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Investigating the causal
relationship and potential shared
diagnostic genes between
primary biliary cholangitis and
systemic lupus erythematosus
using bidirectional Mendelian
randomization and
transcriptomic analyses
Tian Tao1†, Anqi Tang1†, Lizeyu Lv1, Jianhua Yuan2, Ling Wu1,
Liangbin Zhao1* and Jun Chen3*

1Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine,
Chengdu, China, 2Department of Cardiovascular Medicine, Chengdu Second People’s Hospital,
Chengdu, Chengdu, China, 3Department of Intensive Care Medicine, Hospital of Chengdu University
of Traditional Chinese Medicine, Chengdu, China
Background: The co-occurrence of primary biliary cholangitis (PBC) and

systemic lupus erythematosus (SLE) has been consistently reported in

observational studies. Nevertheless, the underlying causal correlation between

these two conditions still needs to be established.

Methods: We performed a bidirectional two-sample Mendelian randomization

(MR) study to assess their causal association. Five MR analysis methods were

utilized for causal inference, with inverse-variance weighted (IVW) selected as

the primary method. The Mendelian Randomization Pleiotropy RESidual Sum and

Outlier (MR-PRESSO) and the IVW Radial method were applied to exclude

outlying SNPs. To assess the robustness of the MR results, five sensitivity

analyses were carried out. Multivariable MR (MVMR) analysis was also

employed to evaluate the effect of possible confounders. In addition, we

integrated transcriptomic data from PBC and SLE, employing Weighted Gene

Co-expression Network Analysis (WGCNA) to explore shared genes between the

two diseases. Then, we used Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment methods to perform on the

shared genes. The Least Absolute Shrinkage and Selection Operator (LASSO)

regression algorithm was utilized to identify potential shared diagnostic genes.

Finally, we verified the potential shared diagnostic genes in peripheral blood

mononuclear cells (PBMCs)-specific cell populations of SLE patients by single-

cell analysis.

Results:Our MR study provided evidence that PBC had a causal relationship with

SLE (IVW, OR: 1.347, 95% CI: 1.276 - 1.422, P < 0.001) after removing outliers (MR-

PRESSO, rs35464393, rs3771317; IVW Radial, rs11065987, rs12924729,

rs3745516). Conversely, SLE also had a causal association with PBC (IVW, OR:
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1.225, 95% CI: 1.141 - 1.315, P < 0.001) after outlier correction (MR-PRESSO,

rs11065987, rs3763295, rs7774434; IVW Radial, rs2297067). Sensitivity analyses

confirmed the robustness of the MR findings. MVMR analysis indicated that body

mass index (BMI), smoking and drinking were not confounding factors. Moreover,

bioinformatic analysis identified PARP9, ABCA1, CEACAM1, and DDX60L as

promising diagnostic biomarkers for PBC and SLE. These four genes are highly

expressed in CD14+ monocytes in PBMCs of SLE patients and potentially

associated with innate immune responses and immune activation.

Conclusion: Our study confirmed the bidirectional causal relationship between

PBC and SLE and identified PARP9, ABCA1, CEACAM1, and DDX60L genes as the

most potentially shared diagnostic genes between the two diseases, providing

insights for the exploration of the underlying mechanisms of these disorders.
KEYWORDS

systemic lupus erythematosus, primary biliary cholangitis, Mendelian randomization,
transcriptomic data, causal relationship
Introduction

Systemic lupus erythematosus (SLE) is a complex autoimmune

disease that affects multiple organs and systems (1, 2). Genetic

factors are widely acknowledged to participate in the development

of SLE, even though the specific cause of the disease remains elusive

(2–4). Abnormal liver enzymes can be observed in approximately

50% of patients with SLE. Lupus hepatitis and drug-induced

hepatitis are common causes of liver enzyme abnormalities, while

autoimmune liver diseases such as primary biliary cholangitis

(PBC) can also lead to such abnormalities (5–7). PBC is a chronic

inflammation of the liver bile ducts that is mediated by autoimmune

reactions. Patients with PBC usually present with symptoms such as

fatigue, pruritus, and jaundice. Laboratory tests typically show

elevated serum alkaline phosphatase, cholestatic liver enzymes,

and anti-mitochondrial antibodies. In a few cases, some patients

with PBC may develop cirrhosis (8–11). Observational studies have

shown that the proportion of patients with PBC also suffering from

SLE can reach 3.7% (12–15). Although the prevalence is not very

high, there are certain common clinical features between patients

with PBC and SLE. One example is the existence of anti-nuclear

antibodies (ANA) in their immune profile (13, 14, 16–18). In

addition, individuals with SLE-PBC have a higher occurrence of

blood, muscle, and pulmonary involvement than those with SLE.

