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Forces at play: exploring factors
affecting the cancer metastasis
Farooq Riaz1, Jing Zhang2,3 and Fan Pan1*
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Shenzhen, China, 2Department of Oncology, First Teaching Hospital of Tianjin University of
Traditional Chinese Medicine, Tianjin, China, 3National Clinical Research Center for Chinese Medicine
Acupuncture and Moxibustion, Tianjin, China
Metastatic disease, a leading and lethal indication of deaths associated with

tumors, results from the dissemination of metastatic tumor cells from the site of

primary origin to a distant organ. Dispersion of metastatic cells during the

development of tumors at distant organs leads to failure to comply with

conventional treatments, ultimately instigating abrupt tissue homeostasis and

organ failure. Increasing evidence indicates that the tumor microenvironment

(TME) is a crucial factor in cancer progression and the process of metastatic

tumor development at secondary sites. TME comprises several factors

contributing to the initiation and progression of the metastatic cascade.

Among these, various cell types in TME, such as mesenchymal stem cells

(MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs),

myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated

macrophages (TAMs), are significant players participating in cancer metastasis.

Besides, various other factors, such as extracellular matrix (ECM), gut microbiota,

circadian rhythm, and hypoxia, also shape the TME and impact the metastatic

cascade. A thorough understanding of the functions of TME components in

tumor progression and metastasis is necessary to discover new therapeutic

strategies targeting the metastatic tumor cells and TME. Therefore, we

reviewed these pivotal TME components and highlighted the background

knowledge on how these cell types and disrupted components of TME

influence the metastatic cascade and establish the premetastatic niche. This

review will help researchers identify these altered components’ molecular

patterns and design an optimized, targeted therapy to treat solid tumors and

restrict metastatic cascade.
KEYWORDS
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Introduction

Metastasis, a key term delineating the progression and spread of

malignancies to the distant and surrounding tissues and organs, is

known for the majority of cancer-related morbidities and

mortalities (1). In general, tumor cells evade the primary tumor

site during the process of metastasis and ultimately disseminate to

farther and distant sites through the circulatory system (2). A huge

number of cancer patients develop advanced metastasis, which

provokes the terminal stage of diseases and shows resistance to

the currently available therapeutic remedies. These characteristics

of metastasis make it a lethal hallmark of tumors (3). Formerly,

metastasis was regarded as a progressive stage of the tumor,

frequently happening during the tumor progression phase (4);

nevertheless, previous observations verified the incidence of

metastasis often at the early stage of oncogenesis. This concludes

that metastasis can arise at earlier and later stages of tumorigenesis.

However, the two stages signify diverse pathogenesis, e.g., cells

contributing to the early metastasis carry truncal mutations, while

cells causing late metastasis indicate subclonal mutations (5).

It has been implicated that malignant cells lead to the failure of

vital organs and account for the overwhelming majority (up to 90%)

of cancer-related deaths rather than primary cancers (6). Despite

the fact that metastasis is the major reason for impaired tumor

therapy and increased mortality, it has not been investigated well.

Mounting evidence suggested that a huge amount of tumor cells is

unleashed in the circulatory system in tumor patients; however,

melanoma-related in-vivo studies indicated that the number of

metastasized cells is <0.1% of tumors (7).

The dispersion of tumor cells detached from their primary

tumor sites and their ultimate tendency to originate secondary

tumors in distant organs requires a multistep, extremely inefficient,

and complex but deadly approach which is termed as an invasion-

metastasis cascade (8–10). This classical cascade of events implies a

series of basic steps, including the invasion of primary cancer cells

into adjacent tissues locally; hematogenous transit involving the

intravasation of these tumor cells into the bloodstream with

improved survival rate; extravasation and arrest of tumor cells

into the distant tissues’ parenchyma through vascular walls;

origination of micro-metastatic colonies into the tissue

parenchyma; and the colonization involving the successive growth

of microscopic colonies into apparent and clinically observable

metastatic lesions (11). These events have assisted in rationalizing

this complex series of biological processes, which are obligatory for

the progression of a specific malignancy toward the explicit

metastasis (11).

The oncogenic transformation of tumor cells relies on the

interaction of several factors which regulate the perforation of a

tight regulatory network and attain a compatible microenvironment

that ultimately expedites the oncogenic transformations and

metastasis (12). Nevertheless, a detailed pathogenetic mechanism

revealing the primary tumor’s formation still lacks the biological

understanding of metastatic diseases. Besides, several

breakthroughs in unifying our understanding of tumor behavior

and diverse types of metastases have emerged. It is evident that

compared to primary tumor cells, metastasis-initiating cells
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frequently display very diverse phenotypic and transcriptomic

features (13). These properties make metastatic tumors resistant

to the currently available conventional remedies effective (14).

During the last 2 decades, a wide range of emerging anti-

oncogenic drugs considerably extended the patients’ survival rate,

with a 5-year survival rate of <20% among cancer patients with

stage IV tumors (15). Despite substantial efforts, a clear knowledge

of the underlying mechanisms involving the metastatic process and

the variation defining the abilities of various cancer cells that

establish metastases are still elusive. Therefore, urgent attention

should be paid to understanding the pathogenesis of metastasis,

thereby advancing molecular therapies to target metastasis. In this

chapter, we summarized the latest developments in understanding

metastasis to provide a comprehensive review of the role of the

tumor microenvironment (TME), including the cellular and

extracellular TME, in affecting metastasis to help researchers

identify effective anti-metastatic therapy.
Cancer hallmarks in the
metastatic cascade

Metastasis is characterized by the separation and local invasion

of tumor cells from the primary site to the colonization and growth

of metastatic cells at the secondary sites (11). The interaction of

tumor cells with their adjacent stromal cells commences during the

initial stage of cancer development. It continues with the onset of

primary tumor growth, followed by invasion, intravasation, and

colonization at the secondary site (11) (Figure 1). With time, it has

become evident that TME contributes to tumor development at the

secondary site by modulating the metastatic cascade (16).

Investigations exhibit that TME is a complex entity that is

comprised of a variety of components, including tumor-

infiltrating immune cells, cancer-associated fibroblasts (CAFs),

adipose cells, endothelial cells, extracellular matrix (ECM), and

neuroendocrine cells (17). TME aggressively contributes to

procuring cancer hallmarks, such as maintaining the growth rate

of cancer cells, hindering cell mortality, enhancing the process of

angiogenesis, avoiding immune destruction, triggering invasion and

metastasis, and activating pro-tumor inflammation (18). These

contributions of TME make it a striking therapeutic intervention.
Cell types involved in the
metastatic cascade

Mesenchymal stem cells in the
metastatic cascade

Mesenchymal stem cells (MSCs), also known as multipotent

stromal cells, have the tremendous ability of self-renewal and the

potential to differentiate themselves into other cell types, e.g.,

adipocytes, osteoblasts, and chondrocytes (19). These MSCs

reside within the tumors where they significantly impact the TME

development and function, thereby playing various roles at different
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stages of cancer progression. It is evident that MSCs influence the

tumor cells by inducing their metastatic and invasive properties at

the primary tumor site (20, 21), and aid in establishing a metastatic

niche at the site of distant tumors (22). Meanwhile, MSCs also

express their ability to differentiate and migrate into CAFs,

especially in the tumor stroma, and induce the metastasis and

growth of colon cancer by ameliorating the invasiveness, motility,

and angiogenesis of tumor cells (23).

Multiple mechanisms have been reported by which MSCs exert

their indispensable roles in promoting metastasis. It is believed that

MSCs excrete TGF-b, which enhances the migratory and invasive

capability of tumor cells (24). Besides TGF-b secretion, MSCs are

the major source of exosome production (25). MSCs-derived

exosomes facilitate metastasis by interacting with the tumor cells

and influencing their migration and growth (26). A recent study

utilizing the breast cancer cell line MCF7 determines that MSC-

derived exosomes enhance the migration ability of tumor cells by

inducing the target genes of the WNT signaling pathway, i.e., Axin2

and Dkk1, and increasing the level of b-catenin (27). Meanwhile,

another study reported that the co-culture of MCF-7 cells with

MSCs enhances the migration through the ER-SDF-1/CXCR4 axis

(28). Besides, MSCs derived from bone marrow (BM) also influence

the migratory ability of breast cancer cells by modulating the

CXCR2 receptor (29). In lung cancer, MSCs are recognized to

impact non-small cell lung cancer (NSCLC) cell metastasis. NSCLC

leads to transcriptional alterations in MSCs, which enhances the

factors involved in epithelial-mesenchymal transition (EMT) and
Frontiers in Immunology 03
metastasis, for instance, MMP-9. In short, MSCs activate the ABL

tyrosine kinases during the progression of primary lung cancer,

which is necessary for the increased expression of MSC-dependent

MMP-9 (30).

