review
on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol (2019)
234:16812–23. doi: 10.1002/jcp.28350

21. Spirig R, Tsui J, Shaw S. The emerging role of TLR and innate immunity in
cardiovascular disease. Cardiol Res Pract (2012) 2012:181394. doi: 10.1155/2012/
181394

22. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl
J Med (2005) 352:1685–95. doi: 10.1056/NEJMra043430

23. Gao P, Rong H-H, Lu T, Tang G, Si L-Y, Lederer JA, et al. The CD4/CD8 ratio is
associated with coronary artery disease (CAD) in elderly Chinese patients. Int
Immunopharmacol (2017) 42:39–43. doi: 10.1016/j.intimp.2016.11.007

24. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged
sword. Nat Rev Immunol (2006) 6:508–19. doi: 10.1038/nri1882

25. Shimokawa C, Kato T, Takeuchi T, Ohshima N, Furuki T, Ohtsu Y, et al. CD8(+)
regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat
Commun (2020) 11:1922. doi: 10.1038/s41467-020-15857-x

26. Li W, Lidebjer C, Yuan X-M, Szymanowski A, Backteman K, Ernerudh J, et al.
NK cell apoptosis in coronary artery disease: relation to oxidative stress. Atherosclerosis
(2008) 199:65–72. doi: 10.1016/j.atherosclerosis.2007.10.031

27. Jonasson L, Backteman K, Ernerudh J. Loss of natural killer cell activity in
patients with coronary artery disease. Atherosclerosis (2005) 183:316–21. doi: 10.1016/
j.atherosclerosis.2005.03.011

28. Wiedeman AE, Muir VS, Rosasco MG, DeBerg HA, Presnell S, Haas B, et al.
Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes
progression. J Clin Invest (2020) 130:480–90. doi: 10.1172/JCI126595

29. Kumar NP, Sridhar R, Nair D, Banurekha VV, Nutman TB, Babu S. Type 2
diabetes mellitus is associated with altered CD8(+) T and natural killer cell function in
pulmonary tuberculosis. Immunology (2015) 144:677–86. doi: 10.1111/imm.12421

30. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev
Immunol (2011) 11:98–107. doi: 10.1038/nri2925

31. Aronson D, Rayfield EJ, Chesebro JH. Mechanisms determining course and
outcome of diabetic patients who have had acute myocardial infarction. Ann Intern
Med (1997) 126:296–306. doi: 10.7326/0003-4819-126-4-199702150-00006

32. Cui J, Liu Y, Li Y, Xu F, Liu Y. Type 2 diabetes and myocardial infarction: recent
clinical evidence and perspective. Front Cardiovasc Med (2021) 8:644189. doi: 10.3389/
fcvm.2021.644189

33. Yao Z, Zhang B, Niu G, Yan Z, Tong X, Zou Y, et al. Neutrophil infiltration
characterized by upregulation of S100A8, S100A9, S100A12 and CXCR2 is associated
with the co-occurrence of Crohn’s disease and peripheral artery disease. Front Immunol
(2022) 13:896645. doi: 10.3389/fimmu.2022.896645

34. Lin DT, Conibear E. ABHD17 proteins are novel protein depalmitoylases that
regulate N-Ras palmitate turnover and subcellular localization. Elife (2015) 4:e11306.
doi: 10.7554/eLife.11306

35. Agrawal N, Brown MA. Genetic associations and functional characterization of
M1 aminopeptidases and immune-mediated diseases. Genes Immun (2014) 15:521–7.
doi: 10.1038/gene.2014.46

36. Reddi R, Ganji RJ, Marapaka AK, Bala SC, Yerra NV, Haque N, et al. Puromycin,
a selective inhibitor of PSA acts as a substrate for other M1 family aminopeptidases:
Biochemical and structural basis. Int J Biol Macromol (2020) 165:1373–81.
doi: 10.1016/j.ijbiomac.2020.10.035
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1267963/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1267963/full#supplementary-material
https://doi.org/10.1016/S2213-8587(14)70219-0
https://doi.org/10.1016/S2213-8587(14)70219-0
https://doi.org/10.1503/cmaj.060244
https://doi.org/10.2337/dc22-S002
https://doi.org/10.1016/j.diabres.2013.11.002
https://doi.org/10.1038/nrendo.2011.183
https://doi.org/10.4239/wjd.v6.i6.850
https://doi.org/10.7326/M15-2650
https://doi.org/10.1038/nrdp.2017.16
https://doi.org/10.1038/nrdp.2017.16
https://doi.org/10.1016/S2213-8587(19)30345-6
https://doi.org/10.1016/S2213-8587(19)30345-6
https://doi.org/10.1152/physrev.00045.2011
https://doi.org/10.1038/s41581-020-0278-5
https://doi.org/10.1038/s41574-022-00690-7
https://doi.org/10.1038/nrendo.2017.151
https://doi.org/10.1038/nrendo.2017.151
https://doi.org/10.1016/S0140-6736(18)32203-7
https://doi.org/10.1016/S2213-8587(18)30315-2
https://doi.org/10.1038/s41569-023-00877-z
https://doi.org/10.1038/s41569-023-00877-z
https://doi.org/10.1093/eurheartj/eht149
https://doi.org/10.2337/diacare.27.3.704
https://doi.org/10.1136/heartjnl-2015-307516
https://doi.org/10.1002/jcp.28350
https://doi.org/10.1155/2012/181394
https://doi.org/10.1155/2012/181394
https://doi.org/10.1056/NEJMra043430
https://doi.org/10.1016/j.intimp.2016.11.007
https://doi.org/10.1038/nri1882
https://doi.org/10.1038/s41467-020-15857-x
https://doi.org/10.1016/j.atherosclerosis.2007.10.031
https://doi.org/10.1016/j.atherosclerosis.2005.03.011
https://doi.org/10.1016/j.atherosclerosis.2005.03.011
https://doi.org/10.1172/JCI126595
https://doi.org/10.1111/imm.12421
https://doi.org/10.1038/nri2925
https://doi.org/10.7326/0003-4819-126-4-199702150-00006
https://doi.org/10.3389/fcvm.2021.644189
https://doi.org/10.3389/fcvm.2021.644189
https://doi.org/10.3389/fimmu.2022.896645
https://doi.org/10.7554/eLife.11306
https://doi.org/10.1038/gene.2014.46
https://doi.org/10.1016/j.ijbiomac.2020.10.035
https://doi.org/10.3389/fimmu.2024.1267963
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2024.1267963
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