Moreover, the combination of PBC also has a negative impact on

the survival rate of SLE (19). Thus, it is essential for clinicians to

have an exhaustive understanding of this overlap. However,

whether PBC and SLE have a causal relationship or their

coexistence is coincidental is uncertain. Confounding factors and

reverse causation influence the results of observational studies (20,
02
21). Therefore, a more robust study design is needed to assess the

causal relationship between PBC and SLE.

Utilizing genetic variations as instrumental variables (IVs),

Mendelian randomization (MR) provides insight into the causal

connection between exposure factors and clinical outcomes (22, 23).

This approach is valuable in assessing and identifying potential

causal associations, especially when confounding factors can bias

causal relationships in observational studies, and randomized

controlled trials are challenging to implement (24, 25). Through

MR analysis, this study seeks to establish the bidirectional causal

relationship between PBC and SLE. There is no substantial evidence

to establish the mechanistic link between the two diseases.

Therefore, this study also utilizes transcriptomic data from PBC

and SLE to explore potential interacting genes and shared

diagnostic genes between the two diseases to gain insight into the

underlying pathological processes that may connect them.
Materials and methods

Bidirectional Mendelian randomization

Study design and data sources
This investigation employed bidirectional MR analysis to

examine the causal connection between PBC and SLE. Genetic

association estimates for PBC were obtained from a recent genome-

wide association study (GWAS) involving 2764 European PBC

patients and 10475 controls (http://gwas.mrcieu.ac.uk/) (26). To

increase the reliability of the results, we also used the SNPs of 8021

European PBC patients extracted from a GWAS meta-analysis for
frontiersin.org

http://gwas.mrcieu.ac.uk/
https://doi.org/10.3389/fimmu.2024.1270401
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tao et al. 10.3389/fimmu.2024.1270401
validation (27). SLE summary statistics were collected from a large

GWAS of the European population comprising 5,201 cases and

9,066 controls (http://gwas.mrcieu.ac.uk/) (28). In addition, a

multivariate MR (MVMR) analysis was employed to exclude the

influence of confounders, including body mass index (BMI),

smoking and alcohol consumption. The dataset for BMI (ukb-b-

19953) was obtained from the MRC-IEU consortium, smoking (ieu-

b-25) and alcohol consumption (ieu-b-73) were obtained from the

GSCAN consortium (https://gwas.mrcieu.ac.uk/datasets/). The

study flow diagram is outlined in Figure 1.

SNPs selection
During the initial selection phase, we employed strict criteria to

choose preliminary candidate single nucleotide polymorphisms (SNPs)

for our study. We focused on autosomal biallelic SNPs with a P-value

below 5×10−8. To ensure the independence of these genetic variants, we

conducted a clumping analysis, specifically examining linkage

disequilibrium with an R2 value below 0.001 within a 10000 kb

window. This analysis helped us identify SNPs that were not closely

linked to each other. To further validate our chosen SNPs, we manually

searched for them in the PhenoScanner V2, a comprehensive database

(http://www.phenoscanner.medschl.cam.ac.uk/). This step aimed to

confirm that none of the selected SNPs had potential confounding

effects on each other. By ensuring their independence and lack of

confounding, we increased the reliability of our findings. Additionally,

we sought to ensure a robust association between IVs and exposure

factors. To achieve this, we excluded IVs with F values below 10, as

calculated using the formula (R2/(1-R2) *(N-2)] (29). This step allowed

us to prioritize IVs that exhibited strong associations with the relevant
Frontiers in Immunology 03
exposure factors, thereby enhancing the validity and accuracy of

our study.