Aryl hydrocarbon receptor (AhR) has been known to regulate

the activity of immune cells (31) and tumor development through

EMT modulation by transforming epithelial cells towards

malignancy form (32). It was investigated that overexpression of

AhR activates the EMT markers and enhances cell motility,

invasion, and migration (32). Similarly, it was also found that

overexpression of AhR via FICZ elevates the EMT markers and

cell migration in triple-negative breast cancer (33). Also, the

elevated level of AhR is associated with lymph node metastases

(34) and/or poor prognosis in inflammatory breast and esophageal

squamous cell carcinomas (ESCC) (34, 35). In the ESCC tumor

microenvironment, modulation of AhR by using AhR activating

ligand 3,3′-diindolylmethane decreased the levels of Vimentin and

Slug along with reduction in the RhoA/ROCK1 signaling, which

ultimately restricted COX2/PGE2 pathway, secretion of

prostaglandin E2, EMT, cell migration and metastasis (35–37).

MSCs-derived exosomes carry numerous non-coding RNAs,

mRNAs, and proteins (26). A study exploring the influence of MSC-

derived exosomes on cancer metastasis suggested that MSC-derived

exosomes collected from gastric tumors indulge the progression of

gastric cancer through the MSC-derived exosomal miRNAs (38).

Precisely, the elevated level of MSC-derived exosomal miR-221

during the pathogenesis of gastric cancer exerts a significant impact
FIGURE 1

Schematic illustration over-viewing the physio-pathological processes of the metastatic cascade. The tumor microenvironment is comprised of
numerous cellular and non-cellular factors that are involved in the process of tumor progression and metastasis. These factors initiate a series of
cellular processes collectively called a metastatic cascade. During the metastatic cascade, metastatic tumor cells escape from their primary tumor
site, enter the circulation, and translocate and thrive at a secondary tumor site in distant organs where a metastatic niche already exists, with
favorable conditions for metastatic tumor development. TC, tumor cell; CAF, cancer-associated fibroblasts; NK, natural killer cell; DC, dendritic cell;
TAM, tumor-associated macrophage; MTC, metastatic tumor cell; EC, epithelial cell; ECM, extracellular matrix.
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on the exacerbated lymphatic metastasis, tumor-node-metastasis

stage, and local invasion (38, 39). Similarly, the exosomes secreted

from MSC provoke several cellular processes, including EMT, and

strengthen the invasion and migration of gastric tumor cells

through the protein kinase B signaling pathway (40). Likewise,

BM-derived MSCs also produce exosomes that stimulate multiple

myeloma cell migration. These BM-MSC exosomes were suggested

to embrace several cytokines, which ultimately participate in the

expansion of numerous survival-related pathways, including Akt,

p53, p38, and c-Jun N-terminal kinase (41). MSCs interact with and

trigger M2 macrophages at distant metastatic sites to enhance the

EMT and metastasis capability of tumor cells (42). Alternatively,

MSCs in the TME directly modulate the levels of secretory CCL7

and TGF-b through KLF5/CXCL5 (43). Meanwhile, at the primary

metastatic site, CAF-derived PAI-1 is an important factor

promoting the metastasis cascade (44). Overall, it is evident that

MSCs are the key players in metastatic cancer, and further

comprehensive studies defining the interaction of tumor cells and

MSCs are necessary to develop new anti-tumor drugs.
Lymphatic endothelial cells in the
metastatic cascade

The primary path of tumor dissemination is the lymphatic

vessel (LV) located within the TME. Compared to normal blood

vessels, LV is leaky (45). Increasingly studies have demonstrated the

crucial role of lymphatic endothelial cells (LECs), which formulates

the lining of LV, in the TME. It was revealed that LECs impact

tumor progression and metastasis by significantly regulating the

tumor cell-derived immune response within the TME (46, 47). The

development of metastatic tumors at the distant site is triggered by

the interaction of LECs and tumor cells (48). There are several

factors that are secreted by the LECs to influence the impact of LECs

on the various receptors in tumor cells (49). To recruit the tumor

cells, LECs produce chemoattractants, i.e., CCL21 and SDF-1,

which link to the chemokine receptors CCR7 and CXCR4

expressed in tumor cells (50). Meanwhile, distant tumors also

produce multiple factors to facilitate the progression of the

metastatic cascade, including recruitment, extravasation, and

outgrowth, by conditioning the LECs. Among these factors, IL-6

is secreted by the tumor cells that activates the STAT3 in LECs and

ultimately upregulates the VEGF expression (51), which is a

necessary element for lymph angiogenesis (52). Moreover, this IL-

6-dependent increase of VEGF expression in tumor cells is linked

with the higher HIF-1a in LECs (52). Overall, it can be proposed

that tumor-secreted factors directly influence the onset of lymphatic

metastases. Further investigation regarding the interaction of LECs

and tumor cells will be beneficial in treating cancer metastasis.
Cancer-associated fibroblasts in the
metastatic cascade

Cancer-associated fibroblasts (CAFs) are the primary cells that

play an important role in TME (53). CAFs generally exert their roles
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in a variety of cellular processes, including cell stemness, cell

proliferation cell differentiation, cell apoptosis, cell migration, and

ECM remodeling. These cellular processes ultimately influence the

biological behaviors of tumors, including tumorigenesis, tumor

progression, proliferation, recurrence, immunity, tumor

immunity, angiogenesis, energy metabolism, and metastasis (54,

55). Within solid tumors, CAFs consist of the most profound

stromal components. These stromal components are biomarkers

to easily distinguish CAFs from other cell subtypes. These markers

include a-smooth muscle actin (a-SMA), platelet-derived growth

factor receptor (PDGFRS), vimentin, fibroblast activation protein

(FAP), integrin b1 (CD29), and podoplanin (56–58). It is evident

that tumor cells activate fibroblasts in a series of events; for instance,

during the early stages of tumor progression, tumor cells recruit

fibroblasts, which undergo transformation towards the CAFs, and

ultimately lead to performing their function in maintaining and

reshaping the TME by inducing tissue repair; thereby play an anti-

cancer role (58). It is noteworthy that activation of CAFs leads to

the production of numerous signaling molecules which are used by

tumor cells as growth factors for their proliferation and survival;

thus, CAFs favor the growth of tumors and survival of cancer cells,

and promote the recruitment and transformation of other cell types

within the TME (58, 59). Meanwhile, CAFs produce MMPs, release

collagen and fibronectin, and enhance VEGF expression to assist

ECM remodeling (60–64). The CAFs-dependent ECM remodeling

triggers the local invasion of tumor cells, and facilitates the onset of

distant metastasis by providing essential survival conditions (65).

To further assist the progression of metastatic tumors, several CAFs

undergo reactivation at distant metastatic sites where they produce

stromal components, e.g., periostin and tenascin, through various

mechanisms that facilitate the colonization of tumor cells (66). It

has been validated that a vigorous and aggressive cancer form can

be observed if hypoxia-related factors, such as collapsed blood

vessels and enhanced mechanical stress, combine with CAFs-

triggered proliferative and pro-survival processes in tumor cells

(67, 68).

A recent study revealed a new subtype of CAFs, namely, CAF-

S1 in the microenvironment, which performs immunosuppressive

functions by attracting and enhancing the growth, differentiation,

activation, and survival of CD4+ CD25+ T cells (57). Additionally,

increased CAF-S1 cells oblige the metastatic breast cancer to the

distant organs through CDH11/osteoblast cadherin in patients with

smaller (<2cm) primary tumors (69). Meanwhile, CAF-derived

periostin endorses the tumor progression, metastasis, and cancer-

stem cells (CSC) phenotype through the canonical Wnt/b-catenin
axis in the head and neck squamous cell cancer (70). Another study

pointed out that elevated YAP1 in CAFs increases the growth of

tumor epithelial cells in prostate cancer and originates the

secondary metastasis (71). CAF is also known to regulate the

TGF-b pathway, which participates in the cancer progression

through different processes, including tumor cell invasion,

migration, proliferation, and ultimately metastasis (72). A study

investigating hepatocellular carcinoma (HCC) progression showed

that elevation of TGF-b1 increased the expression of connective

tissue growth factor (CTGF). Moreover, the TGF-b receptor

inhibitor enhanced the CTGF expression. It suppressed the
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proliferation of CAF=, thereby decreasing the tumor growth and

indicating that targeting TGF-b can be an anti-metastatic therapy

(73). Intriguingly, a recent study showed that CAFs dictate tumor

cells to endorse migration by transferring mitochondria (74).

Conversely, considering the role of IL1 signaling in shaping CAF

heterogeneity, it was elucidated that pro-tumorigenic CAFs are

characterized by IL1R1hi expression, which is positively allied with

immunosuppressive TME and metastasis (75). Overall, CAFs play a

critical role in the metastatic cascade, and it is the need of the hour

to understand the role of CAF-related activation pathways in

metastatic tumors.
Tumor-associated macrophages in the
metastatic cascade

Macrophages exhibit diverse phenotypic and functional

heterogeneity and play notable roles in regulating the immune

response (76). Macrophages participating in the TME are referred

as TAMs. These TAMs are widely spread among various tumors

(77), representing miscellaneous functions in response to TME-

related signals from cancer and stromal cells (78). TAMs play a

significant role in drug resistance and promote tumor development,

invasion, and metastasis (79). It was suggested that the plasticity of

macrophages largely depends on their functional diversity, which is

modulated by TME-associated molecules and signals (79).

