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Schistosomiasis remains the most devastating neglected tropical disease,

affecting over 240 million people world-wide. The disease is caused by the

eggs laid by mature female worms that are trapped in host’s tissues, resulting in

chronic Th2 driven fibrogranulmatous pathology. Although the disease can be

treated with a relatively inexpensive drug, praziquantel (PZQ), re-infections

remain a major problem in endemic areas. There is a need for new therapeutic

drugs and alternative drug treatments for schistosomiasis. The current study

hypothesized that cysteinyl leukotrienes (cysLTs) could mediate fibroproliferative

pathology during schistosomiasis. Cysteinyl leukotrienes (cysLTs) are potent lipid

mediators that are known to be key players in inflammatory diseases, such as

asthma and allergic rhinitis. The present study aimed to investigate the role of

cysLTR1 during experimental acute and chronic schistosomiasis using cysLTR1-/-

mice, as well as the use of cysLTR1 inhibitor (Montelukast) to assess immune

responses during chronic Schistosoma mansoni infection. Mice deficient of

cysLTR1 and littermate control mice were infected with either high or low

dose of Schistosoma mansoni to achieve chronic or acute schistosomiasis,

respectively. Hepatic granulomatous inflammation, hepatic fibrosis and IL-4

production in the liver was significantly reduced in mice lacking cysLTR1

during chronic schistosomiasis, while reduced liver pathology was observed

during acute schistosomiasis. Pharmacological blockade of cysLTR1 using

montelukast in combination with PZQ reduced hepatic inflammation and

parasite egg burden in chronically infected mice. Combination therapy led to

the expansion of Tregs in chronically infected mice. We show that the disruption

of cysLTR1 is dispensable for host survival during schistosomiasis, suggesting an

important role cysLTR1 may play during early immunity against schistosomiasis.

Our findings revealed that the combination of montelukast and PZQ could be a

potential prophylactic treatment for chronic schistosomiasis by reducing
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fibrogranulomatous pathology in mice. In conclusion, the present study

demonstrated that cysLTR1 is a potential target for host-directed therapy to

ameliorate fibrogranulomatous pathology in the liver during chronic and acute

schistosomiasis in mice.
KEYWORDS

schistosomiasis, montelukast, praziquantel, Th2 immune responses, cysteinyl
leukotriene 1 (CYSLTR1), host-directed therapy
Introduction

Cysteinyl leukotrienes (cysLTs) are a class of leukotrienes that

include leukotriene C4 (LTC4), LTD4 and LTE4, all of which contain

the amino acid cysteine conjugated to the lipid backbone (1).

Cysteinyl leukotrienes are synthesized from arachidonic acid

metabolism (2–4) that is released from the plasma membrane

through the action cytosolic phospholipase A2. They are then

synthesized to leukotriene A4 (LTA4) by 5-lipoxygenase acting

with the assistance of 5-lipoxygenase activating protein. LTA4 is

hydrolysed to either LTB4 through the action of LTA4 hydrolase or

LTC4 by the action of LTC4 synthase. Moreover, LTC4 can be

further processed into LTD4 and LTE4 by gamma glutamyl

transferase (5). CysLTs act through two structurally divergent G-

protein-coupled receptors, named cysteinyl leukotriene receptor-1

(cysLTR1) and cysLTR2 (6), which have been cloned for the human

(7–11) and the mouse (12–15). CysLTR1 is thought to be the

primary receptor mediating smooth muscle contraction and

inflammatory cytokine production following exposure to antigen

(16). Although the two receptors induce many of the same immune

responses, cysLTR2 requires up to 10-fold concentration of LTD4,

which is the most potent ligand for activation of cysLTs (17). The

targeted inhibition of cysLTR1 with montelukast has been shown to

offer some therapeutic benefits for the treatment of asthma and

allergic rhinitis by blocking the secretion of Th2 cytokines and

impairing airway inflammation (18).

CysLTs are produced by a variety of innate immune cells such

as basophils (19), eosinophils (20), mast cells (21) and monocytes

following exposure to allergens (22). In addition, cysLTs are

generated following exposure to allergens as the product of IgE

cross-linking and activation mast cells (1). Cysteinyl leukotrienes

are potent inflammatory lipid mediators and have been reported to

drive Th2 immunity (23, 24). Initiation and amplification of robust

Th2 immune responses is crucial for conferring protective

immunity to helminth infections in mice (25).

Similar to allergic responses, infection with helminthic parasites

such as Schistosoma spp. induces robust type 2 immunity that is

crucial for the induction of protective immune responses to

helminth infections in humans and mice. However, the triggers of

type 2 immune responses during schistosomiasis are poorly

understood. Schistosoma mansoni (S. mansoni) triggers
02
granulomatous inflammation that is induced by the eggs that are

lodged in the tissues such as the liver in the case of S. mansoni

infection or bladder in the case of S. japonicum. During the early

stages of infection, the predominant immune response is

characterized by Th1 immune responses targeted at adult worms.

However, the immune response switches from Th1 to Th2 when the

mature worms start laying eggs in the mesenteric venules that

migrate and get trapped in the host tissues (26). It is crucial that

there is efficient switching between Th1 to Th2 immunity to prevent

lethal inflammatory pathology driven by uncontrolled Th1 (25, 27)

and Th17 immunity. Finally, regulatory T cells emerges at week 10

of infection, which is regarded as the chronic phase of the disease

(26, 28–30). The chronic phase of schistosomiasis causes excessive

collagen deposition resulting in fibrosis (26, 31).

Liver fibrosis caused by schistosomiasis continues to pose a

public health problem worldwide, and currently there are no drugs

available for treatment and reversal of fibrosis (2). Beller et al.

observed reduced inflammation and fibrosis in lungs of mice

following long-term injury in the absence of cysLTR1.