Statistical analysis
In this study, we employed a diverse set of five methods to assess

the bidirectional causal effects between PBC and SLE. These methods

included inverse-variance weighted (IVW), weighted median, simple

mode, weighted mode, and MR-Egger. The IVW method served as

our primary approach, as it offers reliable estimates in the absence of

pleiotropy and heterogeneity. For MVMR analysis, the multivariate

IVW method was employed. To address potential issues like

pleiotropy, we conducted an MR-Egger regression analysis. We also

evaluated heterogeneity using Cochran’s Q statistics. Additionally, we

performed sensitivity analyses using leave-one-out techniques and

funnel plots. Given the potential presence of horizontal pleiotropy, we

utilized the MR-PRESSO method to filter out SNPs that could

introduce bias and yield more reliable causal inference results.

Moreover, we employed the IVW Radial method, which enabled us

to generate radial plots and identify any outlier SNPs.

To determine the significance of the causal relationship, we

considered multiple factors. A causal relationship was deemed

significant if the P value obtained from the IVW method was less

than 0.05. Furthermore, the P value from the MR-Egger intercept

test needed to be greater than 0.05, indicating the absence of

directional pleiotropy. Additionally, there should be consistency

in the direction of estimates among the IVW, MR-Egger, and

weighted median methods. The “TwoSampleMR,” “MRPRESSO,”

“MVMR,” and “MendelianRandomization,” package for R version

4.3.0 was used to perform all statistical analyses.
Transcriptomic analyses

Data collection and download
We utilized gene expression data from two datasets to

investigate the association between PBC and SLE. The first

dataset, GSE119600, sourced from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/), comprised microarray-based

measurements using RNA from whole blood samples. It included

370 samples, of which we selected 90 individuals diagnosed with

PBC and 47 healthy controls for data analysis. The second dataset,

GSE65391, also obtained from the GEO database, consisted of 996

samples, including 924 SLE cases and 72 healthy controls. Those

datasets provided valuable insights into gene expression patterns

related to PBC and SLE.

Differential expression analysis
In the initial analysis, we utilized R (4.3.0) software to process

and normalize the expression matrix. By employing the “DEseq2” R

package, we identified differentially expressed genes (DEGs) from

GSE119600 and GSE65391 datasets, considering an adjusted P

value < 0.05. To visually represent the differential gene patterns,

we utilized R software to create a heatmap to cluster the DEGs. The

Gene Ontology (GO) analysis was also employed using the

“ClusterProfiler” R package to delve deeper into the biological

mechanisms of DEGs.
FIGURE 1

Schematic diagram of the study design.
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WGCNA network building and
module identification

Utilizing WGCNA, a powerful bioinformatic analysis approach,

assists in unraveling the gene correlation patterns across various

samples. To construct the co-expression network, we utilized

the WGCNA R package and considered genes with an adjusted

P value < 0.05. The procedure began with hierarchical clustering to

identify outliers utilizing the “Hculst” function. Next, we achieved a

scale-free network by selecting the optimal soft thresholding power

b through the “pick Soft Threshold” function. The matrix

portraying the similarities in gene expression was subsequently

transformed into an adjacency matrix by utilizing the “adjacency”

function, incorporating the selected soft-thresholding parameter b.
To enhance data quality and reduce spurious associations, we

converted the adjacency matrix into a topological overlap matrix

(TOM). Subsequently, we identified modules using hierarchical

clustering and the dynamic tree-cut method. In order to

determine the correlation between modules and patient clinical

characteristics, Pearson correlation analysis was carried out, with

results deemed statistically significant at P < 0.05.

Detection of shared genes and
pathway enrichment

Through the utilization of Venn diagrams, we conducted an

integrated assessment of the genes derived from both WGCNA and

DEGs. The resultant common genes were deemed central shared

genes and retained for further investigation into functional

enrichment. Using R packages like “clusterProfiler,” “enrich plot,”

and “ggplot2”, we conducted GO analysis and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analyses. The

resulting bar chart displays the top 10 pathways, with p-values

below 0.01, highlighting their significance.

Identification of shared diagnostic genes using
LASSO regression analysis

Utilizing the “glmnet” R package, we employed LASSO

regression analysis, a popular technique that employs an ℓ1 penalty

to achieve a sparse solution. This analysis aimed to identify the most

influential predictors of SLE and PBC among the DEGs and the

intersecting genes identified by WGCNA. LASSO regression allowed

us to pinpoint the critical factors associated with these diseases, aiding

in understanding their underlying mechanisms.