Comprehensive reports have demonstrated that the increased

density and localization of TAMs, linked with the pathogenesis of

several cancers and poor clinical outcomes, play a critical role in the

TME (80).

Even though limited studies have focused on the role of TAMs

in metastasis, a recent investigation highlighted that activation of

TAMs produces proteolytic enzymes and soluble factors, including

matrix metalloproteinases (MMPs), which directly execute

substantial effects promoting metastasis (81). Similarly, M2 cells

are one of the principal cells that initiate cancer development in

both primary and secondary sites. M2 contributes to the process of

metastasis by regulating the angiogenesis, breakdown, and

deposition of the basement membrane, recruiting leukocytes, and

suppressing the immune system (82, 83). M2 macrophages assist

the migration of detached cancer cells or cancer stromal cells by

destroying the matrix membrane of endothelial cells through the

secretion of cathepsins, serine proteases, MMPs, and decomposition

of numerous extracellular matrix components, including collagen

(84, 85).

Despite the weak antigen-presenting capability, TAMs

transform into M2-like phenotypes to support cancer

development and metastasis (86). TAMs also secret numerous

inflammatory cytokines, including IL-17 and IL-23, to induce

tumor-derived inflammation, which sequentially propels tumor

growth (87). Likewise, the upregulation of TAM-derived IL-6

strengthens the inflammatory responses and promotes HCC

initiation and development (88). During the metastasis, TAMs

and cancer cells develop a symbiotic relationship by releasing the

epidermal growth factor (EGF) and colony-stimulating factor 1
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(CSF-1), respectively. The interaction of these two factors leads to

the migration of tumor cells (89).

TAMs, as a vital component of dissemination and metastasis,

affect almost all stages of the metastatic cascade by interaction with

tumor cells, ECM, and numerous other components of the immune

system, particularly in lung tumors (90, 91). TAMs are a significant

contributor to bone-metastatic prostate cancer. Tumor cells and

TAMs interact to sustain androgen deprivation resistance during

bone metastatic disease. TAMs exert androgen deprivation

resistance through activation of activin A, which ultimately leads

to elevated fibronectin (FN1), FN1-integrin alpha 5 (ITGA5), and

tyrosine kinase Src (SRC) network in prostate cancer cells (92).

Overall, TAMs exert protumoral functions, and TAMs-specific

therapy may emerge as a striking therapeutic selection to

prevent metastasis.
Myeloid-derived suppressor cells in the
metastatic cascade

Mounting proof demonstrates that myeloid-derived suppressor

cells (MDSCs) are crucial to every metastasis stage. While the

immune-suppressive activity of MDSCs plays a vital role in

developing the metastatic niche (93, 94), these cells also use

various strategies that promote metastases. Clinical evidence

strongly suggests a potential role for myeloid-derived suppressor

cells (MDSCs) in the metastatic process. In non-small cell lung

cancer (NSCLC) patients, the presence of circulating CD14+HLA-

DRlow monocytic MDSCs (M-MDSCs) was associated with extra-

thoracic metastases (95). Similarly, an escalation in lymph node

metastases among breast cancer patients correlated with an increase

in indoleamine 2,3-dioxygenase (IDO)-expressing CD45+CD33

+CD14−CD15− MDSCs within breast cancer tissue (96).

Furthermore, a surge in circulating polymorphonuclear MDSCs

(PMN-MDSCs) marked by CD11b+CD14-CD15+ and M-MDSCs

in melanoma patients was linked to the initiation of metastases and

reduced survival (97, 98).

The recruitment of MDSCs to the tumor site or the pre-

metastatic microenvironment involves a complex interplay of

chemokines and chemokine receptors. Existing research

demonstrates that chemokines such as CXCL1, CXCL2, and

CXCL5 play a pivotal role in attracting MDSCs to both the tumor

site and the pre-metastatic microenvironment (99–101). The

chemokine receptors CXCR2 and CXCR4 primarily recruit

neutrophils, or PMN (polymorphonuclear)-MDSCs, to the

premetastatic niches (102, 103). It has recently been

demonstrated that, in contrast to naive neutrophils, bone

marrow-derived neutrophils from early stages of cancer display

higher levels of uncontrolled migration, higher levels of OXPHOS

and glycolysis, and enhanced synthesis of ATP. These neutrophils

also lack the immunosuppressive capability that is characteristic of

MDSCs (104). Immunosuppressive bone marrow PMN-MDSCs

from individuals with advanced cancer exhibit thorough variations

in the cancer-specific neutrophils, suggesting the role of neutrophils

in early tumor dissemination (105). Significantly, these cells
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demonstrated robust spontaneous migration, suggesting a potential

for more effective movement toward non-inflammatory tissues

compared to PMN-MDSCs or control neutrophils (93). It is

conceivable that upon reaching their destination, these cells may

undergo a transformation into PMN-MDSCs; however, this aspect

has not been scientifically explored yet. PMN-MDSCs present in

premetastatic niches may contribute to tumor cell escape through

the inhibition of immune cells, induction of matrix remodeling, and

stimulation of angiogenesis, all of which facilitate tumor cell

engraftment (93). In a recent study, Li et al. reported an

alternative regulatory mechanism of tumor metastasis, wherein

neutrophils accumulated neutral lipids by suppressing the activity

of adipose triglyceride lipase in a breast cancer model (106). The

specific deletion of adipose triglyceride lipase in neutrophils was

demonstrated to reduce metastasis in mice, highlighting the pivotal

role of this enzyme in the process. It has also been established that

lipid transfer from neutrophils to cancer cells promotes metastasis

(106). According to the authors, these neutrophils exhibited a

suppressive effect on NK cells, suggesting the potential

identification of these cells as PMN-MDSCs.

Several recent investigations have shed light on the role of

MDSCs in the EMT process. EMT is a phenomenon observed in

certain tumor cells, wherein polarized epithelial cells undergo a

transformation, losing their epithelial markers and adopting

mesenchymal characteristics, facilitating their ability to spread,

invade organs, and metastasize (107). In a notable study,

Abastado et al. demonstrated the involvement of PMN-MDSCs in

the RET transgenic mice model of spontaneous melanoma. PMN-

MDSCs were attracted to the tumor site, and upon entering, they

generated transforming growth factor-beta (TGF-b) and hepatocyte
growth factor (HGF). These factors induced the initial melanoma

cells to undergo EMT. Remarkably, reducing PMN-MDSCs in mice

resulted in a decrease in EMT and subsequently reduced metastatic

lesions (101). This research underscores the significant impact of

PMN-MDSCs on promoting EMT and the subsequent

metastatic process.

By augmenting the population of cancer stem cells or inducing a

more stem-like state in cancer cells, myeloid-derived suppressor

cells (MDSCs) actively promote cancer dissemination. The

accumulation of Lin− CD45+ CD33+ MDSCs was correlated with

diminished survival rates in both metastatic and non-metastatic

ovarian cancer patients. Direct interaction between ovarian tumor

cells and MDSCs resulted in the conversion of these cells into stem

cells. The elevated levels of microRNA-101 in ovarian malignancies,

targeting CtBP2—a co-repressor of stem cell genes—were identified

as the mechanistic basis for this phenomenon. Moreover, when

human ovarian tumor cells were co-cultured with MDSCs before

inoculation into immunodeficient mice, there was an increased

number of metastatic lesions in the liver and lungs and enhanced

engraftment (108). In the context of pancreatic cancer, myeloid-

derived suppressor cells of the monocytic subtype (M-MDSCs)

directly stimulated the proliferation of aldehyde dehydrogenase-1+

(ALDH1) pancreatic cancer stem cells in a pancreatic cancer model.

Similar outcomes were achieved using human CD14+ HLA-DR−

M-MDSCs (109). This underscores the significant role of MDSCs in
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fostering the expansion of cancer stem cells, contributing to the

progression and metastasis of cancer.

Although the role of MDSCs in modulating the immune

response in various physiological and pathological settings, a

substantial body of research supporting the pro-metastatic activity

of MDSCs, a recent study has unveiled a surprising functional

flexibility in MDSCs, revealing their potential to prevent metastasis

in specific circumstances. In both non-metastatic and metastatic

prostate and breast cancers, MDSCs were observed to accumulate in

the pre-metastatic location of the lungs (110). In breast cancer,

stress promotes the splenic MDSCs to form the pre-metastatic niche

through the modulation of TAM/CXCL1 signaling (111). MDSCs

derived from non-metastatic tumors exhibited elevated levels of

thrombospondin-1 (TSP-1), a potent anti-angiogenic matrix

protein, and demonstrated the ability to prevent metastasis.

