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Efferocytosis is defined as the highly effective phagocytic removal of apoptotic

cells (ACs) by professional or non-professional phagocytes. Tissue-resident

professional phagocytes (“efferocytes”), such as macrophages, have high

phagocytic capacity and are crucial to resolve inflammation and aid in

homeostasis. Recently, numerous exciting discoveries have revealed divergent

(and even diametrically opposite) findings regarding metabolic immune

reprogramming associated with efferocytosis by macrophages. In this review,

we highlight the key metabolites involved in the three phases of efferocytosis and

immune reprogramming of macrophages under physiological and pathological

conditions. The next decade is expected to yield further breakthroughs in the

regulatory pathways and molecular mechanisms connecting immunological

outcomes to metabolic cues as well as avenues for “personalized”

therapeutic intervention.
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1 Introduction

Over the past two decades, much has been deciphered regarding the phagocytosis of

apoptotic cells (ACs) (1, 2). In 2003, a ubiquitous process of removing numerous ACs in

multicellular organisms daily, along with the term “efferocytosis”, was suggested (Figure 1).

Efferocytosis emerges from the final step of apoptosis (3), which occurs rapidly to prevent

secondary necrosis and the release of proinflammatory moieties and antigenic cell

components. Moreover, elimination of apoptotic or dying cells appears to be a

widespread biological process with highly conserved mechanisms and specific signaling

pathways (4).
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Three major research areas have been emphasized to provide

foundational understanding of efferocytosis—(i) phagocytosis

(universal immune–biologic process), (ii) the mechanisms

orchestrating different types of cell death and its consequences

(5), and (iii) the immune metabolism (6) influencing “macrophage

programming” (Figure 2).

The past century has witnessed evidence of the uptake of

various types of particles by different types of phagocytes. These

particles arise from simple and complex organisms, and

phagocytes include professional (e.g., macrophages) and non-

professional (e.g., epithelial and endothelial cells) types.

Phagocytosis involves the ingestion and elimination of particles

>0.5 mm in size within a plasma membrane envelope.

Phagocytosis contributes to pathogen elimination and

homeostasis of the internal environment (7). Metchnikoff

(1845–1916) explored the role of phagocytosis and won the

Nobel Prize in 1908. In 1995, Rabinovitch coined a term for a

specialized group of cells with highly efficient activity as

“professional phagocytes” (8). As phagocytes, macrophages

contain a high concentration of acid hydrolases that efficiently

degrade ingested particles. However, some tissue-resident

macrophages are poorly phagocytic despite the presence of

typical macrophage-related markers on the membrane surface.
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Gonzalez et al. sought to provide possible explanations for this

phenomenon by investigating the phagocytic properties of

resident macrophages in various tissues (9). Although there are

many redundant phagocytic markers on the membrane surface,

intracellular processing and signal transduction are less

redundant. Gonzalez et al. highlighted the importance of post-

transcriptional regulation by revealing that phagocytic cells in

different microenvironments share commonly regulated genes.

The mechanism underlying this phenomenon warrants further

investigation. Phagocytosis involves four main phases: (i) particle

detection, (ii) internalization, (iii) phagosome formation, and (iv)

phagosome maturation to transform it into a phagolysosome

(blue box in Figure 2). The consequences of phagocytosis vary

depending on the phagocytes, the “cargo” to be swallowed, and

the subsequent regulatory mechanisms.

The type and mechanism of cell death are the cornerstones of

efferocytosis. Various types of cell death have been discovered,

including apoptosis (programmed cell death) (10), caspase-

independent cell death (CICD) (11), autophagy (12), pyroptosis

(13), cuproptosis (14), ferroptosis (15), necroptosis (16), necrosis

(17), and whateverptosis (types of cell death remaining to be

discovered). Different types of cell death influence the immune

responses of phagocytes in various ways.
FIGURE 1

Key breakthroughs and milestones in the literature on efferocytosis since 2003. The literatures shown in PubMed each year is marked out, along
with the exciting and interesting discoveries related to efferocytosis. More detailed information is shown here: https://pubmed.ncbi.nlm.nih.gov/?
term=%28clearance+of+apoptotic+cells%29+OR+%28efferocyotsis%29&timeline=expanded&sort=date&sort_order=asc. PCD, programmed cell
death; TLR, toll-like receptors; TAM receptor family, tyrosine kinase Tyro3, Axl, and Mer; PTX3, Pentraxin 3; LXRs, Liver X receptors; ENT3,
equilibrative nucleoside transporter 3; SIGN-R1, a C-type lectin; SCARF1, scavenger receptor F1; DD1a, Death Domain1a; S1P, sphingosine 1-
phosphate; IGF-1, insulin-like growth factor 1; EPO, erythropoietin; NADPH, NAD phosphate; PPP pathway, pentose phosphate pathway; DNMT3A,
DNA methyltransferase-3A; CHEF, chimeric receptor for efferocytosis; PSR, phosphatidylserine receptor; MFG-E8, milk fat globule–epidermal
growth factor 8; SRs, scavenger receptor superfamily; ASGP-R, asialoglycoprotein receptor.
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Efferocytosis is an interesting and exciting process that involves

cell death, phagocytosis, and immune metabolism. During different

cell death processes, dying cells can release unique macromolecules

to interact with efferocytes (“find-me,” “eat-me,” and “post-

engulfment”). These macromolecules function similar to a “QR

code” in that macrophages and other efferocytes “scan” codes and

decode information from dying cells to produce immunoreactions.