Evaluation of shared diagnostic gene
expression levels

Using the “GSVA” R package, we performed single-sample

gene set enrichment analysis (ssGSEA) to score the shared core

genes separately in patient and normal samples. This approach

allows us to quantify the degree to which a group of genes shows

coherent overexpression or underexpression in an individual

sample. To further examine the expression levels of these crucial

genes, we employed boxplots from the “gglplot2” package in R,

considering a significance threshold of P < 0.05. This visualization

technique concisely represents how pivotal genes are expressed
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across diverse conditions, enhancing our understanding of their

functional roles.

Single-cell data processing and clustering
The single-cell sequencing analysis started with downloading

the raw data from the GSE174188 dataset on GEO, which was then

processed using the Seurat software package (version 5.0.0). As per

the established protocols, quality control of the scRNA-seq data was

stringently performed. Subsequently, we focused on each sample’s

top 2000 highly variable genes (HVGs), identified based on variance

stabilizing transformation (vst). These HVGs were then normalized

for further analysis. We scaled these genes using the ScaleData

function, and dimensionality reduction was performed using the

RunPCA function, where we specifically chose 30 dimensions

(dim = 30). Following this, cell clustering was conducted using

the FindNeighbors and FindClusters functions, identifying 17

distinct cell clusters. These clusters were visualized using the

RunUMAP function, allowing for a clear representation of the

cellular heterogeneity and the distinct cell populations within

the dataset.
Result

Causal effects of PBC on SLE and
sensitivity analyses

To evaluate the causal effects of PBC on SLE, we analyzed

1,124,241 PBC-related SNPs from the GWAS study involving 2,764

European PBC patients and 10475 controls. To remove the

influence of confounders, we excluded SNPs strongly correlated

with SLE (rs10488631, rs2304256, rs9303277) using the

PhenoScanner V2 website, resulting in a preliminary selection of

21 SNPs as IVs for PBC (Supplementary Table S1).

Our primary analyses observed a significant causal association

between PBC and an SLE (IVW, OR: 1.319, 95% CI: 1.168 - 1.489,

P < 0.001). The other four MR methods revealed similar results

(Supplementary Table S2). MR-Egger regression analyses showed

no pleiotropy (Intercept, 0.034, P = 0.603). However, Cochran’s Q

test showed the exist of heterogeneity (IVW, Q =131.319, P < 0.001;

MR-Egger, Q = 129.418, P < 0.001) (Supplementary Table S3). To

address this concern, we utilized the MR-PRESSO (rs35464393,

rs3771317) and the IVW Radial method (rs11065987, rs12924729,

rs3745516) to identify outlier SNPs (Supplementary Figure S1).

After excluding five outlier SNPs, the final analysis still

demonstrated a significant and consistent causal association

between PBC and an increased risk of SLE. The OR estimates

obtained from five MR methods were as follows: 1.347 (95% CI:

1.276 - 1.422) for the IVW method, 1.560 (95% CI: 1.293 - 1.882)

for MR Egger, 1.363 (95% CI: 1.258 - 1.477) for weighted median,

1.393 (95% CI: 1.234 - 1.573) for weighted mode, and 1.397 (95%

CI: 1.223 - 1.597) for simple mode, all indicating statistically

significant associations between PBC and SLE (P < 0.001 across

five MR methods) (Figures 2, 3A, B; Supplementary Table S2).
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Moreover, no evidence of heterogeneity (IVW, Q = 14.418, P =

0.494; MR-Egger, Q = 11.865, P = 0.617) or horizontal pleiotropy

(Intercept, -0.043, P = 0.132) was observed (Supplementary Table

S3). A leave-one-out analysis revealed that no single SNP

significantly influenced the causal relationship between PBC and

SLE (Figure 3C). Moreover, a relatively symmetrical distribution of

variant effects for SLE was observed in the Funnel plot (Figure 3D).
Causal effects of SLE on PBC and
sensitivity analyses

In reverse analysis, 27 SNPs were screened as IVs for SLE to

evaluate causality with PBC (Supplementary Table S4). Initial

analysis indicated a significant causal relationship between SLE

and PBC (IVW, OR: 1.255, 95% CI: 1.116 - 1.411, P < 0.001), details

are shown in Supplementary Table S5. Sensitivity analyses revealed

no evidence of pleiotropy (Intercept, 0.072, P = 0.098). While the

Cochran’s Q test identified potential heterogeneity in the initial

analysis (IVW, Q = 168.677, P < 0.001; MR-Egger, Q = 150.810, P <
Frontiers in Immunology 05
0.001) (Supplementary Table S6). Therefore, we employed the MR-

PRESSO (rs35000415, rs35251378, rs389884, rs597808) and the

IVW Radial method (rs2573219, rs353608, rs4274624, rs6671847,

rs9852014) to identify outlier SNPs (Supplementary Figure S2).