Furthermore, there was reduced lung inflammation in S. mansoni

infected 5-lipoxygenase deficient (5-LOX-/-) mice (32), suggesting

that leukotrienes are essential in driving chronic inflammation in

the lungs. However, it is unclear if cysLTR1 is required for driving

liver fibrotic granulomatous inflammation during schistosomiasis.

The present study investigates whether cysLTs are required for

driving inflammation and fibrosis in the liver during

chronic schistosomiasis.

Here, we investigated the role of cysLTs signalling through

cysLTR1 in the development of fibrogranulomatous liver pathology

during chronic schistosomiasis using cysLTR1 gene deficient mice.

We observed reduced hepatic fibrogranulomatous inflammation in

the cysLTR1-/- mice compared to littermate control mice during the

chronic stage of schistosomiasis. Moreover, we found a reduced

production of IL-4 in mice lacking cysLTR1 in comparison to the

littermate control mice during chronic schistosomiasis.

Remarkably, the inhibition of cysLTR1 with montelukast alone or

in combination with praziquantel (PZQ) led to the reduction in

fibrogranulomatous inflammation and liver egg burden compared

to littermate control mice during chronic schistosomiasis. Although

the disruption of cysLTR1 is dispensable for host survival during

schistosomiasis, we observed significant weight loss during the
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acute stage of infection, indicating the crucial role cysLTR1 plays

during acute schistosomiasis. Taken together, these findings

demonstrated that interfering with the signalling of cysLTR1

using gene-deficient mice or small molecule inhibitors ameliorates

fibrogranulomatous liver pathology during chronic and

acute schistosomiasis.
Methods

Ethics statement

Ethical approval of mouse experiments was granted by the

University of Cape Town (UCT) Health Sciences Animal Ethics

Committee (Protocol number 016/027 and 020/002) in accordance

with guidelines by the Animal Research Ethics Committee (AREC)

of South African National Standard (SANS 10386:2008). All

measures were taken to minimize the suffering of animal in

accordance with the AREC guidelines.
Mice

C57/BL6 background cysLTR1-/- mice were received as a kind

donation from Yoshihide Kanaoka at Harvard University.

CysLTR1-/- mice were backcrossed to BALB/c background for 10

generations for this study. Mice were bred and housed under

specific pathogen-free conditions at the UCT animal facility, and

mice aged between 8 and 12 weeks were used for the experiments.
Infection of mice with
Schistosoma mansoni

Mice were shaved and infected percutaneously with either 35

(chronic/late infection) or 100 (acute/early infection) live S.

mansoni cercariae (33–36) shedded by infected Biomphalaria

glabrata snails (NMRI strain, NR-21962, Biomedical Research

Institute, Rockville, USA). Infected mice were monitored daily

and weighed weekly in accordance with the AREC guidelines.

Mice were euthanized using halothane and death was confirmed

by cardiac puncture. Mice were killed at 8 weeks post-infection

(acute infection) or 16 weeks post-infection (chronic infection).
Preparation of montelukast

Aliquots of Montelukast soluble at 200 mg/ml in 100% EtOH

were stored at -80°C. On day of treatment, the aliquots were thawed,

and corn oil was added into the tube maintained in water bath and

mixed before incubation for 1 hour. For 100ml corn oil preparation

given at each oral gavage, 0.88mg of Montelukast was administered

(35mg/kg). Treatment commenced at week 11 post infection,

infected mice were treated once every second day, for three weeks.
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Preparation of praziquantel

The PZQ (Merck KGaA, Darmstadt, Germany) solution was

prepared as previously described previously by Nono et al. (35).

Briefly, PZQ was weighted and mixed with 10 parts 70% Tween and

30% Ethanol using a magnetic stirrer to achieve a concentration of

400mg/kg of animal body weight. Afterwards, 90 parts of sterile

water was added to the solution while stirring with a magnetic

stirrer until a homogenous solution was obtained. Each mouse was

given 200ml of the homogeneous PZQ suspension by oral gavage

within 2 h after it was prepared daily. At 11 weeks post infection,

infected mice were treated once, daily for seven days.
Histology

The harvested liver was fixed in buffered formalin (4% (v/v)

formaldehyde in PBS), embedded in wax, and then processed.

Sections were cut and stained with Haematoxylin and Eosin

(H&E) to assess tissue pathology or stained with chromotrope

analine blue solution (CAB) followed by counterstaining with

Wegert’s haematoxylin for collagen detection. Images were

captured using the Nikon Eclipse 90i light microscope (Nikon

Corporation). Granuloma area was measured by computer-

assisted morphological analysis using the NIS Elements Imaging

software (Nikon Corporation) as previously discussed (33–36). We

analysed an average of 20 granulomas per mouse which contained a

single visible egg at the centre.
Enzyme-linked immunosorbent assay

Serum antibody titres
Antigen-specific serum antibody isotypes (IgG1, IgG2a, IgG2b)

and total IgE titres were determined from the plasma that was

obtained from infected mice (37). Briefly, blood was collected by

cardiac puncture and placed in serum separator tubes (BD

Bioscience, San Diego, CA). The tubes were spun at 8 000×g for

10 minutes at 4°Cand the top layer constituting the plasma was

collected. The Nunc MicroWell flat-bottom 96-well plates (Thermo

Fisher Scientific) were coated with 10mg/ml soluble egg antigen

(SEA), blocked with 2% (m/v) BSA for 3 hours at 37°C, the serum

was loaded, and the plates were incubated overnight at 4°C. The

plates were washed, and alkaline phosphatase-labelled secondary

antibody was added and incubated for 2 hours at 37°C. The plates

were washed, the substrate (4-nitrophenyl substrate, Sigma-Aldrich,

St. Louis, Missouri), and absorbance was read at 405nm using

VersaMax microplate reader (Molecular Devices, Germany).