Most studies highlight the repair and immunosuppression of

efferocytosis; however, some studies have revealed pro-

inflammatory outcomes after efferocytosis (18, 19). Therefore, the

precise regulation of these processes remains unknown (red box

in Figure 2).

Efferocytosis is considered the final step of apoptosis.

Phosphatidyl serine (PS) “flipping” from the inner leaflet to the

outer leaflet of ACs is the most well-studied “eat-me” signal and is

identified by a range of phagocyte receptors. These receptors may be

involved in the direct or bridging recognition. Direct recognition

receptors include the PS receptor, cluster of differentiation (CD)14

scavenger receptor superfamily, brain-specific angiogenesis

inhibitor (BAI)-1, and asialoglycoprotein receptor (ASGP-R) (20).
Frontiers in Immunology 03
Bridge recognition receptors include growth arrest-specific protein6

(GAS-6) with Mer-TK (tyrosine-kinase-activated receptor), CD36,

agb3 integrin, thrombospondin, milk fat globule-epidermal growth

factor 8 (MFGE8, also called lactadherin) with agb3 integrin, and
C1q-CD91. These receptors were first described by Aimee M.

deCathelineau and colleagues (1) in 2003. During 2004–2009,

scientists discovered that the toll-like receptor (TLR) signal

participated in phagosome maturation (21) and that CD44 (22),

T cell membrane protein (Tim)1/2/3/4 (23, 24), a family of tyrosine

kinases [Tyro3, Axl, and Mer (TAM receptor family)] (25, 26),

stabilin-2 (27), pentraxin 3 (28), calcium flux (29), and liver X

receptors (LXRs) (30) promote efferocytosis. In the next decade, the

research focus shifted to the regulation of intracellular transcription

factors and from epigenetics to efferocytosis. Retromer (31), cell

motility protein 1 (ELMO1) (32), Ucp2 (33), equilibrative

nucleoside transporter-3 (34), and the loss of RhoGAP SRGP-1

(35) were found to promote efferocytosis. Moreover, from 2013 to

2016, SIGN-R1-C1q (36), scavenger receptor class F, member 1

(SCARF1) (37), p53-induced expression of Death Domain-1a (38),

sphingosine-1-phosphate (S1P) erythropoietin signal (39), and
FIGURE 2

Three key concepts that aid in the clear understanding of efferocytosis. Diverse modes of cell death have different effects on efferocytosis.
Efferocytosis carried out by macrophages can be used to identify the death mode of “swallowed cargos” (like scanning a QR code) and make
different responses (though the specific mechanisms need further research). As a form of phagocytosis, efferocytosis can also be divided into four
periods. After degradation of swallowed materials, macrophages maintain homeostasis through metabolic immune reprogramming. CICD, caspase-
independent cell death. Whateverptosis: the types of cell death remaining to be discovered in the future.
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CD47-blocking antibodies (40) were found to promote

efferocytosis. Insulin-like growth factor (IGF)-1 and microvesicles

from macrophages dampened the uptake of larger apoptotic cells

while enhancing the engulfment of microvesicles and decreasing

inflammatory responses by non-professional phagocytes (41).

After recruitment and engulfment, efficient degradation and

inflammatory programming are important for homeostasis and

normal functioning of all types of organisms and systems. Since

2017, with the development of live cell tracking methods for

efferocytosis, the metabolism of carbohydrates (42), lipids (43),

free fatty acids (FAs) (44), amino acids (45) and nucleotides (46)

from ACs and their effects on macrophage programming have been

slowly revealed (see Section 5).

The metabolic characteristics of cancer cells are distinct from

those of resting tissues. Recent studies have revealed the effect of

metabolic phenotypes on the characteristics of proliferating

(especially immune) cells transitioning between different states.

Cancer and immune cells have numerous metabolic similarities

(as well as critical differences) that affect the diagnosis and

treatment strategies for immune system diseases and cancers.

Traditional studies of cancer cell metabolism have suggested that

glycolysis promotes immune tolerance, whereas oxidative

phosphorylation (OXPHOS) promotes an anti-inflammatory

immune response (47, 48). However, recent studies have revealed

different and even diametrically opposite results regarding

metabolic immune reprogramming associated with efferocytosis

by macrophages (49–52). Geeraerts et al. revealed the metabolic

heterogeneity of tumor-associated macrophages. Lactate, the

product of glycolysis, differentially affects these macrophages to

elicit antitumoral or protumoral effects (53). The differentiation and

activation of tumor-associated macrophages also require lipid

accumulation and metabolism (54). However, the role of amino

acid metabolism in tumor progression and efferocytosis remains

unclear (55). There is a considerable replacement of cells in the

tumor microenvironment. This heterogeneity can be attributed to

genetic and environmental factors (56). Genetic factors include

instability and epigenetic modifications, while environmental

factors include the specific spatial environment of tissues

(including the infiltration of immune cells, secretion of cytokines,

and angiogenesis) as well as the distribution of various metabolites.

Such heterogeneity has a profound impact on clinical outcomes and

response to treatment. Once ACs are ingested, macrophages are

subjected to a large metabolic load. However, the contrasting

metabolic roles of efferocytosis and cancer require further

investigation. Moreover, the influence of efferocytic metabolism

on macrophage programming is incompletely understood (yellow

box in Figure 2).

In this review, we provide a chart of the vast literature on

efferocytosis, which has increased by 150 articles per year over the

last two decades (Figure 1). Efferocytosis occurs at the intersection

of apoptosis, metabolism, and immunoregulation (Figure 2), and

these phenomena contribute to our knowledge of efferocytosis.