The final analysis confirmed the continued presence of a causal

connection between SLE and the increased risk of PBC (OR: 1.225,

95% CI: 1.141 - 1.315, P < 0.001 for IVW; OR: 1.230, 95% CI: 1.110 -

1.363, P < 0.001 for weighted median; OR: 1.335, 95% CI: 1.151 -

1.548, P = 0.001 for weighted mode; OR: 1.331, 95% CI: 1.107 -

1.600, P = 0.007 for simple mode; OR: 1.080, 95% CI: 0.889 - 1.311,

P = 0.450 for MR Egger) (Figures 2, 4A, B; Supplementary Table

S5), with no evidence of heterogeneity (IVW, Q = 13.503, P = 0.702;

MR-Egger, Q = 11.643, P = 0.768) and pleiotropy (Intercept, 0.040,

P = 0.191) (Supplementary Table S6). Similarly, we utilized a leave-

one-out analysis and funnel plots to supplement the reliability of the

results (Figures 4C, D).
Validation of bidirectional MR analysis

To verify the robustness of the results of the bidirectional MR

analysis described above, we also used the SNPs of 8021 European

PBC patients extracted from a GWAS meta-analysis for analysis.

The results of the validation cohort were consistent with previous

studies and supported a bidirectional causal relationship between

PBC and SLE, as shown in Supplementary Tables S7-12,

Supplementary Figures S3, 4.
Multivariable MR analysis

Within the MVMR, significant direct causal associations were

observed between PBC and an increased risk of SLE (OR = 1.34126,
FIGURE 2

Forest plot of bidirectional mendelian randomization.
B

C D

A

FIGURE 3

Causal effect of PBC on the risk of SLE. (A) Scatter plot. (B) Forest plot. (C) Leave-one-out test. (D) Funnel plot.
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95% CI: 1.23731 - 1.45393, P < 0.001). Conversely, SLE was also

directly associated with an increased risk of PBC (OR = 1.19932,

95% CI: 1.12629 - 1.27708, P < 0.001). BMI, smoking and alcohol

consumption did not confound the results (Supplementary

Table S13).
Identification of differentially
expressed genes

In the SLE dataset (GSE65391), we discovered 328 DEGs, with

217 upregulated and 111 downregulated DEGs. Similarly, in the

PBC dataset (GSE119600), we identified 7096 DEGs, comprising

3628 upregulated and 3468 downregulated DEGs. Heatmaps

(Figures 5A, B) showcased the top 30 DEGs for both diseases.

Notably, we found 107 DEGs overlapping between SLE and PBC

(Figure 5C). Conducting GO enrichment analysis on these 107

genes revealed their significant involvement in immune-related

processes, such as immune effector activity, leukocyte activation,

cell activation, immune response, and interspecies interaction

between organisms (Figure 5D).
Correlation analysis between modules and
clinical traits with WGCNA

Sample clustering was performed to identify aberrant samples.

No abnormal samples were detected in GSE65391, whereas 16

outlier samples were removed from GSE119600 (Figures 6A, B).

To achieve a scale-free network, we evaluated the scale-free fit index

and average connectivity. The soft threshold for GSE65391 was

determined as b=8, while for GSE119600, b was set to 12. The co-
Frontiers in Immunology 06
expression network analysis identified ten modules for SLE samples

and seven for PBC samples (Figures 6C, D).

To explore disease progression-related genes, we assessed the

relationship between modules and clinical phenotypes, enabling us to

uncover potential genetic associations. In the GSE65391 dataset for

SLE, the pink module exhibited the most potent positive correlation

(r = 0.37, P < 0.001), whereas the turquoise module showed the most

significant negative correlation (r = -0.27, P < 0.001). Similarly, for

PBC in the GSE119600 dataset, the blue module displayed the

most potent positive correlation (r = 0.35, P < 0.001), while

the turquoise module had the most significant negative correlation

(r = -0.41, P < 0.001). By overlapping the hub modules of PBC and

SLE using a Venn diagram, we identified 112 shared genes (Figure 6E).