Cytokine ELISA
Cytokine production was measured by sandwich ELISA. The

Nunc MicroWell flat-bottom 96-well plates (Thermo Fisher

Scientific) were coated with primary antibodies (a-IL-4, a-IL-5,
a-IL-10, a-IL-9, a-IL-13, a-IFN-g, a-TNF, and a-TGF-b) and

incubated at 4°C, overnight. Coated microplates were blocked with
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blocking buffer (1× PBS with 2% (m/v) BSA) for 3 hours at 37°C.

Appropriately diluted standards and serum and tissue homogenates

were added to the designated wells on the microplate and were

incubated at 4°C, overnight. Specific biotinylated secondary

antibodies (depending on primary Ab) were added and incubated

for 2 hours at 37°C. Microplates were developed by adding

streptavidin conjugated to either alkaline phosphatase (AP) or

horse radish peroxidase (HRP) and incubated at 37°C for 1 hour.

An appropriate substrate (3,3’5,5’-Tetramethylbenzidine (TMB)

Microwell Peroxidase Substrate (KPL, Gaithersburg, MD, US) for

HRP-conjugated secondary antibody or 4-nitrophenol (Sigma) for

AP-conjugated secondary antibody) was added to the microplate

and incubated for 10 minutes at 37°C. The absorbance was read at

405nm for AP or 450nm for HRP using VersaMax microplate

reader (Molecular Devices, Germany).
Tissue homogenates

Infected liver samples were homogenized in extraction buffer (1×

PBS with 2µg protease inhibitor [Sigma-Aldrich, St. Louis, MO, US]

and 0.1% Tween 20 [Merck]), spun and supernatants were collected

for cytokine detection by sandwich ELISA. Protein concentration was

measured using the Pierce BCA Protein Assay Kit (Thermo Fisher

Scientific) following the manufacturer’s instructions.
Liver enzymes

The concentrations of alanine transaminase (ALT) and

aspartate transaminase (AST) was determined by diluting the

serum 1:10 in 0.9% (m/v) NaCl. The diluted serum was sent to

National Health Laboratory Service (NHLS) at Groote Schuur

Academic Hospital in Cape Town for analysis.
Assessment of collagen content in naïve
and infected tissue

Hydroxyproline (OH) content was quantified using a modified

protocol (Bergman et al., 1963). Briefly, liver samples were weighed

and hydrolysed overnight at 110°C in 6M HCl. Hydrolyzed liver

samples were diluted with double distilled water (ddH2O) and

filtered using Whatmann No.1 filter paper. The samples were

neutralized with 1% (m/v) phenolphthalein and titrated with 10N

NaOH and 3N HCl. Aliquots were mixed with isopropanol and

Chloramine-T/Citrate buffer solution (Sigma) was added to the

samples. Erlich’s reagent was added, and absorbance was read at

558nm (excitation) and 570nm (emission) using the VersaMax

microplate reader (Molecular devices, USA). Hydroxyproline

concentrations were determined using 4-hydroxy-L-proline

(Calbiochem, San Diego, CA, US) as a standard and data was

expressed as µmoles hydroxyproline per weight of tissue that

contained 104 eggs.
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Ex vivo restimulation of cells

Single cell suspensions were prepared from hepatic lymph node

(hLN) harvested from infected mice. Single cell suspensions (1 × 106

cells/ml) were seeded on a 96-well plate coated with a-CD3 (20mg/
ml) and incubated in a humidified atmosphere containing 5% CO2

at 37°C, and supernatants were collected after 72 hours.

Supernatants were collected and cytokines were detected using

sandwich ELISA described above.
cDNA synthesis and quantitative Real
Time-PCR

Ribonucleic acid (RNA) was extracted from the liver of infected

mice using the Qiagen RNeasy mini kit following the

manufacturer’s instructions. RNA was reverse-transcribed into

cDNA using random hexamer and anchored-oligo primers.

CysLTR1 cDNA was amplified using the following primers:

mCysLTR1 Forward – 5’ - CAA CGA ACT ATC CAC CTT CAC

C - ‘3, mCysLTR1 Reverse – 5’ - AGC CTT CTC CTA AAG TTT

CCA C - ‘3. Data were normalized using the hypoxanthine

phosphoribosyl transferase (HPRT) housekeeping gene using

HPRT Forward – 5’ - GTT GGA TAT GCC CTT GAC - ‘3 and

HPRT reverse – 5’ - AGG ACT AGA ACA CCT GCT - ‘3.
Quantification of egg burden in tissue

Infected liver tissues were weighed and hydrolysed in 5% (m/v)

KOH at 37°C overnight. Hydrolyzed tissues were spun down at

2000rpm for 10 minutes and excess supernatant was removed. Eggs

in the supernatant were enumerated under inverted light

microscope and number of eggs were normalized to tissue weight.
Flow cytometry and intracellular
cytokine staining

Single cell suspensions were prepared from lymph nodes, lungs

and liver obtained from either naïve or infected mice and the cells

were stained with a cocktail of the following antibodies: CD44,

Siglec-F, CD62L, CD11c, F4/80, T1/ST2, CD11b, CD4, CD3, CD8,

Ly6G purchased from BD Biosciences (Franklin Lakes, NJ, US) and

Biolegend (San Diego, CA, USA). For intracellular cytokine

staining, cells were restimulated with a cocktail of 50 ng/ml

Phorbol 12-Myristate 13-Acetate (PMA), 250 ng/ml ionomycin

and 200 µM monensin for 6 hours at 37°C. After fixation, the

cells were permeabilized using the transcription factor buffer set

(BD Bioscience). All the antibodies (IL-4, IL-5, IL-9, IL-10, IL-13,

IFN-g, Foxp3, Gata3) were purchased from BD Pharmingen (San

Diego, CA, USA) except were noted otherwise. The cells were

acquired on a BD LSR Fortessa machine (BD Immunocytometry

system, San Jose, CA, USA) and data were analysed using FlowJo

software (Treestar, Ashland, OR, USA).
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Statistics

All data are presented as means ± standard error of the mean

(SEM), and the p-value was determined using Student’s t test.