Here we summarize the key physiological and pathological

contexts of efferocytosis and the emerging therapeutic

applications used to modulate efferocytosis. Moreover, with a

focus on tissue-resident macrophages (the most common
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professional efferocytes), we describe the latest progress in the

immune metabolic mechanisms that regulate efferocytosis within

this framework. Finally, we discuss key questions that will likely

drive future efferocytosis studies.
2 Physiological functions of
macrophages during efferocytosis

As the most studied phagocyte, a macrophage that can perform

moderate efferocytosis plays an important role in the maintenance

of homeostasis under physiological conditions. Efferocytosis can be

regarded a safe method of “garbage disposal”. The internal

environment of the human body is characterized by a universal

turnover of cells and purging of ACs. In 1992, Dini et al. employed a

rat model with fluorogenic labeling to demonstrate that clearance of

apoptotic hepatocytes was mediated by ASGP-R in hepatocytes

under physiological conditions, representing a sugar recognition

system in the liver (20). However, the phenotypic changes that

occur after this type of phagocytosis were not studied further.

Another study reported that AC removal by macrophages limited

the release of thromboxane-B2 (57). Gradually, researchers began to

regard the apoptotic cargos as “bioactive treasures” released from

dying cells, which promoted a pro-resolving macrophage

phenotype (58). Efferocytosis enables anti-inflammatory and

homeostatic maintenance. This pro-resolving macrophage

phenotype suppresses the expression of proinflammatory

cytokines and upregulation of pro-resolving mediators and

angiogenic growth factors (59).

In the hippocampal dentate gyrus of the central nervous system

(CNS), efferocytosis by ramified microglia (phagocytic cells that

remove ACs and crops in the brain) balances cell death and

neurogenesis to promote homeostasis and brain development,

although the underlying mechanism requires further research

(60). Paneth cells are pluripotent cells found in the small

intestine. Paneth cells are the building blocks of intestinal health

because they secrete antimicrobial peptides to ensure a sterile

environment and efferocytosis of ACs from the small intestinal

crypts (61). In the immune system, apoptotic B cells in the early

germinal centers of lymphoid follicles locally activate follicular

macrophages into classical tangible body macrophages for

efferocytosis, which can prevent antibody-mediated autoimmune

diseases (62). In mice, large peritoneal macrophages undergo

efficient efferocytosis to maintain a homeostatic peritoneal

microenvironment and promote self-tolerance (63). A “multi-

omics” analysis of cardiac development/function from early

embryo to adult mice revealed that a subpopulation of major

histocompatibility complex class II-positive resident macrophages

displayed arachidonic acid metabolism involved in efferocytosis,

though the dysfunction of efferocytosis during this process was not

clarified (64). Decidual macrophages efferocytosis is also important

during pregnancy to maintain the homeostasis at the maternal–fetal

interface (65). Morales et al. recently clarified the paradigm of

microglial dominance in efferocytosis in the developing retina and

demonstrated that intercellular interactions between Müller glia

and microglia occur before efferocytosis (66).
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People experience a gradual decline in physical strength with

age, a process that has been intensively researched. Transient

cellular senescence is beneficial for defense against various

stresses; however, the accumulation of senescent cells in organs

can lead to the breakdown of homeostasis, tissue deterioration, and

tumorigenesis. Senescent cells were refractory to macrophage-

mediated efferocytosis, and more senescent than apoptotic cells

are observed in the aging body. Schloesser’s team uncovered that

senescent cells are not only exempt from efferocytosis but also

suppress macrophage-mediated corpse removal with the

upregulation of the “do not eat me” CD47–QPCT/L axis (67).

Senescent and aged macrophages exhibited defective efferocytosis

that contributes to pathological inflammation (68).

In addition to macrophages, some non-professional phagocytes

in certain tissues function under physiological conditions—for

example, instead of macrophages, epithelial cells of the mouse

mammary gland engulf apoptotic epithelial cells and clear

residual milk after the cessation of lactation in C57BL/6 mice.

This process favors the remodeling of breast tissue and prevents

mastitis (69). Moreover, bone marrow mesenchymal stromal cells

undergo efferocytosis to influence the remodeling of bone marrow

and bone loss and maintain homeostasis of the bone marrow

microenvironment along with bone marrow macrophages (70). In

the male genitourinary system, Sertoli cells are specialized

phagocytes responsible for preventing the accumulation of

apoptotic germ cells in the seminiferous tubules via efferocytosis.

Smoothelin-like 2 has been shown to regulate efferocytosis and

lactate metabolism in Sertoli cells of mice to achieve a homeostatic

state (71). In the visual system, some scavenger receptors have a

direct role in the tight regulation of the circadian rhythm by

participating in the clearance of the outer segments of

photoreceptors by retinal-pigment epithelial cells (72). Although

this process is not strictly efferocytosis, it does involve scavenger

receptors. Therefore, one can speculate that efferocytosis may also

play a role in the maintenance of circadian rhythms. The “find me”

signals also attract neutrophils and efferocytosis by neutrophils has

been revealed to be involved in inflammation (73, 74) and colorectal

cancer (75).

Taken together, these results suggest that many physiological

processes require (or are linked to) efferocytosis in multiple systems

of the body.
3 Pathological contexts involving
efferocytosis by macrophages

Considering the multiple functions of efferocytosis performed

by macrophages, any insufficiency in efferocytosis facilitates tissue

damage, inflammation, and disease development. Diseases may

cause defective efferocytosis through various mechanisms (76, 77),

as discussed below.