GO enrichment analysis of these 112 genes revealed their

involvement in pathways such as cell activation, immune effector

process, immune response, killing of cells of other organisms, and

leukocyte activation (Figure 6F), similar to the pathways enriched

by the DEGs.
Identification of potential shared genes

A set of eight genes (DDX60L, CEACAM1, PARP9, IL1RN,

ABCA1, TMEM140, TNFSF10, IFI16) were identified as common

genes that intersected between the genes identified through

WGCNA and DEGs. These genes hold the potential as crucial

links between the two diseases. To explore shared regulatory

pathways, we performed GO and KEGG enrichment analyses on

these eight genes. GO analysis revealed their association

with defense response to virus, response to virus, regulation of

innate immune responses, and interleukin-1 production

(Figure 7A). Additionally, KEGG analysis indicated their
B

C D

A

FIGURE 4

Causal effect of SLE on the risk of PBC. (A) Scatter plot. (B) Forest plot. (C) Leave-one-out test. (D) Funnel plot.
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involvement in pathways such as lipid and atherosclerosis,

cytokine-cytokine receptor interaction, and natural killer cell-

mediated cytotoxicity (Figure 7B).
Identification of shared diagnostic genes
via LASSO

We then utilized the LASSO regression method to uncover

potential shared diagnostic genes. In GSE65391, the LASSO

examination pinpointed 4 of the 8 core intersecting genes with

the optimal l = 0.00403 (Supplementary Figures S5A, B). Similarly,

in GSE119600, the LASSO analysis identified 7 of the 8 core

intersecting genes with the most suitable l = 0.00342

(Supplementary Figures S5C, D). As a result, we discovered 4

common genes (PARP9, ABCA1, CEACAM1, DDX60L) as the

top shared diagnostic biomarkers for both PBC and SLE

(Supplementary Figure S5E).
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Evaluation of shared diagnostic gene
expression levels

In Figures 8A, C, the expression levels of the 4 core genes in the

two datasets are displayed. Remarkably, the genes PARP9, ABCA1,

CEACAM1, and DDX60L were significantly upregulated in both

SLE and PBC (P < 0.05). Furthermore, when scoring these four

genes as a gene set for the two datasets, significant differences were

observed between the two groups, affirming the potential of these

four genes as shared diagnostic biomarkers for both diseases

(Figures 8B, D).
Identification of shared diagnostic genes in
PBMCs-specific cell populations of
SLE patients

The single-cell transcriptomic analysis of PBMCs from SLE

patients and healthy individuals revealed 14 distinct cell
B

C D

A

FIGURE 5

Identification of differentially expressed genes. (A) A heatmap of the top 30 DEGs in GSE65391. (B) A heatmap of the top 30 DEGs in GSE119600.
(C) Venn diagram shows that 107 genes overlap in the SLE and PBC. (D) Gene ontology enrichment analysis of these 107 genes.
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BA

FIGURE 7

Functional enrichment analyses of the shared genes. (A) GO analysis of the shared genes. (B) KEGG pathway enrichment analysis of the
shared genes.
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FIGURE 6

Co-expression network analysis for differentially expressed genes. (A) Sample dendrogram and trait heatmap in GSE65391 (B) Sample dendrogram
and trait heatmap in GSE119600. (C) Heatmap of the module-trait relationships in GSE65391. (D) Heatmap of the module-trait relationships in
GSE119600. (E) Venn diagram identifies 112 shared genes by overlapping the hub modules of PBC and SLE. (F) Gene ontology enrichment analysis of
these 112 genes.
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populations within the PBMCs (Figure 9A). Notably, we observed

an increased presence of CD14+ monocytes in the PBMCs of SLE

patients compared to healthy individuals (Figure 9B). Upon

conducting an expression analysis of the identified Shared

Diagnostic Genes (PARP9, ABCA1, CEACAM1, DDX60L) in the

PBMCs of both SLE patients and healthy individuals, it was found

that these genes exhibited higher expression levels in the PBMCs of

SLE patients (Figure 9C). This finding underscores the potential

feasibility of these four genes as shared diagnostic biomarkers.