Statistical analysis for the present study was conducted using

GraphPad Prism 6.0 software (http://www.prismsoftware.com).
Results

Generation and characterization of
cysLTR1-/- BALB/c mice

CysLTR1 deficient mice were generated by homologous

recombination by cleaving out a portion of cysLTR1 and inserting

neomycin cassette (Supplementary Figures S1A, B). Homozygous

C57BL/6 cysLTR1-/- mice were intercrossed with BALB/c mice to

F10 generation to generate a stable cysLTR1-/- mice on BALB/c

background (Supplementary Figure S1B). The deletion of cysLTR1

was confirmed by conventional polymerase chain reaction (PCR),

an expected band size for the disruption of cysLTR1 was 333bp, no

disruption at 284bp and heterozygous mice were indicated by

double bands at 284bp and 333bp (Supplementary Figure S1C).

To further confirm the deletion of cysLTR1, quantitative real-time

PCR (qRT-PCR) was conducted on genomic DNA extracted from

spleen, mesenteric lymph node (MLN), lung, liver, and gut of naïve

cysLTR1-/- mice and normalized to hypoxanthine-guanine

phosphoribosyl transferase (HRPT). As expected, there was no

expression of cysLTR1 in cysLTR1-/- mice compared to littermate

control mice (Supplementary Figure S1D). These results revealed

that cysLTR1 was successfully deleted across tissues in cysLTR1-/-

BALB/c mice and confirmed that cysLTR1 BALB/c mice were a

global knockout.
Disruption of cysLTR1 does not alter gross
pathology, tissue cellularity however there
is an expansion of CD4+ and CD8+ Tcm in
secondary lymphoid tissues under steady
state conditions

To determine the impact of deleting cysLTR1 at homeostasis in

naïve mice, we assessed body and vital organs weights, as well as

tissue cellularity. There were no apparent differences in body weight

(Supplementary Figure S2A), vital organ weights (Supplementary

Figure S2B) and tissue cellularity (Supplementary Figure S2C)

between cysLTR1-/- and littermate control mice. Furthermore,

cysLTR1-/- mice had comparable myeloid cell compartments in

the spleen, MLN, lung, liver, and gut (Supplementary Figures S2D–

H). Additionally, cysLTR1 expression also did not appear to affect

the lymphocyte compartments in the thymus (Supplementary

Figure S2I) and proportions of CD19+ B cells, CD4+ and CD8+ T

cells in the spleen (Figure 1A), MLN (Figure 1C), lung, liver and gut

(Supplementary Figures S2J–L); however, there was expansion of

CD4+ and CD8+ central memory T cells (CD62L+CD44+) in

secondary lymphoid organs (spleen and MLN) in mice deficient
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of cysLTR1 in comparison with littermate control mice (Figures 1B,

D), respectively. Collectively, these data suggested that the lack of

cysLTR1 expression in secondary lymphoid tissue results in

expansion of CD4 and CD8 Tcm in naïve specific pathogen-free

mice without the exposure to foreign antigen. Overall, cysLTR1

BALB/c deficient mice reproduced normally and exhibited no

physical abnormalities.
CysLTR1 deletion leads to reduced liver
granulomatous inflammation during
chronic schistosomiasis in mice

Cysteinyl leukotrienes are essential for activation of Th2

immune responses during allergic asthma and helminth infections

(23, 24, 38). To determine whether signalling via cysLTR1 is

required for host survival during chronic schistosomiasis, we

percutaneously infected cysLTR1-/- mice and littermate control

mice with 35 live S. mansoni cercariae (Figure 2A) and disease

outcome was monitored until the attainment of pre-defined

humane endpoint (persistent bloody diarrhoea, severe lethargy,

and weight loss of 20% or more) (Supplementary Figure S3A).

About 20% of wildtype mice succumbed to infection while less than

5% of cysLTR1-/- mice had died at 8 weeks pi (Figure 2B). More

than 55% of wildtype mice died by 12 weeks pi compared to

cysLTR1 deficient mice (Figure 2B). In vivo expression of

cysLTR1 was measured in the liver of naïve and S. mansoni-

infected BALB/c mice using qPCR and was found to be reduced

at both the early and late phases of schistosomiasis (Supplementary

Figure S3B). Despite the better resilience to the disease, we observed

that cysLTR1 deficient mice developed wasting disease and lost 9%

of body weight by 10 weeks pi compared to littermate control mice

(Supplementary Figure S3C). Therefore, these data indicated that

the absence of cysLTR1 enhanced the survival of mice during

chronic schistosomiasis.