After damage, the CNS requires effective efferocytosis to initiate

regenerative responses and rearrange the neuronal circuits (78).

Alzheimer’s disease (AD) is a common neurodegenerative disorder.

The genes associated with AD include apolipoprotein E, adenosine

triphosphate (ATP)-binding cassette transporter A7, triggering
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receptor expressed on myeloid cells-2, and phospholipase C-g-2.
These genes are essential for efficient microglial efferocytosis (79).

Pannexin1 (Panx1) channels allow anions and relatively small

molecules (e.g., ATP) to pass through them. Panx1-mediated

ATP release from ACs contributes to macrophage recruitment

(80) . The progress ion of exper imenta l autoimmune

encephalomyelitis (EAE) in mice (which manifests as multiple

sclerosis in humans) is associated with Panx1 channels. The

blockade or knockout of Panx1 channels in mice has been shown

to delay the onset of EAE and ameliorate EAE signs (81). In

addition, LXRs (82) and MerTK (83) are associated with multiple

sclerosis/EAE. Recently, Panx1 channels were found to be involved

in migraine, chronic headache, and epilepsy along with the

development and maintenance of long-term spatial reference

memory (84). The efferocytosis-related molecule BAI1 is a

promising therapeutic target for CNS-related diseases (85).

Duman et al. revealed the role of BAI1 in learning and memory

(86). C1qa is involved in the complement cascade. It was found to

be involved in epilepsy because C1q-knockout mice failed to

eliminate excessive CNS synapses and presented with epileptiform

activity (87). A study of European ancestry revealed that GLUP1

and efferocytosis-related pathway were associated with

schizophrenia (88).

The efferocytic receptors b2 integrins and MerTK are involved

in autoimmune uveitis (89) and retinal degeneration (83),

respectively. The deletion of certain efferocytosis components in

retinal-pigment epithelial cells leads to specific damage to the

retinal integrity (90). Dysfunction of receptors for advanced

glycation end products (RAGE) leads to lung fibrosis and allergic

airway inflammation (91). In addition, the platelet P2Y12 receptor

(92), a low-molecular-weight guanosine triphosphate (GTP)

belonging to the Rho family RAC1 (93), and MerTK (83) have

been shown to be involved in allergic airway inflammation. The

fatty acid transporter CD36 facilitates phosphorylation of the

transient receptor potential vanilloid-4 and inhibits hydrogen

peroxide-mediated lung injury (94). Macrophages perform

efferocytosis through cross-talk with non-professional phagocytes

(e.g., airway epithelial cells) to control tissue inflammation through

IGF-1 (41). In a recent study, interstitial macrophages rather than

alveolar macrophages were found to clear apoptotic alveolar type 2

epithelial cells from the lungs during influenza infection (66).

However, the underlying mechanism requires further elucidation.

In the urogenital system, a protein within the cytoplasm,

ELMO1, connects the efferocytosis receptor BAI1 and RAC1 to

perform engulfment. Therefore, dysfunction of ELMO1 can result

in testicular disease and diabetic nephropathy (32). MerTK

dysfunction has been shown to be associated with reduced

fertility (83). In addition, the bridge protein GAS6 participates in

efferocytosis by interacting with the TAM family, while abnormal

GAS6 expression is associated with nephritis (95).

Several studies have reported the relationship between

efferocytosis and atherosclerosis. Many apoptotic leukocytes

reside in atherosclerotic plaques. Macrophages efficiently undergo

efferocytosis during lesion formation. MFGE8 has been identified as

an important player in attenuating inflammation via efferocytosis

(96). A meta-analysis revealed that the MFGE8 variants
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rs534125149 and rs201988637 independently protected against

atherosclerosis. Therefore, the inhibition of MFGE8 expression

may reduce the risk of atherosclerosis (97, 98). The low-density

lipoprotein receptor-related protein (LRP1) (99), C1qa (100, 101),

myeloid-specific glucose transporter (GLUT)1, LXRa/b ,
peroxisome proliferator-activated receptors (PPARs) (102), and

the GTPase dynamin-related protein-1 (103) have also been

shown to be involved in atherosclerosis by being present in the

different stages of efferocytosis (104). In addition, vascular

endothelial growth factor-C from macrophages performing

efferocytosis ameliorates ischemia–reperfusion injury and

inflammation (105). The BAI1 ELMO1 RAC1 pathway is

triggered to maintain cholesterol balance after efferocytosis by

macrophages, and dysfunction of this signal might lead to

dyslipidemia (106). Moreover, legumain (Lgmn) released from

cardiac-resident macrophages promotes cardiac repair after

myocardial infarction by improving efferocytosis (107).

Efferocytosis-related molecules such as G protein-coupled

receptor G2A (108), CD300 family member CD300f (109),

integrins (110), and RAC1 (111) have been shown to be linked to

inflammatory bowel disease/colitis. CD36 is also linked to diet-

induced obesity (112, 113). Thus, MFGE8 is considered a promising

treatment for type 1 diabetes mellitus, inflammatory bowel disease,

or colitis (96). BAI1 is expressed by gastric phagocytes and mediates

efferocytosis to induce anti-inflammatory effects and cure gastritis

(114). However, the paradoxical role of MerTK in colon cancer

remains unclear (78, 115). After efferocytosis, macrophages release

pro-resolving factors that promote tissue repair in inflammatory

bowel disease (116).