Prosaposin, a robust inducer of TSP-1, was identified as being

released by non-metastatic tumors. Intriguingly, an amino acid

peptide mimic of prosaposin was found to be sufficient to up-

regulate TSP-1 in MDSCs in vivo, preventing tumor metastasis

(110). On the other hand, the simultaneous implementation of

ferroptosis induction and MDSC blockade restricts primary liver

tumors and their metastases susceptible to immune checkpoint

inhibition (112). This innovative approach challenges the

conventional understanding of MDSCs in metastasis-promoting

actions. Further research is imperative to corroborate the

involvement of MDSCs in metastasis across diverse tumor models.
T cells in the metastatic cascade

The quantity and quality of immune infiltrates in distinct

metastases have been correlated with the progression of each

individual lesion. Notably, regressing and stable metastases

exhibited heightened infiltration of CD8+ and CD4+ T cells,

along with T cell clonal expansion, in a patient with ovarian

cancer undergoing chemotherapy (113). Conversely, concurrently

growing metastatic tumors in the same individual displayed T-cell

exclusion. Remarkably, both regressing and stable metastases

demonstrated elevated expression levels of CXCL9, a chemokine

implicated in T-cell trafficking (113). This observation underscores

the interconnectedness of immune infiltration and treatment

response, highlighting potential variations across metastatic

lesions within a single patient. It is proposed that the efficacy of

CD8+ T cell anti-tumor immunity plays a critical role in eradicating

disseminated tumor cells (DTCs) in mouse melanoma and breast

cancer models, as evidenced by promoting metastasis with T cell

depletion (114, 115). Consequently, DTCs must withstand the

assault from CD8+ T cells to develop into metastases successfully.

Tumor cells can enhance the expression of programmed death-

ligand 1 (PD-L1), a pivotal immunological checkpoint, as a

mechanism to evade destruction by CD8+ T lymphocytes. A

subset of circulating tumor cells during dissemination is

responsible for seeding metastases. While research is ongoing,

elevated PD-L1 expression in these cells among lung cancer

patients is associated with an unfavorable prognosis (116, 117).
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Similarly, colorectal cancer metastases exhibit higher PD-L1

expression than the original lesions (118).

DTCs expressing PD-L1 may evade elimination by CD8+ T

cells, establishing metastatic spread. In the case of pancreatic cancer,

tumor cells can disseminate to the liver and remain dormant until

conditions favorable for metastatic expansion arise. Notably,

adaptive immunity exerts a selective pressure on DTCs that reach

the liver, leading to the destruction of the majority of DTCs.

However, quiescent cancer cells lacking Major Histocompatibility

Complex class I (MHC class I) can evade T cell assault (119).

Antigen presentation and CD8+ T cell recognition are contingent

on tumor cells expressing MHC class I; therefore, DTCs with

insufficient MHC class I evade identification and elimination by

CD8+ T lymphocytes. As previously reported, the immune evasion

mechanism of latent DTCs is akin to that of quiescent epithelial

stem cells. This suggests that metastasis-initiating cells (MICs) may

adopt immune evasive abilities similar to those observed in tissue

stem cells (120). It has been investigated that elevated infiltration of

CD8+ memory T cells restricts the metastatic invasion at earlier

stages (121, 122), thus associating the CD8+ memory T cells with

better survival in colorectal cancer patients (122). Accordingly, our

recent study found that deletion of HIF1a reduces the B16

melanoma tumor growth and expands the population of effector

memory function of CD8+ T cells (123, 124). This suggests the

positive correlation of HIF1a with the CD8+ T cell exhaustion,

exerting oncogenic roles and exacerbating tumor metastasis.

According to reports, CD4+ T lymphocytes with specificity for

tumors can create pre-metastatic niches in bone by secreting

receptor activators of nuclear factor-kB ligand (RANKL). This

secretion, in turn, increases osteoclastogenesis and promotes the

metastasis of breast cancer cells to the bone (125). Notably, the

conditioned media from 4T1 breast cancer cells induces the

expression of chemokine CCL22 in the lung stroma, subsequently

elevating Treg levels in the pre-metastatic lung (126). Targeting

Treg is an effective anti-cancer therapy as the role of Tregs,

particularly the tissue-specific Tregs, in the progression of cancer

and cancer metastasis is well studied (127–129). Accordingly, our

previous investigation illustrates the elevated intra-tumoral Treg

frequency in HIF1a depleted mice. At the same time,

combinational therapy using HIF1a inhibitors and Treg

inhibitors synergistically boosted anti-tumor immunity and

decreased tumor metastasis (123).

The differentiation of naïve CD4+ T cells into Th1 or Th2 cells,

which drive inflammatory and anti-inflammatory responses,

respectively, plays a role in promoting cancer growth,

compounded by the systemic inhibition exerted by tumor-specific

Tregs. An imbalance in Th1 and Th2 differentiation has diminished

pulmonary immune surveillance (130). For example, oxygen-

sensing proteins expressed by T cells can reduce the lung Th1

immune response, which is crucial for maintaining an

immunoregulatory state that prevents unnecessary inflammation

in response to benign foreign antigens. Conversely, suppressing Th1

immunity in favor of Th2 immunity creates an immune-permissive

environment that encourages metastatic colonization (130).

Furthermore, the myeloid cell populations in the pre-metastatic

niche have been reported to promote the differentiation of T cells
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into anti-inflammatory Th2 cells (130, 131). This underscores the

collaborative efforts of various lymphoid cell populations in

establishing a favorable environment that inhibits immune

surveillance mediated by T and NK cells, ultimately promoting

the spread of metastases. As this is an emerging study area, further

investigation is warranted to elucidate the significance of non-

myeloid cells and their interactions with myeloid cells in forming

pre-metastatic niches.
Natural killer cells in the
metastatic cascade

Natural Killer (NK) cells are crucial in protecting the body

against cancer by eliminating cells lacking MHC class I. DTCs must

evade NK cell surveillance to survive and spread (132, 133). A

balanced signaling mechanism intricately regulates the ability of NK

cells to destroy tumor cells. NK inhibitory receptors recognize

MHC class I, while activating receptors, such as NKG2D, bind to

ligands on tumor cells. NKG2D ligands, like UL16-binding

proteins, can undergo altered expression in cancer through

processes such as microRNA modulation, transcriptional

regulation by factors like IFNg, DNA methylation, or low histone

acetylation (134–136). Additionally, metalloproteinases can cleave

NKG2D ligands from the cell surface or secrete them in exosomes,

thereby diminishing NK cell assault on cancer cells (136–139).

Quiescent DTCs have been described as downregulating ligands

for NK cell activating receptors, providing a mechanism to evade

NK cell assault in lung and breast malignancies, particularly those

expressing Sox2 and Sox9 and adopting stem cell-like

characteristics (140). Moreover, overexpression of Sox9 in

metastatic lung tumor cells by upregulating MHC class I is a

protective shield against NK destruction (141). Notably, groups of

DTCs exhibit more excellent resistance to NK cell-mediated

clearance than individual DTCs, possibly due to their ability to

suppress ligands activating NK receptors (142). Furthermore,

tumor cell clusters may attract additional immunosuppressive

myeloid cells in the metastatic niche, potentially thwarting NK

cell activity (143, 144). These findings highlight that the regulation

of DTCs by NK cells may depend on cancer cell characteristics,

including their proliferative status, and may evolve as micro-

and macrometastases.
Non-cellular components involved in
the metastatic cascade

Extracellular matrix in the
metastatic cascade

The extracellular matrix (ECM) is responsible for performing

various primary activities mediating the fate and function of both

normal and tumor cells (145). ECM is generally organized by

combining numerous matricellular-associated, fibrous, and

proteoglycan proteins (146). ECM is regarded as a dynamic
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regulatory process that involves a tight regulation of organization,

posttranslational modifications, and composition of ECM, which in

turn supervise the biochemical and mechanical properties of

ECM (147).

In normal physiological circumstances, the stroma cells and

parenchymal cells interact with each other by secreting molecular

messengers into the microenvironment, by cell-cell contact and

communication, or by exerting multiple biophysical and

biochemical cues through ECM (148). This interaction results in

maintaining tissue homeostasis and establishing niches that bear

the characteristics of a distinct microenvironment to ease the

growth and survival of specialized cells, including stem cells

(149). However, under diseased conditions, normal tissue

homeostasis is disrupted, which leads to an interruption of the

established niches. Generally, disease conditions lead to the

development of tumor-causing genetic lesions from the transition

of parenchymal cells, which results in the remodeling of the tissue

microenvironment, including the cellular components and ECM

(150). These tissue microenvironment modifications strongly

impact the disease’s pathogenesis and progression (150).

Tumor progression, including the invasive and metastatic

properties of tumors, is highly associated with EMT. Procuring a

mesenchymal phenotype is highly dependent on the increased

motility of tumor cells, enhanced survival of tumor cells, and

elevated expression of enzymes involved in ECM remodeling,

such as MMPs. All these changes are necessary for tumor cells to

cross the basement membrane, endorse their interaction with ECM,

and finally, the intravasation and longevity within vessels (151).