We sought to understand whether liver pathology was affected

during chronic schistosomiasis in mice deficient of cysLTR1

compared to littermate control mice. Histological analysis

revealed that cysLTR1-/- mice developed significantly reduced

inflammation as judged by the smaller granuloma size compared

to littermate control mice (Figures 2C, D). Furthermore, we

observed reduced fibrosis indicated by reduced hydroxyproline

content (Figure 2E) and a trend towards reduced liver injury as

indicated by aspartate transaminase (Figure 2F) in the liver of

cysLTR1-/- mice as compared to littermate control mice. There were

no differences in the quantity of parasitic eggs lodged in the liver

between the two groups (Figure 2G). Although the overall body

weight (Figure 2H) and spleen sizes remained comparable during

chronic schistosomiasis (Figure 2I), the size of the liver was

significantly smaller, translating into a significantly reduced level

of hepatomegaly in cysLTR1-/- mice as compared to wildtype mice

(Figure 2J). Overall, this data suggests absence of cysLTR1 leads to

reduced liver inflammation and damage.

To further investigate the mechanism associated with reduced liver

pathology in infected cysLTR1-/- mice during chronic schistosomiasis,

serum cytokine and immune responses were assessed in the liver and
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hepatic lymph nodes (hLN). There was a significant reduction of type 2

(IL-4) and regulatory (TGF-b) cytokines and upregulation of IL-10 in

cysLTR1-/- mice as compared to controls in the serum (Figure 3A). The

reduced IL-4 production and elevated levels of IL-10 were consistent in

the liver homogenates in the chronic phase in the absence of cysLTR1

(Figure 3B). Further analysis of cytokine immune response in liver

homogenates revealed increased levels of IFN-g in liver at the chronic

phase in cysLTR1-/- mice compared with littermate control mice

(Figure 3B). In vitro stimulation of total hLN cells with SEA or a-
CD3 indicated a consistent reduced IL-4 and IFN-y production

(Figures 3C, D) in mice lacking cysLTR1 compared to littermate

control mice. We also noted reduced type 2 cytokines IL-5 and IL-13

in the hLN restimulated with a-CD3 in cysLTR1-/- mice as compared

to littermate control mice (Figure 3D). To assess the immune cells, a

gating strategy (Supplementary Figure S5) was used. The infiltration of

immune cells remained comparable at week 16 with the exception of

reduced CD8+T cells in the absence of cysLTR1 compared to littermate

control mice (Figure 3E). Consistent with phenotype in the serum, liver

homogenates and in-vitro restimulation of hLN cells with SEA or

aCD3, we observed reduced intracellular production of IL-4 by CD4+

T (Figure 3F). We also noted reduced levels of IL-9 and IL-17 during

the late phase of the disease, as well as intracellular expression of IL-4

expression by ILC2 (Figure 3G) in cysLTR1-/- mice compared to

littermate control mice. Assessment of type 2 SEA-specific IgG1

(Figure 3H) revealed a comparable measure between two groups;
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however, total IgE titre (Figure 3I) was significantly reduced in

cysLTR1-/- mice as compared to the littermate control mice. Taken

together, these data demonstrated that cysLTR1 is necessary for

mounting sufficient type 2 immune responses during chronic

schistosomiasis in mice.
Inhibition of cysLTR1 with montelukast
together with praziquantel results in the
expansion of CD4+Foxp3+ T cells during
chronic schistosomiasis

Next, we determined whether inhibition of cysLTR1 alone or in

combination with praziquantel (PZQ) could ameliorate liver pathology

during chronic phase of schistosomiasis. We infected four groups of

wildtype mice with 35 live S. mansoni (low dose) cercariae, and at week

11, one group was treated with PZQ for one week; one group was

treated with montelukast once every two days for 3 weeks; one group

was treated with montelukast in combination with PZQ while the

control group was mock treated (Figure 4A). All four groups of mice

were killed at week 16 pi. We observed reduced liver granulomatous

inflammation in the mice treated with montelukast alone and in

combination with PZQ (Figures 4B, C). We also noted a trend

towards reduced granuloma size in PZQ-treated mice; however, the

differences were not significant (Figures 4B, C). Further analysis
B

C D

A

FIGURE 1

Disruption of cysLTR1 does not alter immune cell composition but there is expansion of CD4 T cm and CD8 Tcm in secondary lymphoid tissues.
(A) Total number of splenic immune cell populations (CD4, CD8, CD19 B cells). (B) Total number of CD4 T central memory (Tcm) and CD8 Tcm in
the spleen. (C) Total number of MLN immune cell populations (CD4, CD8, CD19 B cells). (D) Total number of CD4 Tcm and CD8 Tcm in the MLN.
Data are representative of two independent experiments. n=6 - 8 mice. *p<0.05 by unpaired Student’s t-test. ns, statistically not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1279043
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mosala et al. 10.3389/fimmu.2024.1279043
revealed reduced liver hydroxyproline quantity in mice treated with

combination therapy as compared to control group (Figure 4D).

Moreover, we observed that mice that were treated with montelukast

alone or in combination with PZQ displayed significantly reduced ratio

of AST/ALT as compared to control mice (Figure 4E), indicating

reduced hepatoxicity following these treatments. We observed no
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difference in liver egg burdens between the infected mock control

mice and mice treated PZQ or montelukast alone, while there was a

reduced liver egg burden in mice treated with a combination of

montelukast and PZQ compared to mock control mice (Figure 4F).