Insufficient efferocytosis is a major contributor to systemic

lupus erythematosus (SLE). Indeed patients with SLE often

demonstrate defective efferocytosis and AC accumulation (117).

G2A (118), CD300f (109, 119), integrins (89), protein S (120), and

SCARF1 (37, 121) are involved in the etiology of autoimmunity

accompanied by aberrant efferocytosis in macrophages. Multiple

efferocytosis-related molecules, such as S1P (122), Tim4 (123),

MerTK (124), C1qa (125), PPARs (126), and ATP-binding

cassette transporter A1 (ABCA1) (127), are associated with SLE.

Disintegrin and metalloproteinase domain-containing protein

(ADAM)10 and ADAM17 have been found to reduce

efferocytosis efficiency by cleaving PS receptors on the AC

surface. ADAM10/17 cleavage activity is particularly high in SLE

models (128, 129) and juvenile patients with SLE (130). The well-

known efferocytosis-related receptors MFGE8 (131, 132) and

LXRa/b (82) are involved in autoimmunity and SLE. RAGE is

regarded as a target for treating sepsis because of its role in

activating inflammatory signals (133–135). In addition, in a

mouse model of hepatic graft-versus-host disease, GAS6-/- mice

demonstrated a higher transplantation success rate than wild-type

mice (136).

Efferocytosis by macrophages has been reported in wound

healing (including in patients with diabetes mellitus), tissue

regeneration, and tissue development in muscles, skin, and joints

(137), with an increased requirement for fatty acid oxidation and

the electron transport chain (59). RAGE has been found to have a

critical role in muscle regeneration (138, 139) and melanoma (140),
Frontiers in Immunology 06
while GAS6is is considered a therapeutic target for melanoma (141).

The angiogenic function of C1qa has also been emphasized in

wound healing (142). Mice lacking DNase II have been shown to

exhibit symptoms of chronic polyarthritis (akin to rheumatoid

arthritis in humans) (143). In addition, the therapeutic potentials

of MerTK (144) and RAC1 (145) against arthritis have been

uncovered. The administration of low-dose aspirin has been

shown to improve cutaneous wound healing by reprogramming

efferocytotic macrophages in a mouse model of DM (146).

These studies suggest that efferocytosis promotes tissue repair

and the resolution of inflammation. Most of these studies have

shown that deficiencies in efferocytosis-related molecules/receptors

promote a disease state, whereas relatively few studies hold the

opposite opinion. Scholars tend to study the mechanisms after

successful modeling; however, as each disease is dynamic, different

findings may be observed during different stages of the disease.

Therefore, it is necessary to study the dynamic changes in

efferocytosis during the course of disease.
4 Therapeutic applications
of efferocytosis

Abnormal efferocytosis contributes to several human disorders,

and efforts to exploit selective targets on the sophisticated

machinery of efferocytosis have been ongoing for decades.

Previously, a reduction in inflammation and treatment of

autoimmune diseases were achieved mainly by improving

apoptosis or regulating phagocytotic ability (147, 148). Several

approaches have been used to enhance phagocytosis in mice.

Macrophages with chimeric antigen receptors have been shown to

have efficient antigen-specific phagocytic ability, reduce tumor

burden, and prolong overall survival in two mouse models of

solid tumor xenografts (149). The helix B surface peptide has

been shown to increase the phagocytic function of tubular

epithelial cells (instead of macrophages) to promote kidney repair

in a mouse model of kidney ischemia–reperfusion (150). Recently, a

strategy called “chimeric receptor for efferocytosis” was advanced to

boost efferocytosis and facilitate the resolution of inflammation in

mice (151). Tabas and Thorp revealed that MerTK shedding

requires the metalloproteinase ADAM17 in a mouse model of

endotoxemia (129). This type of MerTK cleavage during

inflammation suppresses the biosynthesis of specialized pro-

resolving mediators and boosts inflammation by inhibiting

efferocytosis. Moreover, the authors developed a new MerTK-

cleavage-resistant mouse model in which resistance to cleavage by

metalloproteinases had been engineered, thereby retaining the

efferocytosis capacity to improve resolution (152). Therefore,

promoting MerTK cleavage by ADAM17 may present a new

therapeutic avenue in the tumor microenvironment. The

triggering receptor expressed on myeloid cells 2 (TREM2), a

myeloid receptor in microglia, sustains microglial responses (153).

Katzenelenbogen discovered novel Arg1+Trem2+regulatory

myeloid cells through single-cell RNA sequencing, revealing an

immunosuppressive role of TREM2 in cancer (154). Another study

confirmed these findings and found that TREM2 deficiency and
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anti-TREM2 mAb treatment delayed the growth of transplanted

tumors and enhanced anti-PD-1 immunotherapy in mice by

remodeling the tumor macrophage landscape (155). However, it

remains unclear whether this specific mechanism is related to

efferocytosis. Given the wealth of recent studies on opportunities

to treat diseases by targeting efferocytosis, we have summarized the

therapeutic drugs below.

Tumor cells send “do not eat me” signal to macrophages

through a high expression of CD47 to avoid being attacked and

excluded by the innate immune system (156). Therapies for

autoimmune or inflammatory diseases based on the modulation

of efferocytosis have also been proposed. Magrolimab (Gilead

Sciences, Foster City, CA, USA) is a CD47 antibody that is

currently being tested in phase III clinical trials to treat acute

myelocytic leukemia. Magrolimab relies on a laborious “pre-dose”

regimen to reduce toxicity (e.g., anemia) to a certain extent.