Meanwhile, activation and expansion of fibroblasts, elevation in

crosslinking and remodeling of ECM, enhanced angiogenesis, and

chronic inflammation lead to the stiffness of tissue stroma and

tumor desmoplasia (152). Furthermore, tissue stiffness and tumor

desmoplasia occur when the tissue exhibits abnormal homeostasis

and elevated levels of ECM proteins, such as type I collagen,

matricellular proteins, proteoglycans, hyaluronic acid, tenascin,

and fibronectin (153). Excessive ECM production indicates ECM

stiffness and tumor progression (154). It is evident that a highly

aggressive cell line of breast cancer, compared to a less aggressive

breast cancer cell line, exhibited increased collagen content and

cross-linking, which ultimately enhanced the ECM stiffness (155).

During tumor progression, the stiffness and cross-linking of ECM

are tightly regulated by TGFb, which exerts substantial influence on

the adjacent fibroblasts and other stromal cells. A myofibroblast

phenotype in prostate cancers showed increased levels of smooth

muscle a-actin, tenascin, vimentin, and collagen I, along with an

increase in TGF-b1 within prostatic intraepithelial neoplasia (156).

TGF-b1, therefore, encourages the stromal fibroblasts’ contraction

and consequent ECM stiffness, which is linked with tumor

aggressiveness (157, 158). Conclusively, ECM stiffness induces

TGF-b-dependent EMT and stimulates a basal-like cancer cell

phenotype which encourages the metastatic tumor [91], whereas

reducing the ECM stiffness and crosslinking alleviates tumor

metastasis (159, 160). Similarly, tumor ECM is also known to

increase tumor cell motility (161). It was evident that TGFb
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stimulates the CAFs in the colon, which secretes various factors,

such as tenascin C and hepatocyte growth factor (HGF), to play

influential roles in the invasion of colon cancer cells (162). In

contrast, fibroblast-derived ECM in the TME directs cancer cells to

stick to the cancerous matrices and participates in the metastatic

cascade (163).

Tumor cells display few sense transmembrane receptors, e.g.,

syndecans, discoidin domain receptors (DDRs), and integrins, to

sense the ECM mechanical and biochemical properties (164).

Activation of these receptors by recognizing the specific motifs

within the ECM activates downstream signaling pathways to impact

the tumor cell behavior (164). Elevation in stiffened ECM and the

crosstalk between integrins and other receptors can activate the Rho

GTPase activity, aiding in tumor cell migration. Briefly, stimulation

of RhoA GTPase activates phosphorylation of ROCK which

ultimately induces the contraction of actomyosin (165).

Meanwhile, activation of Rho GTPase through integrins is

involved transcription of multiple genes which are vital in tumor

growth, motility, differentiation and survival (165, 166). Besides

that, collagen also induces the integrins which initiate a cascade of

events comprising the recruitment and activation of molecules

involved in focal adhesion, such as Talin, FAK, Rho and Ras.

These focal adhesion molecules promote the progression of

tumors, and lead to the contraction of tumors cells (167, 168).

Increased cross-linking and stiffness of ECM also promotes the FAK

phosphorylation, and enhances the cancer progression; however,

decrease in tissue tension and ECM stiffens minimizes the FAK

activity and lowers the invasion and metastasis of tumor cells (160,

169). Similarly, it was studied that ECM stiffness also activates the

PI3K signaling which is involved in various cellular processes,

including metastasis (170, 171).

The primary effectors of Hippo signaling pathways YAP and

TAZ are known to be involved in regulating several cellular and

biological processes, including cell proliferation, tumor metastasis,

tissue homeostasis, cell differentiation, immune regulation, and

tumor microenvironment (172, 173). During the activation of the

Hippo signaling pathway, transmembrane cadherin FAT recruits

the cascade of Ser/Thr kinase, which phosphorylates the YAP/TAZ

and establishes a 14-3-3 binding site. Binding for 14-3-3 with YAP/

TAZ hinders the transcription of YAP/TAZ target genes by

confiscating this complex in the cytoplasm and hindering its

translocation in the nucleus (174). Interestingly, integrins-

mediated Rho GTPase-ROCK regulates the YAP in Hippo

pathway-independent manner (175, 176), thus associating the

gene transcription and mechanotransduction with promoting cell

growth (177). Moreover, matrix stiffness induces the integrin cluster

and Twist1 detachment from G3BP1 in the cytosol. This

translocates the Twist1 into the nucleus, where it performs a

critical role in driving EMT (178). Meanwhile, ECM stiffness

influences the YAP phosphorylation and nuclear localization to

affect cell growth (179). Collectively, ECM, collagen cross-linking

and stiffness modulate the numerous keys signaling pathways

involved in cell growth, differentiation, migration, invasion,

survival, and metastasis (148, 164) (Figure 2).
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Hypoxia in the metastatic cascade

Oxygen, an essential factor obligatory for oxidative metabolism

and adenosine 5’-triphosphate production, maintains normal tissue

homeostasis and developmental processes in cells. The metazoans

are using the hypoxic signaling pathway to regulate oxygen

homeostasis (180). Hypoxia is an oxygen-deprived condition

regarded as a crucial factor in TME. Hypoxia regulates numerous

hallmarks of cancer, such as immune evasion, EMT, invasion,

angiogenesis, stemness, and metastasis (3, 181). During the

hypoxic conditions, hypoxia-inducible factors (HIFs), HIF-1 and

HIF-2, activate numerous genes involved in cell apoptosis,

differentiation, proliferation, angiogenesis, erythropoiesis,

metabolism, and glucose uptake (180, 182). Increasing evidence

denoted that tumor initiation, progression, and metastasis are

positively correlated with HIF signaling (183).

It was assessed that impaired oxygen homeostasis, in terms of

an imbalance between oxygen delivery and oxygen consumption,

can cause regions of hypoxia and/or anoxia in 50 to 60% of solid

tumors (184). In the settings of TME, abnormal tumor vasculature

comprising the distended and leaky capillaries leads to an impaired
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oxygen supply (185). Meanwhile, the overwhelming population of

cancerous cells and infiltrating immune cells increases the oxygen

consumption (186). It was verified that oxygen-deprived cells show

more aggressiveness and invasiveness with enhanced metastasizing

ability. For example, inoculation of hypoxia-induced multiple

myeloma cancer cells in mice displayed a faster dissemination

rate to the bone marrow than normoxic cells (187, 188).

Similarly, an elevated amount of lymph node metastases was

observed in the cervical carcinoma disease model, which was

exposed to acute hypoxia (189). Likewise, acute hypoxia-induced

lung metastases in sarcoma tumor-bearing mice (190).

Furthermore, clinical evidence also advocates that hypoxia is

highly related with resistance to metastasis, radiotherapy and

chemotherapy, poor patient survival, and the activation of HIF

pathways (191–193).

EMT is a well-known physiological process active during

embryogenesis and tissue regeneration (194). Besides, EMT also

plays a critical role in the progression and development of

tumorogenesis, especially in hematologic malignancies (188) and

numerous solid tumors (195). It was noted that TGF-b and hypoxia

act as a master regulator to promote EMT, which further activates
FIGURE 2

Effect of extracellular matrix (ECM) in promoting metastasis. ECM influences several hallmarks of cancer at different stages, including initiation and
metastasis. With the increase in TGFb, ECM molecules undergo remodeling, which leads to the stiffness of the ECM. Stiffens ECM binds to receptors,
e.g., syndecans, DDRs, and integrins, located on the surface of tumor cells to induce intracellular pathways. Crosstalk between ECM ligands and
integrins potentiates the Talin, which subsequently activates the focal adhesion kinase (FAK) to induce the adhesion complexes’ assembly, e.g., PI3K-
Akt signaling pathway, which plays vital roles in the tumor cell proliferation, differentiation, migration, invasion, survival, and metastasis. Meanwhile,
the crosstalk of integrin and growth factor receptors also activates the Rho GTPase. Rho GTPase consequently induces the ROCK, elevating the
phosphorylation of MLCK and promoting actomyosin contraction. Furthermore, ECM ligand interaction with DDRs and syndecans induces cell
migration and contraction by shortlisting numerous molecules, including myosin IIA. Additionally, ECM stiffness promotes the adhesion signaling
integrin clustering and translocates Twist1 and YAP into the nucleus to induce EMT. Similarly, TGFb encourages the level of Tenascin C in the CAFs,
which is involved in cell invasion. These CAFs excrete HGFs to establish the niches in tumor cells. CAF, cancer-associated fibroblasts; TGFb,
transforming growth factor-b; ECM, extracellular matrix; HGF, hepatocyte growth factor; DDR, discoidin domain receptor; MMP, matrix
metalloproteinase; FAK, focal adhesion kinase.
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numerous downstream transcriptional factors, including Twist,

Slug, TCF3, Snail, ZEB1, and Smads (188, 196, 197). The

underlying mechanism for hypoxia significantly impacted the

EMT, which in turn changes the expression profile of multiple

genes and affects the invasive and migratory capability of tumor

cells (198). In brief, hypoxia-induced EMT decreases the expression

of genes involved in epithelial regulation, for instance, b-catenin
and E-cad (199), and elevates the expression of genes involved in

mesenchymal-regulation, for instance, CXCR4 (187, 188), SMA,

vimentin (200) and N-cad (201).