There was no difference in liver weight between all the infected groups

(Figure 4G); however, we did observe a significantly reduced spleen
B

C D

E F G

H I J

A

FIGURE 2

Deletion of cysLTR1 leads to amelioration of granulomatous inflammation during chronic schistosomiasis. CysLTR1 deficient mice and littermate
control mice were infected with 35 live S. mansoni cercariae, killed at 16 weeks post infection respectively and the liver was harvested.
(A) Experimental layout. (B) Survival curve of S. mansoni infected cysLTR1 and control mice. Survival curves were compared using log-rank test.
cysLTR1 mice were infected with S. mansoni cercariae and analyzed 16 weeks post infection. (C) Histological examination of H&E and CAB-stained
liver sections. (D) Granuloma area was measured using computerized morphometric analysis (NIS Elements, Nikon) by measuring 20 - 25
granulomas per mouse. (E) Liver fibrosis determined by assaying hydroxyproline concentration normalized to tissue eggs. (F) Hepatocellular damage
indicated by serum aspartate transaminase (AST) concentration. (G) Egg burden in S-mansoni infected liver. (H) Body weight. (I) Spleen weight index
(as a ratio of total body weights). (J) Liver weight index. Data are representative of two independent experiments. n= 6 - 10 mice. *p<0.05 and
***p<0.001 vs wild type mice using unpaired Student’s t-test.
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weight in mice treated with a combination of montelukast and PZQ

compared to mice treated with PZQ alone (Figure 4H), indicating that

the combined therapy reduced the spleen pathology compared to the

single PZQ therapy alone. Mice treated with montelukast showed a

trend towards reduced body weight (Figure 4I), which was not evident

in the rest of the infected groups. Overall, these data suggests that
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combined therapy with montelukast and PZQ drives reduced egg-

driven fibrogranulomatous inflammation in the liver during chronic

schistosomiasis in mice.

To understand the cellular mechanism of the combined therapy

during chronic schistosomiasis, we examined the immune

responses in the serum and liver of the infected animals.
B

C D

E F G
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A

FIGURE 3

Deletion of cysLTR1 leads to reduced Th2 immune response during chronic schistosomiasis. CysLTR1 deficient mice and littermate control mice
were infected with 35 live S. mansoni cercariae, killed at 16 weeks post infection and the serum, hLN and liver were harvested. (A) Cytokine
production in the serum. Livers from infected mice were homogenized and levels of the indicated (B) cytokines were detected by ELISA and
normalized to mg of liver tissue at week 16 post infection. Total hLN cells were stimulated with (C) SEA and (D) aCD3. (E) Representative total
number of CD4+ intra-epithelial lymphocytes (IEL), CD8+ IEL, CD4+ CD8+ IEL, CD8+ dendritic cells, neutrophils (CD11b+Ly6G+), macrophages
(CD11b+F4/80+), and eosinophils (CD11b+SiglecF+). (F) Total number of IFN-g, IL-4, IL-9, and IL-17-expressing CD4+ T cells. (G) Total number of IL-4
expressing ILC2 cells in the liver. (H) SEA-specific IgG1 antibody titre. (I) Total IgE antibody titre. Data are representative of two independent
experiments. n=6 - 10 mice. *p<0.05, **p<0.01 and ***p<0.001 by unpaired Student’s t-test.
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Treatment with montelukast alone and in combination with PZQ

led to reduced IL-4 cytokine production in serum and liver

homogenates as compared to control mice (Figures 5A, B).

Furthermore, combination therapy also resulted in heightened

production of IL-10 and TGF-b compared to infected mock
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treated mice (Figures 5C–F). There was an upregulation of IL-10

(Figures 5C, D) and TGF-b (Figures 5E, F) in the serum and liver

homogenates following combined therapy as compared to the

control mice. We also observed an overall expansion of total

number of CD3+ T cells (Figure 5G), CD4+ T cells (Figure 5H)
B C

D E F

G H I

A

FIGURE 4

Pharmacological blockade of cysLTR1 led to reduced liver pathology during chronic schistosomiasis. Four groups of wild type mice were infected
with 35 live S. mansoni cercariae and at 11 weeks pi, one group was treated with Praziquantel only once daily for 7 days, Montelukast only once
every other day for 3 weeks, a combination of Praziquantel and Montelukast therapy and one group was given a mock treatment and kept as a
control. Animals were killed at week 16 pi and the liver and serum were harvested. (A) Experimental layout. (B) Histological examination of H&E-
stained liver sections. (C) Granuloma area was measured using computerized morphometric analysis (NIS Elements, Nikon) by measuring 20 - 25
granulomas per mouse. (D) Liver fibrosis determined by assaying hydroxyproline concentration normalized to tissue eggs. (E) Hepatocellular damage
indicated by serum aspartate transaminase (AST)/alanine transaminase (ALT) ratio. (F) Parasite egg burden in liver. (G) Liver weight index. (H) Spleen
weight index. (I) Body weight. Data are representative of two independent experiments. n= 4 - 7 mice. *p<0.05 and ***p<0.001 by unpaired
Student’s t-test.
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and CD8+ T cells (Figure 5I) in the infected liver of mice given a

single or combination therapy as compared to control groups

during chronic schistosomiasis. Although there were no

significant differences in the total CD4+ T cells expressing T-bet

(Figure 5J) and Gata3 T cells (Figure 5K) between all groups, we

noted a significantly increased number of CD4+ T cells expressing

Foxp3 (Figure 5L) in mice that were treated with montelukast alone

or with combination therapy compared to infected mock treated

control mice. Infected mice treated with montelukast alone or in

combination with PZQ displayed significantly reduced total
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IgE titres compared to infected mock treated control mice