However, the blood toxicity caused by magrolimab is concerning.

Simultaneously, the “antigen-sinking effect” caused by magrolimab

binding to red blood cells indirectly affects its clinical efficacy (157,

158). In the search for methods to avoid blood toxicity, ALX148

(ALX Oncology, San Francisco, CA, USA) was identified as another

approach. ALX148 is mainly used in phase I and phase II clinical

studies, and its curative effect on B-cell non-Hodgkin’s lymphoma is

currently in phase III clinical trials. The aim of ALX Oncology is to

explore combined treatment approaches (159). AK117 (Akeso

Biopharmaceuticals, Zhongshan, China), AO-176 (Arch

Oncology, Brisbane, CA, USA), and HX009 (Waterstone Han X

Bio, Beijing, China) are currently in phase I or phase II clinical trials

(160, 161). Signal-regulated protein-a (SIRP-a) is a well-known

ligand for CD47. Liu’s team engineered a specific nano-

bioconjugate for macrophage-mediated atherosclerosis therapy.

This nanotherapy showed a promising curative effect in vitro and

in vivo with the combination of anti-SIRPa antibodies and

antisense oligonucleotides of mTOR (162).

Sabatolimab (also called MBG453, Novartis Basel, Switzerland)

targets Tim3/4 and is used to treat advanced malignancies, either

alone or in combination with other antitumor medicines. Two other

Tim3/4 targets, TSR-022 (Tersaro, Waltham, MA, USA) and

LY3321367 (Eli Lilly, Indianapolis, IN, USA), have been used in

the treatment of advanced solid tumors, and the clinical trials for

these agents are in phase I and phase II (163).

Efforts are underway to develop drugs that target the TAM

receptor family. Bemcentinib (BerGenBio ASA, Bergen, Norway),

amuvatinib (Astex Pharmaceuticals, Cambridge, UK), cabozantini

(Exelixis, Alameda, CA, USA), and TP-0903 (Sumitomo Dainippon

Pharma Oncology, Cambridge, MA, USA) target the AXL receptor.

Bemcentinib can stimulate antileukemic immunity and eradicate

naïve and treatment-resistant leukemia. This blockade is effective as

a PD-1 checkpoint blockade in PD-1-refractory leukemias (164).

These drugs are mainly used in phase I and phase II clinical trials

for lung cancer, solid tumors, and drug-resistant acute myeloid

leukemia (165–167). Similarly, MerTK-mediated efferocytosis has

been shown to promote metastatic tumor progression during

postpartum mammary gland involution in mice (168). Anti-

MerTK antibodies potentiate anti-tumor immunity (169) and

decrease mammary tumor metastasis (168). Agents targeting on
Frontiers in Immunology 07
MerTK are in phase I and phase II clinical trials, including ONO-

7475 (Ono Pharmaceuticals, Osaka, Japan), MRX-2843 (Meryx,

Chapel Hill, NC, USA), and PF-07265807 (Pfizer, New York, NY,

USA) (170–172). A lipid nanoparticle platform encapsulating

siRNA for the phagocytic receptor MerTK (siMerTK) was found

to selectively inhibit MerTK-mediated efferocytosis and exert

therapeutic effects in both liver and peritoneal metastasis models

of colorectal cancers. In the future, combining nanoparticles with

immune checkpoint therapies (such as PD-1 blockade) may be a

promising modality for metastatic colorectal cancer therapy (173).

Some metabolic pathway nodes can alter the immunological

behavior of macrophages and consequently influence the

homeostasis of the immune microenvironment. However,

the anfractuosity and intricacy of metabolic networks hinder the

development of metabolism-based therapies. Treatments targeting

nucleotide metabolism were the earliest and most commonly

developed (174). An increasing number of clinical trials have

investigated non-nucleotide metabolic drugs targeting the electron

transport chain (175, 176), asparagine synthetase (176), 3-hydroxy-

3-methylglutaryl-CoA reductase (177), indoleamine 2,3-

dioxygenase-1 (178), and mutated isocitrate dehydrogenase

(IDH)-1. However, there are relatively few clinical trials involving

dietary interventions, and the designs are relatively extensive (179).

In general, except for nucleotide-metabolizing drugs, inhibitors of

asparaginase synthetase, and IDH-1 inhibitors, other metabolism-

targeting therapies are mostly in their infancy and have not yet

achieved ideal therapeutic effects (180). The exploration of plausible

targets within metabolic pathways that enhance efferocytosis and

anti-inflammatory reactions requires considerable research.

Dangers and opportunities exist in the development of new

targeted drugs; however, future selective targets for efferocytosis

remain possible. Various system-related diseases associated with

aberrant efferocytosis by macrophages and opportunities to target

efferocytosis-related molecules are summarized in Figure 3

and Table 1.
5 Regulatory pathways and molecular
mechanisms of efferocytosis

With the development of selective and potent biologics agents

and compounds that can regulate efferocytosis selectively,

developing some reliable methods to track cell death (and

subsequent “corpse” removal) in vivo to reveal the mechanisms of

efferocytosis will become crucial. Efferocytosis-related receptor–

ligand interactions have been discovered; however, tracking

efferocytosis in vivo is challenging. Detecting ACs in vivo is

difficult because of their rapid removal and the lack of tools to

track newly emerging ACs. Raymond et al. developed a genetically

encoded fluorescent reporter program for Drosophila species to

track emerging ACs and efferocytosis which can help uncover

efferocytosis in vivo (181). Batoon et al. invented a novel

inducible caspase-9 mouse model to achieve selective apoptosis

and facilitate the examination of subsequent efferocytosis (182).