Under the influence of an oxygen-deprived microenvironment,

hypoxia-inducible factors (HIFs) primarily regulate the expression

of genes. Generally, HIFa and HIFb subunits of the heterodimeric

HIF complex mediate the HIF-dependent transcriptional regulation

by binding to the hypoxia-responsive element (HRE) located within

the promoter of target genes (202). It was found that the

inactivation of HIF1a and HIF2a selectively revokes metastasis

without affecting the formation of primary melanoma, suggesting

the prime role of HIF signaling in the development of metastatic

tumors and shaping the metastatic niches (203). Similarly, hypoxia

and HIF signaling regulate lysyl oxidase (LOX) levels and ECM

protein. It was noted that the upregulation of LOX is associated with

distant metastasis and increased invasiveness of hypoxic cancer cells

through cell-to-matrix adhesion and focal adhesion kinase (204).

Meanwhile, LOX, secreted by primary hypoxic tumors, plays an

essential role in forming a premetastatic niche by crosslinking with

collagen IV and recruiting CD11b+ myeloid cells (205). Carbonic

anhydrase IX (CAIX) is a downstream gene of HIF1a signaling,

induced under hypoxic conditions and is widely available at the

tumor site. It was investigated that CAIX induces the invasion and

survival of tumor cells by regulating the intracellular and

extracellular pH (206). Furthermore, CAIX was also associated

with reduced metastasis and tumor volume in tumor models of

breast cancer (206). Additionally, C-X-C chemokine receptor type 4

(CXCR4) is activated in tumor cells under oxygen-deprived

conditions. This CXCR4 performs a crucial function in cell

trafficking (207, 208). SDF-1 acts as a ligand for the CXCR4.

Recent studies exhibited that metastatic malignant cells that

express an elevated level of CXCR4 are also enriched with SDF-1,

and targeting the CXCR4/SDF-1 axis can significantly disrupt the

metastatic cascade (187, 209).

A new term, intermittent or cyclic hypoxia, is registered in

multiple studies that temporarily describe the shutting down of

inefficient vasculature in tumors. This could result in hypoxic and

reoxygenation periodic cycles within cancer cells (210, 211). During

intermittent hypoxia and hypoxia-induced EMT, HIF1a serves a

central role in enhancing the aggressiveness of tumor cells by

regulating numerous genes involved in EMT (212, 213). In the

tumor, endothelial and hepatic cells, TGFb and HIF1a activate each

other (214–217). Moreover, HIF1a promotes breast cancer

progression by modulating the TGFb1/SMAD3 axis (218). Also, a

study conducted using pancreatic cancer cells indicates that HIF-1a
regulates the EMT and invasion of cancer cells through hedgehog

signaling (219). Furthermore, HIF1a also drives the EMT in

hepatocellular and prostate carcinoma through Wnt/b-catenin
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signaling (220, 221). Interestingly, in prostate cancer and

pancreatic cancer, HIF1a exerts its physiological role on EMT

indirectly through FoxM1 signaling (222) and the PAFAH1B2

gene (223), respectively. Similarly, HIF1a interacts with integrin-

linked kinase (ILK) by establishing a mediating loop and inducing

ILK expression to enhance EMT in prostate and breast cancer

cells (224).

Another important function of HIF1a is that it is involved in

mediating the expression of multiple immunosuppressive

molecules, which are associated with the cancer cells’

development, progression, and metastasis, and possibly ignite the

EMT in a TGF-b-dependent manner (225, 226). Induction of EMT

retaliates by provoking numerous immune-regulatory effects,

including the apoptosis of natural killer (NK) and T-cells but an

increase in B cells and Tregs population (227). Similarly, as

mentioned earlier, stromal cells regulate cell proliferation,

adhesion, and survival by easing the development and

dissemination of tumors. Hypoxia affects the production of

multiple factors, such as SCF, LOX, SDF-1, VEGF, PDGF,

ANGPTL-4, and Ang2, by inducing stromal cells. These factors

influence lymphangiogenesis and the formation of new blood

vessels. Meanwhile, SDF-1, derived from stromal cells, entices the

tumor cells to facilitate metastasis (228, 229). Together, these

studies indicate that HIF1a endorses numerous transcriptional

factors and modulates various signaling pathways to play a

central regulatory role in the hypoxia-induced EMT and

metastatic cascade (Figure 3).
Gut microbiota in metastatic cascade

Host microbes are crucial regulators in modulating the

susceptibility to the development and progression of tumors.

These microbes employ their functions markedly through various

indirect mechanisms, including their metabolites and influencing

the immune system at proximal or distant tumor sites (230, 231).

Various reports have indicated that tumor-resident microbes are

highly associated with the increased risk of cancer progression (232)

and cancer metastasis (233). Meanwhile, microbiota also influences

the efficiency of immunotherapy and chemotherapy (234).

Gastrointestinal tumors normally metastasize to the lungs, liver,

and regional lymph nodes. In this process, gut-microbiota initiates

metastatic cascade and promotes tumor growth with restricted

response to anti-tumor therapy (235). How microbiota initiates

the metastatic cascade has not yet been cleared. An investigation

urged that the bacteria may exert a crucial role in the TME as they

can infect the tumor cells at the primary site. Infection of tumor

cells with bacteria is maintained till the colonization of tumor cells

at distant metastatic sites, indicating the stability of the microbiome

throughout the progression of the tumor from primary site to the

metastatic site (236). In compliance with this, a recent study

determined that numerous intracellular bacteria can undergo

circulation with tumor cells during the metastatic cascade and

play critical roles in metastatic colonization. Briefly, the

researchers found that tumor-intracellular microbes modulate the
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actin cytoskeleton in the host cells and promote the overall survival

and viability of metastatic tumor cells against the fluid shear and

tear-out stress during the process of circulation (237).

The gut microenvironment, particularly in disease conditions, is

enormously complex and comprised of countless bacteria and their

products/metabolites (238). Sudden changes in the gut microflora

considerably impact the colorectal cancer (CRC) microenvironment,

which may also influence the progression and recurrence of colon

cancer. Notably, reduced Bacteroides and enhanced Clostridial

numbers may improve CRC-liver metastasis (239). Genetic ablation

of p53, a tumor suppressor, induces colon cancer, promotes its

progression, and increases intestinal permeability. This helps in the

development of an inflammatory microenvironment in an NF-kB-
dependent manner, which enhances the EMT and dissemination of

metastatic tumor cells to the lymph nodes (240). In normal

circumstances, gut microbiota has the ability to reduce the

expression of p53 through post-translational modifications,

transcriptional inhibition, and protein degradation (241).

Interestingly, the majority of the metastatic tumors in CRC

models are observed in the liver. This is due to the continuous

exposure of the liver to the gut microbial products/metabolites

through enterohepatic circulation and portal vein, which extends

the direct connection between the gut and liver, particularly during

liver metastasis (242, 243). Gut microbiota establishes an immune

suppressive hepatic microenvironment by regulating the

inflammatory cytokines, such as IFN-g, TNF-a, IL17, IL12 and

IL6, which facilitate the development of hepatic metastatic tumor

(244, 245). In parallel, gut microbiota influence the bile acid

metabolism to regulate the population of intrahepatic natural

killer T (NKT) cells through the regulation of CXCR16 in hepatic

sinusoidal cells, which ultimately affects hepatic metastasis (244).
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Kynurenine (Kyn) emerges as the primary product in the

tryptophan metabolic pathway, regulated by IDO and TDO2 in

tumor cells. Kyn has been shown to activate the AhR, initiating

autocrine and paracrine functions that impact the anti-tumor

immune response and tumor cell survival and migration (246). Its

involvement in the induction of Slug expression inhibits E-

cadherin, a crucial regulator of cell adhesion. Additionally, the

AhR ligand, dibenzo-p-dioxin (TCDD), has been found to enhance

the expression and function of MMP9 across various cancers,

including melanoma, urothelial, prostate, and gastric cancer cells

(247). AhR has also promoted EMT induced by polychlorinated

biphenyls in HCC cells (247, 248). In the context of renal cell

carcinoma, the study investigated the impact of AhR on EMT

development. The findings revealed elevated AhR expression in

RCC through the gut microbiota-derived tryptophan metabolite

Kyn promoted the migration and invasion of 786-O cells while

inhibiting cell death, suggesting a role for AhR in these

processes (249).