(Supplementary Figure S4A) while SEA-specific IgG1 titres

(Supplementary Figure S4B) remained comparable in all the

different groups. We also noted an upregulation of type 1 antigen

specific IgG2a (Supplementary Figure S4C) antibody responses in

mice that received a combination therapy compared to infected

mock treated mice during chronic schistosomiasis, while no

differences were noted in SEA-specific IgG2b antibody titres

between all groups (Supplementary Figure S4D). Collectively, our

data suggests that the combination therapy with montelukast and
B C

D E F

G H I
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A

FIGURE 5

Inhibition of cysLTR1 in combination PZQ results in expansion of CD4+Foxp3+ T cells during chronic schistosomiasis. (A–F) Cytokine production in
the serum and liver homogenates (Livers from infected mice were homogenized and levels of the indicated cytokines were detected by ELISA and
normalized to mg of liver tissue at week 16 post infection). Representative total number of CD3+ lymphocytes (G), CD4+ lymphocytes (H) and CD8+

lymphocytes (I). Total number of T-bet (J), Gata3 (K) and Foxp3 (L) expressing CD4+ T cells. Data are representative of two independent
experiments. n= 4-7 mice. *p<0.05, **p<0.01 and ***p<0.001 by unpaired Student’s t-test.
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PZQ leads to reduced type 2 responses and an expansion of

regulatory T cells which could be associated with control of

fibrogranulomatous inflammation in liver of the chronically

infected mice.
Deletion of cysLTR1 ameliorates hepatic
granulomatous inflammation during acute
phase of schistosomiasis in mice

Seeing that the absence and the inhibition of cysLTR1 led to

reduce in liver inflammation during chronic schistosomiasis, we

questioned whether the same phenotype was true during acute

schistosomiasis. We percutaneously infected cysLTR1-/- mice and

littermate control mice with 80 live S. mansoni cercariae and

assessed the mice at 8 weeks pi (Figure 6A). Histological analysis

revealed that mice lacking cysLTR1 exhibited 2-fold smaller hepatic

granuloma size as compared to the littermate control mice

(Figures 6B, C). We noted no differences in the hepatic collagen

content (Figure 6D), parasitic egg burden (Figure 6E) and liver

enzymes (Figure 6F) between the two groups of mice. In addition,

no differences were observed in the liver weight (Figure 6G), spleen

weight (Figure 6H) and overall body weight (Figure 6I) between the

two mice groups. We concluded that although cysLTR1 is crucial

for hepatic granuloma formation, it remains dispensable for other

tissue pathology during acute schistosomiasis.
Discussion

Understanding the essential role of cysLTs signalling through

cysLTR1 on immune system function has been primarily focused on

asthma and allergic rhinitis. The present study aimed at evaluating the

role of cysLTR1 signalling during experimental schistosomiasis in

murine model. Mice lacking cysLTR1 survived S. mansoni infection

better than littermate control mice. Previous studies have reported that

other leukotrienes are crucial for disease control. For instance, a study

by Tristão et al. reported that mice deficient of 5-lipoxygenase (5-LO)

failed to control Paracoccidiodes brasiliensis, a fungal infection (39).

Furthermore, mice lacking 5-LO exhibited reduced inflammation,

which resulted in protection to Trypanosoma cruzi (40),

Mycobacterium tuberculosis (41) and S. mansoni (32). In contrast,

mice deficient of 5-LO displayed increased susceptibility toToxoplasma

gondii infection (42). A study by Hohmann et al., reported that mice

lacking 5-LO had reduced lethality rates compared to littermate control

following acetaminophen-induced liver injury (43). The higher

susceptibility in littermate control mice coincides with the higher

degree of liver damage, as revealed by liver histopathology analysis.

Moreover, mice lacking 5-LO displayed reduced liver pathology that

was indicated by significantly reduced granuloma size during Brucella

abortus (B. abortus) infection in mice (44). Furthermore, 5-LO

deficient mice displayed increased production of proinflammatory

cytokines following B. abortus infection (44). Indicating the

differential roles of leukotrienes have on different disease models.

Disruption of cysLTR1 in mice resulted in overall reduced

inflammation at weeks 8 and 16 pi as judged by reduced granuloma
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size in the liver. The collagen content and liver enzymes were reduced

at the late phase of infection, an indication that cysLTR1 drives

immunopathology during chronic schistosomiasis.

The improved resilience to schistosomiasis during chronic

phase of the disease was further associated with impaired IL-4

production. IL-4 contributes to the development of type 2 CD8+ T

cells (45). It had been suggested that CD8+ T cells act as a

suppressor of Th2 cell function and thereby regulate

granulomatous inflammation (45). Previous studies have shown

that protection against schistosomiasis is IL-4 dependent (27, 33,

46–50) resulting in the activation of Th2 immune response.

Hoffman et al., demonstrated that the lack of IL-4 in mice led to

Th1-like proinflammatory response that leads to severe form of

disease and mice quickly succumb to schistosomiasis (25).

Although there was impaired production of IL-4 in the absence of

cysLTR1, this did not render mice susceptible to chronic

schistosomiasis. A study in our lab also revealed that the removal

of IL-4Ra (IL-4 and IL-13 receptor binding modulator) during the

chronic phase of schistosomiasis resulted in the amelioration of

liver granulomatous inflammatory pathology and reduced liver

fibrosis, which was supported by impaired Th2 responses and

heightened frequencies of Foxp3+ T and CD1dhi CD5+ B

regulatory cells (33). The reduction of IL-4 and an increase of IL-

10 is a good profile to help the host cope during the transition from

the peak of the acute response to the establishment of chronicity,

creating a balanced cytokine profile between IL-4 and IL-10. IL-10

plays an important regulatory role in many infections and

inflammatory diseases (51–55), is capable of reducing

inflammation and has been shown to offer protection to severe

liver damage caused by excessive tissue injury (56). This is of major

importance because studies conducted in humans have

demonstrated the importance of IL-10 in regulating morbidity

during schistosomiasis (26, 57, 58).