Moreover, a genome-wide clustered regularly interspaced short

palindromic repeat setup was created to screen for the regulators
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of efferocytosis by macrophages (183). In recent years, efferocytosis-

related activation of metabolism that mediates macrophage

reprogramming has received increasing attention in the field of

immunology and metabolomics. We discuss below the metabolism

of carbohydrates, cholesterol, fatty acids, amino acids, and

nucleotides in macrophages during efferocytosis.

Carbohydrates are the most abundant macromolecules on earth

and can be catabolized to provide energy (ATP) or anabolized to

maintain vital activities. Carbohydrates comprise three major

groups: (i) monosaccharides and disaccharides (e.g., glucose), (ii)

complex carbohydrates (e.g., glycogen), and (iii) glycoconjugates,

(glycoproteins, glycolipids) (184). Glycolysis, OXPHOS, and the

pentose phosphate pathway (PPP) are critical for macrophage

reprogramming. Glycolysis is known to be related to the

proinflammatory phenotype of tumor-associated macrophages

(185); however, this view has been challenged since a recent study
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revealed that glycolysis is increased in anti-inflammatory efferocytic

macrophages (42). Glucose in macrophages undergoing

efferocytosis arises mainly from the extracellular matrix

transported by GLUT1 and degraded by apoptotic vesicles.

Glycolysis of glucose produces pyruvate, which is converted to

lactic acid or transferred to the inner mitochondrial membrane to

enter the tricarboxylic acid (TCA) cycle. Lactate in macrophages

helps to inhibit inflammation (42) and promotes sustained

efferocytosis by macrophages through interactions with MerTK

and LRP1 (186). Lactate combines with G protein-coupled

receptor-132 (187, 188) to activate downstream AMPK, which

promotes mitochondrial homeostasis (189) and the proliferation

of pro-resolving macrophages (190). In addition to being involved

in glycolysis, intracellular glucose is involved in the PPP by

transforming into glucose 6-phosphate (191). A previous study

suggested that efferocytosis and the PPP are mutually inhibitory
FIGURE 3

Aberrant efferocytosis by macrophages can result in a wide variety of diseases across various systems. Diseases associated with specific
efferocytosis-related molecules and opportunities for targeting these molecules are shown. AD, Alzheimer’s disease; TREM2, triggering receptor
expressed on myeloid cells 2; MS, multiple sclerosis; EAE, experimental autoimmune encephalomyelitis; BAI1, brain-specific angiogenesis inhibitor 1;
GAS6, growth arrest-specific protein 6; C1qa, complement C1q subcomponent subunit A; GULP, PTB domain-containing engulfment adapter
protein; LXR, liver X receptor; P2Y2, purinergic receptors; RAGE, receptor for advanced glycosylation end products; RAC1, Rac Family Small GTPase 1;
ELMO1, engulfment and cell motility protein 1; CX3CR1, C-X3-C motif chemokine receptor; MFGE8, milk fat globule–EGF factor 8; LRP1, LDL receptor-
related protein 1; SLC2A1, solute carrier family 2 member 1; PPAR, peroxisome proliferator-activated receptor; DRP1, dynamin-related protein 1;
DOCK180, dedicator of cytokinesis protein 1; TIM4, T cell immunoglobulin mucin receptor 4; G2A, immunoglobulin G2a; IBD, inflammatory bowel
disease; SCARF1, Scavenger receptor class F member 1; SLE, systemic lupus erythematosus; ABCA1, ATP-binding cassette transporter 1; VPS34, vacuolar
protein sorting 34; ATG35,7,16, autophagy-related gene 35,7,16; GVHD, graft-versus-host disease.
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(192). Moreover, a recent study demonstrated that reduced

nicotinamide adenine dinucleotide phosphate from the PPP loop

contributes to efferocytosis by macrophages under prolonged

(chronic) physiological hypoxia (193).

Cholesterol from degraded vesicles can support efferocytosis,

promote the repair of inflammation via LXRs, and act on MerTK/

LRP1 to favor further recognition and phagocytosis (194). The

ABCA1/ABCG1-mediated cholesterol efflux balances the amount of

cholesterol in macrophages (195). Another study found that

Niemann–Pick-type C1-related cholesterol extraction is required

for the ongoing phagocytic activity of macrophages and may be a

therapeutic target in the future (196). Statins lower intracellular

cholesterol levels to prevent uncontrolled inflammation by

regulating efferocytosis by macrophages (43). w-3 free fatty

acids from ACs produce specialized pro-resolving mediators

(SPMs) by 12/15-lipoxygenase. SPMs can promote efferocytosis

and resolution of inflammation (197, 198). Macrophages convert

docosahexaenoic acid to maresin conjugates in tissue regeneration

(MCTRs) with 12-lipoxygenase. MCTRs contribute to continuous

efferocytosis by macrophages through the Rac1-mediated activation

of glycolysis (199).
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Glutamine participates in the TCA cycle via glutaminase-1 and

promotes macrophage proliferation (200). Polyamine accumulation in

the macrophage cytoplasm inhibits the secretion of interleukin (IL)-1b
and IL-6 (201). Arginine from ACs is transformed to putrescine to

activate RAC1 to promote continual efferocytosis (45), and this

arginine metabolism can be regulated by 3,3′-diindolylmethane

(202). Indoleamine-2,3-dioxegenase1 promotes the transformation

of tryptophan to kynurenine, and the latter enhances the expression

of IL-10 and transforming growth factor-b (203, 204). Additionally,

AC-derived methionine transforms to S-adenosylmethionine, and the

latter contributes to enhancing the expression of transforming growth

factor-b via DNA methyltransferase-3A (205).