In CRC, Fusobacterium nucleatum has been studied extensively. F.

nucleatum elevates the invasion, proliferation, and recurrence of CRC

through the stimulation of pro-inflammatory cytokines (250, 251). It

was reported that F. nucleatum enhances the development of

metastatic hepatic tumors in CRC by blocking the activity of NK

cells (252), restricting the activity of cytotoxic T cells (253), inducing

the pro-inflammatory pathways (254), and prompting the overall

mucosa-associated inflammation (255). Remarkably, F. nucleatum is

translocated to the hepatic metastatic tumor, signifying that F.

nucleatum may assist the metastatic tumor cell migration,

colonization, and proliferation at distant tumor sites during CRC (236).

In addition, Escherichia coli also interrupts the enterohepatic

vessels to establish the premetastatic niche and endorses the
FIGURE 3

Hypoxia regulates the metastatic cascade. In the TME, hypoxia stimulates EMT, metastasis, and vascularization. Briefly, hypoxia stimulates the
vascularization via influencing SCF, LOX, SDF-1, VEGF, PDGF, ANGPTL-4, and Ang2 genes, participates in metastasis by establishing a metastatic
niche and modulating the expression of LOX, CAIX, MMPs, and SDF-1/CXCR4, and increase the expression of Twist, Slug, TCF3, Snail, ZEB1, and
Smads transcription factors to affect the mobility and plasticity of tumor cells to undergo EMT. Meanwhile, hypoxia activates the HIF1a, which
induces the transcription factors involved in EMT through various signaling pathways. Additionally, hypoxia-regulated EMT and vascularization also
participate in metastasis by increasing cell motility and plasticity and enhancing permeabilization for metastatic tumor cells, respectively. EMT,
epithelial-to-mesenchymal transition; HIF, hypoxia-inducible factor.
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recruitment of APCs for a pro-inflammatory environment suitable

for colonizing metastatic tumor cells (256). E. coli has been

implicated in an elevated risk of colon cancer due to its ability to

synthesize colibactin, a genotoxic strain of bacteria. Colibactin

induces dysbiosis in the gut microbiota, leading to DNA double-

strand breaks and activating the Wnt/b-catenin and NF-kB
pathways. This genotoxic effect, coupled with inflammation of the

colonic mucosa, creates an environment conducive to cell

proliferation, thus promoting the development of colon cancer

(257, 258). In addition to E. coli, the gut microbiota harbors

Fragilysin, another factor associated with colon cancer. Fragilysin

binds to epithelial receptors in the colon, triggering the NF-kB
pathway. This activation, in turn, enhances colon cell division,

growth, and induces DNA damage (259, 260). Notably, Fragilysin is

also implicated in the cleavage of E-cadherin, leading to the

deregulation of the Wnt/b-catenin signaling pathway. This

process further contributes to cell division and activates c-MYC,

emphasizing its role in promoting the development of colon cancer

(259–261). These studies prove the role of gut microbiota in the

progression of tumors and the development of metastatic tumors at

distant sites (Figure 4). Meanwhile, specific experiments do not

validate how the microbiome influences cancer metastasis. Thus,

additional studies are required to investigate the detailed molecular

mechanism of the microbiome regulating the pre-metastatic niche

development and the migration and colonization of metastatic

tumor cells.
Circadian rhythm in metastatic cascade

The circadian clock regulating the circadian rhythm is an

evolutionarily conserved mechanism that modulates ample
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molecular, cellular, and physiological processes (262). It is a 24-

hour intrinsic clock that helps our brain regulate the time, being

active and resting by retorting the changes in environmental light.

Recent advances in cancer research have directed the role of

circadian rhythm in cancer progression and metastasis by

regulating various cellular processes (263, 264). Circadian rhythm

plays a critical role in the metastatic cascade by influencing the

dissemination, circulation, and intravasation of metastatic tumor

cells, which was initially documented by understanding the role of

melatonin (a hormone that acts as a time cue) in the tumor

progression and metastasis (265–267). For instance, in a

spontaneous mouse model of mammary carcinoma, severe

disruption of the circadian rhythm elevates the dissemination and

metastasis of tumor cells (Figure 5). In brief, disruption of circadian

rhythm aggravates the stemness and tumor-initiating potential of

tumor cells, thus diminishing the antitumor immunity (268).

Similarly, disruption of the circadian cycle affects distant lymph

node metastasis in a transplantation-arbitrated breast carcinoma

without distressing the tumor growth at the primary site (269).

Even though the role of circadian dynamics in the progression

of tumor metastasis is poorly understood and has been linked to

epidemiological studies (270–272), several experimental studies

have discussed the role of circadian rhythm in the metastatic

cascade (263, 273). Experimentally, it was validated that

intravasation of circulatory tumor cells at distant metastatic sites

is highly dependent on regulating the circadian clock, as metastatic

breast tumors were increased in both human and animal breast

cancer during sleep (273). Similarly, the fluctuation of daily

circadian rhythm alters the population of circulatory tumor cells

in multiple myeloma (274), and prostate cancer (275). However, the

time when these metastatic tumor cells reach the peak is

controversial. Bmal1, a circadian clock-related gene, regulates
FIGURE 4

Gut microbiota contributes to colonizing metastatic tumor cells in distant organs. During the progression of tumors, particularly in intestinal tumors,
the gut microbiota translocates to the distant metastatic organ and develops a metastatic niche. On the other hand, gut microbiota also penetrates
the metastatic tumor cells within the TME and helps the colonization of metastatic tumor cells at the metastatic site.
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TGF-b expression by targeting PAI-1. It was noted that reduced

Baml1 increases TGF-b functions by enhancing the plasmin

production, thus leading to tumor metastasis (276).

A recent report has shown that the number of single circulatory

tumor cells and the circulatory tumor cell cluster cell exacerbate at

the resting phase of circadian rhythm along with an increased rate

of intravasation (263). Meanwhile, the rate of metastasis due to

heterotypic clusters, such as tumor cells with neutrophils or

fibroblasts, increases during the active phase (263). This was

previously verified in melanoma cancer, which progressed toward

lung metastasis resulting from a circadian pattern. The researchers

established that the lungs had more metastatic lesions during the

resting phase of the circadian rhythm. Meanwhile, it was also

indicated that the accumulation of neutrophils in the lungs aided

in developing a metastatic niche in the lung in the resting phase,

which supported the localization of metastatic tumor cells (277). In

addition, the resting phase also aggravates the development of lung

metastasis in a model of breast cancer and also demonstrates the

role of circadian rhythm in the development of premetastatic niche

and localization of metastatic tumor cell at distant metastatic

site (273).

While there is considerable knowledge about circadian

rhythms, understanding how they function in various disease

states remains limited. Disruption of circadian clocks has been

linked to accelerated tumor growth rates and a higher incidence of

cancer (278, 279). Recent reports suggest that cancer cells exploit

their circadian cycles to promote metastasis through disruption

(273). BAML1, an important component of circadian rhythm, has

been implicated in stimulating human cancer cell growth,

migration, survival, and invasion. The intricate interplay between

circadian rhythm and cancer metastasis involves various molecular

mechanisms. One such mechanism is the PAI-1-TGF-b-myoCAF-

dependent pathway, which promotes metastasis when the clock

component BMAL1 is disrupted in mice (276). In colorectal cancer,
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BMAL1 plays a pivotal role in stimulating the migration and

invasion of cancer cells. This effect is mediated through the

upregulation of c-Myc expression, a process dependent on the

activation of ERK and JNK signaling pathways. The dysregulation

of BMAL1 in this context enhances the invasive potential of

colorectal cancer cells, contributing to the metastatic cascade

(280). Another facet of the circadian regulation of metastasis

involves the downregulation of BMAL1 by miR-494-3p in

hepatocellular carcinoma. This downregulation results in the

upregulation of GPAM-mediated lipid biosynthesis, fostering the

growth and metastasis of hepatocellular carcinoma cells (281).

Furthermore, in breast cancer, the circadian protein BMAL1

emerges as a regulator of metastasis by influencing the expression

of matrix metalloproteinase9 (MMP9). The increased expression of

MMP9, orchestrated by BMAL1, enhances the invasive potential of

breast cancer cells, contributing to their ability to invade and

metastasize (282). Similarly, the downregulation of the circadian

rhythm regulator HLF (Hepatic Leukemia Factor) has been

identified as a critical factor contributing to the promotion of

multiple-organ distant metastases in NSCLC. This phenomenon

is mediated through the PPAR/NF-kB signaling pathway (283).