Next, we evaluated how the pharmacological inhibition of

cysLTR1 alone or in combination with PZQ influenced liver

inflammation during chronic schistosomiasis. A study by Pu

et al. showed that blocking cysLTR1 with montelukast

ameliorated acetaminophen (APAP)-induced acute hepatic injury

as indicated by reduced serum ALT and AST levels, reduced

necrosis area and reduced inflammatory cytokine gene

expression (59). Similarly, inhibition of COX-2, another enzyme

of the arachidonic acid pathway, led to the amelioration of liver

inflammation during Schistosoma japonica infection (60). These

studies align with our findings where we observed reduced

inflammation as judged by notable reduction in the size of

granuloma, as well as reduced liver damage as judged by the

AST/ALT levels in the serum upon inhibition of cysLTR1. In

other studies, treatment with Montelukast led to reduced lung

destruction and inflammatory cytokines during smoke-induced

lung injury (61, 62). Similar to our findings, Ikeno and colleagues

also revealed interesting correlation between liver fibrosis and T

regs. They noted that hepatic Treg cells play a crucial role in

preventing liver pathology by subduing inflammatory cellular

immunity that contribute to liver damage and fibrosis (63). In

agreement with the above observations and our study, Haack et al.

demonstrated that Tregs reduced the severity of the pathology of
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the infected liver during hepatitis in mouse model (64).

Furthermore, our findings highlighting the upregulation of

regulatory cytokines (IL-10 and TGF- b) together with the

expansion of Tregs indicates an elevated control of liver

inflammation and fibrosis after the combination therapy in

chronically infected mice. Our findings, therefore, raise the
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intriguing possibility that the combination of montelukast and

PZQ could be promising treatment of chronic schistosomiasis.

In conclusion, our study demonstrated positive association of

cysLTs signalling through cysLTR1 in the liver pathology of

Schistosoma-infected mice. The absence of cysLTR1 during S.

mansoni infection results in reduced liver pathology during different
B C
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FIGURE 6

Deletion of cysLTR1 leads to amelioration of granulomatous inflammation during acute schistosomiasis. CysLTR1 deficient mice and littermate
control mice were infected with 80 live S. mansoni cercariae, killed at 8-weeks post infection and the liver was harvested. (A) Experimental layout.
(B) Histological examination of H&E and CAB-stained liver sections. (C) Granuloma area was measured using computerized morphometric analysis
(NIS Elements, Nikon) by measuring 20 - 25 granulomas per mouse. (D) Liver fibrosis determined by assaying hydroxyproline concentration
normalized to tissue eggs. (E) Egg burden in S-mansoni infected liver. (F) Hepatocellular damage indicated by serum aspartate transaminase (AST)
concentration. (G) Liver weight. (H) Spleen weight index. (I) Body weight. Data are representative of two independent experiments. n= 6 - 7 mice.
***p<0.001 vs wild type mice using unpaired Student’s t-test.
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phases of schistosomiasis. We showed that cysLTR1 inhibition with

Montelukast ameliorated fibrogranulomatous pathology by blocking

Th2 responses and expansion of Treg immune responses, cysLTR1

inhibition could be a possible therapeutic option in combination with

Praziquantel for treating fibrogranulomatous pathology during chronic

and acute schistosomiasis.
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SUPPLEMENTARY FIGURE 1

Generation of cysLTR1 deficient BALB/c mice. (A) A genomic organization of

the mouse cysLTR1 gene (upper), structure of the targeting vector (middle),
and organization of the putative recombinant cysLTR1 allele (lower). Exons II-

IV are shown as boxes with the coding regions in black. Restriction enzyme
sites include BAmHI (B), BgIII (Bg), HindIII (H) and ScaI (S). (B)Mouse breeding

strategy. cysLTR1 deficient mice were intercrossed for three generations with

BALB/c wildtype mouse. (C) Genotyping of cysLTR1 deficient mice. DNA was
extracted from the tail of naïve cysLTR1 deficient and littermate control mice

and PCR was performed. The cysLTR1+/+ specific amplicon is 284bp,
CysLTR1-/- is 333bp and the cysLTR1+/- is represented by both bands

(284bp and 333bp). (D) qPCR and normalized to the quantity of
hypoxanthine phosphoribosyl transferase (HPRT) which is present in all cells.

SUPPLEMENTARY FIGURE 2

Absence of cysLTR1 does not alter body weight, tissue weight and cellularity

in naïve mice. (A) Body weight of naïve sex and age matched mice. (B) Organ
weights of naïve mice. Total myeloid cell numbers in the (D) spleen,

(E) mesenteric lymph node MLN, (F) lung, (G) liver, (H) gut and total
lymphocyte cell numbers of (I) thymus, (J) lung, (K) liver, (L) gut of naïve

young mice. Data are representative of two independent experiments. n=6 -

8 mice.

SUPPLEMENTARY FIGURE 3

Absence of cysLTR1 leads to wasting disease during acute schistosomiasis.

CysLTR1 deficient mice and wild type mice were infected with 35 live S.
mansoni cercariae (A) Experimental plan, (B) cysLTR1 mRNA expression

relative to HRPT housekeeping gene by RT-PCR to quantify cysLTR1 mRNA

levels on wildtype control mice. (C) Kinetics of percentage body weight
change over time. Data are representative of two independent experiments.

n=10 mice. *p<0.05 by unpaired Student’s t-test.

SUPPLEMENTARY FIGURE 4

Inhibition of cysLTR1 leads to expansion of total T cells and B cells, with a

reduction of humoral immune response. CysLTR1 deficient mice and wild

type mice were infected with 35 live S. mansoni cercariae. (A) Total IgE
antibody titre. SEA-specific IgG1 (B), IgG2a (C) and IgG2b (D) antibody titre.

Data are representative of two independent experiments. n= 4 - 7 mice.
*p<0.05 by unpaired Student’s t-test.

SUPPLEMENTARY FIGURE 5

Gating strategy. Identification of tissue CD4+, CD8+ T cells, CD19+ B cells,

inflammatory macrophages, neutrophils, dendritic cells, eosinophils
and ILC2.
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