In summary,metabolites and signalingmolecules fromACs activate

a complex regulatory network during efferocytosis and further enhance

the immunological behavior of macrophages (Figure 4).
6 Discussion and future directions

Three key aspects of efferocytosis and metabolic mechanism

during the digestion stage are presented in Figures 2, 4. Figure 3
TABLE 1 Efferocytosis-targeting agents under clinical development.

Target Agent Alias(es) Developer Pathologies Trial phase Side effects References

CD47

Hu5F9-G4 Magrolimab Gilead Sciences Solid tumor, AML III
Anemia,

thrombocytopenia
(159, 160)

ALX148 N/A ALX Oncology Solid tumor, NHL I/II/II Not reported (161)

AK117 N/A
Akesobio

Pharmaceuticals
Solid tumor,
AML, MDS

I/II Not reported

(163, 165)AO-176 N/A Arch Oncology Solid tumor I/II Not reported

HX009 N/A
Waterstone Han X

Bio Pty Ltd
Solid tumor I Not reported

Tim3/4

Sabatolimab MBG453 Novartis AML, MDS I/II/III Not reported
(165)

TSR-022 N/A Tersaro Solid tumor I/II Not reported

LY3321367 N/A
Eli Lilly

and Company
Solid tumor I Not reported (166)

AXL

Bemcentinib
BGB324
R428

BerGenBio ASA
Solid tumor,
AML, MDS

I/II Not reported

(167, 170, 171)

Amuvatinib MP-470
Astex

Pharmaceuticals
Solid tumor I/II

Fatigue, alopecia,
thrombocytopenia,
leukopenia, anemia

Cabozantini
XL184

BMS-907351
Exelixis Solid tumor, AML I/II/III

Diarrhea, palmar
plantar

erythrodysesthesia
syndrome,

hypertension

Dubermatinib TP-0903
Sumitomo

Dainippon Pharma
Solid tumor,
AML, CLL

I/II Not reported

MerTK

ONO-7475 N/A
Ono

Pharmaceuticals
Solid tumor, AML I/II Not reported

(172, 174)

MRX-2843 N/A Meryx, Inc. Solid tumor I/II Not reported

PF-07265807 N/A Pfizer Solid tumor I Not reported (174)
AML, acute myeloid leukemia; MDS, myelodysplastic syndromes; CLL, chronic lymphocytic leukemia; NHL, non-Hodgkin lymphoma; N/A, not applicable.
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displays the diseases associated with aberrant macrophage

efferocytosis in different systems and highlights the opportunities

for targeting efferocytosis-related molecules. However, our

understanding of efferocytosis remains incomplete. Over the next

decade, at least three key questions remain to be answered, which

may drive advances in efferocytosis research.

First, the factors determining macrophage turnover and lifespan

during efferocytosis are incompletely understood. These

efferocytosis-related phagocytes activate apoptosis and necrosis in

neighboring cells, in addition to extensive efferocytosis (206).

However, the mechanisms and features of these biological

processes require further study. Second, the functions of the

various molecules involved in the reprogramming of macrophages

during efferocytosis remain unknown—for example, the role of

molecules in the glycolytic pathway in efferocytosis and the function

of macrophages, together with their clinical application, merit

further research. Third, the methods for selectively controlling

efferocytosis are not yet known, including whether the types of

cell death can be adjusted and whether the molecules associated

with efferocytosis can be targeted. Selective targeting of SPMs may

be helpful.

Efferocytosis can be selectively controlled in specific contexts

using several methods, including pharmacokinetics, optimized

biodistribution, and drug delivery. Addressing these strategies and

mechanisms will serve to contribute to the knowledge of

efferocytosis and could also yield therapeutic benefits for systemic

diseases. Insights into the increasingly diverse areas of biology

related to efferocytosis will continue to be renewed.
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FIGURE 4

Degradation of metabolites from “apoptotic debris” and subsequent reprogramming of macrophages during efferocytosis. The release of
carbohydrates, lipids, amino acids, and nucleic acids from the AC cargo modulates the metabolic reprogramming of macrophages. MerTK, MER
proto-oncogene tyrosine kinase; LRP-1, low-density lipoprotein receptor-related protein 1; LXR, the nuclear hormone receptor; ABCA1, ATP-binding
cassette transporter A1; ABCG1, ATP-binding cassette transporter G1; w-3 FAs, w-3 fatty acids; 12/15-LOX, 12/15-lipoxygenase; SPMs, specialized
pro-resolving mediators; GLUT1, glucose transporter; G-6-P, glucose 6-phosphate; NADPH, nicotinamide adenine dinucleotide phosphate; R-5-P,
ribose-5-phosphate; PPP, pentose phosphate pathway; AMPK, adenosine monophosphate activated protein kinase; GPR132, G-protein coupled
receptors; TCA cycle, tricarboxylic acid cycle; GLS1, glutaminase 1; SIRT1, sirtuin 1; IDO1, indoleamine 2,3 dioxygenase 1; IL-10, interleukin 10; TGF-
b, transforming growth factor-b; SAM, S-adenosylmethionine; DNMT3A, DNA-methyltransferase-3A.
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