Collectively, these findings illuminate the significant role of

circadian rhythm, particularly the circadian protein BMAL1, in

orchestrating molecular events that impact cancer metastasis. The

modulation of key signaling pathways and regulatory networks

underscores the complexity of the circadian clock’s influence on the

metastatic behavior of various cancer types. The core circadian

clock transcription factors (TFs) exhibit dual regulatory roles in

influencing the induction of EMT. The expression of EMT-TFs,

enhancement of stemness, upregulation of EMT markers, and

acquisition of EMT-specific cellular characteristics are intricately

linked to the downregulation of PER2 in breast epithelial and cancer

cell lines (284). Conversely, another study highlights a contrasting

effect, revealing that the downregulation of BMAL1 strengthens the
FIGURE 5

Disruption of circadian rhythm elevates the metastasis progression. Abrupt changes in the active phase and resting phase of an individual
significantly increase the metastasis rate. It is noteworthy that the overall rate of metastasis increases during the resting phase. Briefly, disruption of
the circadian rhythm promotes the immunosuppressive tumor microenvironment and EMT to elevate the risk of cancer metastasis.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1274474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Riaz et al. 10.3389/fimmu.2024.1274474
epithelial state of colorectal cancer cells. This downregulation

results in reduced cell motility, invasion, and drug resistance,

suggesting a suppressive role of BMAL1 in maintaining an

epithelial phenotype in colorectal cancer (285). Moreover,

disturbances in circadian rhythm leading to lower melatonin

levels are associated with EMT in rats. Additionally, higher RSK2

overexpression is linked to increased metastatic dissemination of

transplanted breast cancer cells. These observations suggest a

potential connection between circadian rhythm disruption,

melatonin levels, and RSK2 expression in influencing the

induction of EMT and subsequent metastatic processes (286).

As previously known, various genes are involved in the tight

regulation of the circadian rhythm (287). Experimental studies have

stipulated the role of circadian rhythm in tumor progression and

metastasis development through genetic modulation of these genes

(288). For instance, genetic ablation of Per1 and Per2 declined the

development of hepatic metastatic tumors in mice injected with

colon cancer cells. This signifies that hampering the circadian

rhythm, particularly in TME, may constrain the colonization of

metastatic tumor cells by elevating the tumor-suppressive

microenvironment (289).

Therapeutic strategies to treat metastatic cancer: The current

therapeutic landscape for metastatic disease employs three primary

systemic approaches: chemotherapy, targeted therapy, and

immunotherapy, often employed in combination. Targeted

therapy, which focuses on drugs targeting tumor-driving

oncoproteins, has shown substantial improvements in outcomes

across various cancers (290). However, cytotoxic chemotherapy

remains a cornerstone in metastatic treatment, particularly for

cancer subtypes where targeted options are limited. While

targeted therapy has demonstrated success, mutation-specific

therapy represents another avenue with the potential for striking

but often transient responses to tumors. Unfortunately, these drugs

frequently contribute to the growth of tumor subclones carrying

drug-resistant mutations or capable of evading specific pathways

and secretomes. The ongoing efforts in research utilizing patient

biospecimens are swiftly identifying mechanisms of resistance,

offering valuable insights and potential avenues for advancements

in treatment strategies (290–292). For instance, in NSCLC, where

first-generation tyrosine kinase inhibitors (TKIs) like erlotinib and

gefitinib improved overall survival in metastatic disease but showed

limited efficacy in the adjuvant setting (293, 294). In contrast, the

third-generation TKI osimertinib, targeting the drug-resistant

EGFRT790M mutant, improved survival rates in both adjuvant

and metastatic settings (295–297). This underscores the critical

need for the development of more effective drugs targeting

subclonal disease-resistance mutations, ideally at an earlier stage

in the progression of the disease.

Efforts focused on reducing immunosuppressive cross-talk

between immune cells, cancer cells, and other components of the

metastatic tumor microenvironment hold significant promise (298,

299). The recent breakthrough of combination multi-kinase

inhibitor treatment with ICI in metastatic tumors that were

normally immune resistant demonstrates the potential of this

strategy (300). Liver metastasis-directed treatments are gaining

popularity, encompassing various interventions such as hepatic
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artery infusion chemotherapy, radiofrequency ablation, and

embolization (301). In addition to addressing CRC liver

metastasis, recent randomized phase 2 studies have demonstrated

promising outcomes in individuals with oligometastatic

malignancies. In these cases, consolidative radiation therapy is

administered to eliminate residual cancer cells in the tumor bed

following the surgical removal of the primary tumor. This

combined approach has shown increased overall survival in

certain patient populations, showcasing the potential of a

multimodal strategy in managing oligometastatic disease (302).

A study found that both epithelial cells and immune cells with

malignancies not generally linked with microbial interaction, such

as those of the breast, ovary, bone, and brain, had a diverse

intratumoral microbiome (303). Fusobacterium strains have been

found to be present in both primary and metastatic CRC and breast

cancer, as well as to cause metastasis (236, 304). Antibiotic therapy

to lower Fusobacterium load lowered metastatic load in mouse

xenografts (236). The makeup and variety of the gut microbiome

have been linked to ICI response in metastatic malignancies (305,

306). The bulk of the human microbiome’s metabolites, processes,

and therapeutic targets have yet to be discovered. Microbes that

attack certain tissue types or attach to cancer cell receptors can also

function as drug-delivery vehicles (307). In summary, the evolving

landscape of metastatic disease treatment emphasizes the

importance of advancing therapeutic strategies, developing more

effective drugs, and addressing resistance mechanisms to improve

overall patient outcomes.
Conclusion

Metastasis is acknowledged as one of the leading causes of death

among cancer patients; thus, extra attention is being paid to

understanding the detailed molecular mechanisms underlying

metastasis. TME is one of the critical modulators of metastasis.

TME comprises numerous cell types with altered co-factors that

contribute to initiating the metastatic cascade and establishing the

metastatic niche, ultimately promoting tumor invasion,

colonization, and growth at the secondary site. Among these

factors, circadian disruption, hypoxia, gut microbiota, and ECM

are the prime contributors to tumor progression and metastasis.

However, a few studies illustrate an in-depth mechanism of how

these TME factors influence the metastatic cascade and the TME. It

should be taken into consideration that the microenvironment at

the distant tumor site differs from the microenvironment at the

primary site. For instance, a new investigation found that TME in

the secondary site in the brain was different from the site of

origination in the breast (308, 309). Likewise, it was concluded

that the tissue of the primary tumor site, e.g., melanoma, breast, or

lung, directs the pattern of TME to be established at the distant

tumor site and decides the TME-dependent regulation of metastatic

tumor growth (309). Moreover, metastatic-tumor cells further

promote metastasis by escorting their primary soil from their

original site to the secondary site. However, the ECM

composition at the secondary site also exerts moderate effects on

the composition and components of the pre-metastatic niche
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environment (22, 310, 311). Meanwhile, a higher degree of

inconsistency has been reported in the deposition and stiffness of

ECM within an individual tumor (312). However, it has not been

studied why the ECM heterogeneity varies and how it impacts the

tumor progression.

Coupling ECM remodeling with ECM stiffness is a leading

factor contributing to the rapid progression and development of

tumors a t secondary s i te s . S t i ff ened ECM ini t i a t e s

mechanotransduction signals that induce the excretion of MMPs

from stromal and tumor cells (313), improving the reorganization

and degradation of ECM (314). Therefore, stiffness and

mechanotransduction-associated remodeling of ECM is regarded

as a dynamic process in cancer which is crucial for immune evasion,

tumor angiogenesis, induction of CAFs, migration, invasion of

tumor cells , and cancer metastasis . However, further

investigations are necessary to examine the molecular

mechanisms underpinning ECM stiffness and remodeling-

dependent modulation of the tumor microenvironment, tumor

metastasis, and immune surveillance.

Conversely, hypoxia exerts a critical role in the progression of

cancer metastasis. It is evident that both earlier and later stages of

metastasis are being affected by hypoxia in the TME (186).

Meanwhile, hypoxia also influences immune regulation by

regulating the immune escaping through the promotion of tumor

resistance and immune suppression (315). At the primary tumor

site, HIF-mediated signaling regulates angiogenesis, EMT, invasion,

and migration to facilitate tumor metastasis. Numerous targets of

HIF signaling that mediate the invasion and metastasis can serve as

potential targets to restrict the growth and development of

metastatic diseases. Interestingly, it has been found that hypoxia

and circadian disruption also cooperate with each other to enhance

invasion and metastasis (316). Furthermore, gut microbiota act as a

major influencer on hypoxia and circadian disruption (317, 318). In

summary, this review highlights the role of cellular and non-cellular

factors, beyond cytokines, influencing cancer metastasis. In the

meantime, various advanced investigations have highlighted the

divergent mechanisms through which gut microbiota, circadian

disruption, ECM and hypoxia influence the progression of

metastatic tumors at secondary sites. It is therefore important to
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identify the new molecular mechanism, therapeutic targets and

biomarkers that could assist in diagnosing and treating

metastatic disease.
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112. Conche C, Finkelmeier F, Pesǐć M, Nicolas AM, Böttger TW, Kennel KB, et al.
Combining ferroptosis induction with mdsc blockade renders primary tumours and
metastases in liver sensitive to immune checkpoint blockade. Gut (2023) 72(9):1774–
82. doi: 10.1136/gutjnl-2022-327909
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