Further, after performing aucell scoring using these four genes on

the PBMCs, it was evident that their expression was significantly

higher in SLE patients compared to healthy individuals (P < 0.05,

Figure 9D). Most compellingly, a more detailed analysis revealed

that the expression of PARP9, ABCA1, CEACAM1, DDX60L was

notably elevated in the CD14+ monocyte population compared to

other cell groups within the PBMCs (Figures 9E, F).
Discussion

This study conducted a bidirectional MR analysis to investigate

the causal relationship between PBC and SLE and integrated

transcriptomic data from PBC and SLE to explore shared

diagnostic genes between the two diseases. The results revealed a

bidirectional causal relationship between PBC and SLE. Specifically,

it was observed that PBC increased the risk of SLE (IVW, OR: 1.347,

95% CI: 1.276-1.422, p<0.001), and conversely, SLE could also
Frontiers in Immunology 09
increase the risk of PBC (IVW, OR: 1.225, 95% CI: 1.141-1.315,

p<0.001). In addition, transcriptomic analyses identified PARP9,

ABCA1, CEACAM1, and DDX60L as promising diagnostic

biomarkers for PBC and SLE. These genes are highly expressed in

CD14+monocytes in PBMCs of SLE patients and may be associated

with innate immune responses and immune activation.

The relationship between PBC and SLE is receiving increasing

attention, and several retrospective and descriptive studies have

summarized the coexistence of PBC and SLE. Overall, the current

studies suggest that the prevalence of SLE is higher in patients with

PBC than in the control population (12, 14). The two diseases have

some common clinical features, and their coexistence may

complicate organ involvement and worsen clinical prognosis (16–

19). However, the exact causal relationship between the two diseases

is uncertain. This study utilized MR analysis to provide evidence for

a bidirectional causal relationship between PBC and SLE from a

genetic perspective. At the same time, we validated the results of the

MR analysis using another set of datasets, further confirming the

reliability of the results. A retrospective study has observed a higher

prevalence of SLE in patients with PBC than in the control

population and a higher prevalence of SLE in relatives of patients

with PBC, suggesting a possible genetic link between the two

diseases (14). In addition, previous GWAS studies have also

identified the IRF5-TNPO3 gene haplotype locus, which is shared

by PBC and SLE (30, 31). Recently, a GWAS study has revealed that

CD58 is a shared genetic susceptibility locus between SLE and PBC,

and rs10924104 is associated with the regulating of CD58
B

C D

A

FIGURE 8

Expression pattern validation and diagnostic value. (A) Expression of PARP9, ABCA1, CEACAM1 and DDX60L in GSE65391. (B) ssGSEA score of the
shared diagnostic genes in GSE65391. (C) Expression of PARP9, ABCA1, CEACAM1 and DDX60L in GSE119600. (D) ssGSEA score of the shared
diagnostic genes in GSE119600. ssGSEA, single-sample gene set enrichment analysis; *P < 0.05; **P < 0.01; ***P < 0.001.
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expression and the intensity of autoimmune disease susceptibility

(32). These studies provide indirect support for our findings of a

genetic association between PBC and SLE.

This study integrated PBC and SLE transcriptome data and

identified PARP9, ABCA1, CEACAM1 and DDX60L as potential

diagnostic biomarkers. Single-cell analysis detected increased

expression of these four genes in PBMCs from SLE patients

compared to healthy individuals, mainly in CD14+ monocyte

subsets. Notably, CD14+ monocytes were also validated as the

dominant cell population in PBMCs from SLE patients,

suggesting that CD14+ monocytes in PBMCs may be a key cell

population for diagnosing and understanding the common

pathogenesis of SLE and PBC. Previous studies have reported that

in European and Asian SLE populations, expression levels of

common SLE GWAS SNPs are significantly increased in CD14+

monocytes, with significant enrichment for DNase I hypersensitive

sites ((DHSs). DHSs are important sites for the regulation of gene

transcription and are generally poorly methylated. During the

pathogenesis of SLE, CDHs in CD14+ monocytes are mainly

related to the regulation of the innate immune responses of and
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the activation of immune effects (33). Type I interferon (IFN-1)

plays a crucial role in the development of SLE (34). Studies have

observed that there are highly expressed gene transcripts that

induce IFN-1 production in monocytes of SLE patients, and these

IFN-1 regulatory genes have generally low methylation levels,

including the PARP9 (35, 36). In PBC, it has been reported that

the number of CD14+ monocytes is increased in PBC and that this

is associated with a-SMA-positive myofibroblasts in liver tissue

(37). However, the expression of these four diagnostic genes in PBC

CD14+ monocytes cannot be further investigated due to the current

lack of single-cell transcriptomic data, and we will continue to

investigate this area.

PARP9 is a protein-coding gene primarily involved in DNA

damage repair, transcriptional regulation and immune responses,

including IFN-mediated antiviral defenses (38). PARP9 has been

reported to recognize and bind viral RNA, activate the PI3K/AKT

pathway, and significantly contribute to the initiation and

amplification of IFN-1 generation (39). IFN-1 is an important

mediator in the pathogenesis of SLE, and viral infections are

considered to be a causative factor in the pathogenesis (35).
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FIGURE 9

The single-cell transcriptomic analysis of PBMCs in SLE patients. (A) UMAP plot illustrating the distribution of 14 identified cell populations within
PBMCs. (B) Split UMAP plots showcasing the distribution of the 14 cell populations within PBMCs from SLE patients and healthy control groups.
(C) Heatmap displaying the expression levels of PARP9, ABCA1, CEACAM1, and DDX60L genes in the SLE and healthy PBMC populations. (D) Violin
plots representing AUCell scoring for PARP9, ABCA1, CEACAM1, and DDX60L across all PBMCs. (E, F) AUCell scoring and expression of PARP9,
ABCA1, CEACAM1, and DDX60L across the 14 identified cell populations within PBMCs.
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Therefore, it cannot be excluded that the role of PARP9 in CD14+

monocytes from SLE patients is related to PARP9-mediated

production of type I IFN in the initial immune cells. DDX60L

belongs to the DExD/H-box RNA helicase family and is involved

in RNA metabolism, innate immune responses, and antiviral defense

(40). There are few studies on DDX60L and one study have reported

that it may be an interferon-stimulated gene product and may

enhance IFN-1 production (41). So far, there has been limited

research on the role of PARP9 and DDX60L in PBC. ABCA1 is

mainly involved in cholesterol and lipid metabolism (42). but it has

been reported that ABCA1 is also implicated in phagocytosing

apoptotic cells (43–45). In SLE peripheral blood, monocytes and

their differentiated macrophages have high capacity to phagocytose

apoptotic cells (46). Whether the increased expression of ABCA1 in

CD14+ monocytes of SLE patients is related to this physiological

process requires further investigation. Interestingly, the pathogenesis

of PBC is associated with phagocytosis by apoptotic cholangiocytes

(47). The expression of ABCA1 is significantly increased in liver

tissue (48), and whether this is directly related to the phagocytosis of

apoptotic cholangiocytes remains unclear. CEACAM1 is a signaling

receptor. In monocytes, it regulates monocyte survival and

differentiation through the ERK/MEK and PI3K/Akt pathways

(49). In addition, CEACAM1 can also promote the initiation of T-

cell responses (50). CEACAM1 expression is upregulated in bile duct

epithelial cells from PBC patients (51), but the exact mechanism of

action needs to be verified.

Nevertheless, it is vital to acknowledge the constraints of our

study. Firstly, our study only involved individuals of European

descent to better control for confounding introduced by

heterogeneity. Thus, the applicability of the findings may have

some limitations. Secondly, genetic susceptibility and epigenetic

modifications contribute to the development of autoimmune

diseases, and our study did not specifically address the role of

epigenetics in gene expression. Therefore, our conclusions may

require further validation and refinement in future studies. Lastly,

although our screening process found some shared diagnostic genes

for these two diseases, more mechanistic studies are required to

verify these results and prove their biological correlation. In the

future, we will simultaneously collect clinical patients for

further study.
Conclusion

Our study confirmed the bidirectional causal relationship

between PBC and SLE, and identified PARP9, ABCA1,

CEACAM1, and DDX60L genes as the most potential shared

diagnostic genes between the two diseases, providing insights for

exploring the underlying mechanisms of those diseases.
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