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Introduction: Data on genomic susceptibility for adverse outcomes after

hematopoietic stem cell transplantation (HSCT) for recipients are scarce.

Methods: We performed a genome wide association study (GWAS) to identify

genes associated with survival/mortality, relapse, and severe graft-versus-host

disease (sGvHD), fitting proportional hazard and subdistributional models to data

of n=1,392 recipients of European ancestry from three centres.

Results: The single nucleotide polymorphism (SNP) rs17154454, intronic to the

neuronal growth guidant semaphorin 3C gene (SEMA3C), was genome-wide

significantly associated with event-free survival (p=7.0x10-8) and sGvHD

(p=7.5x10-8). Further associations were detected for SNPs in the Paxillin gene

(PXN) with death without prior relapse or sGvHD, as well as for SNPs of the

Plasmacytoma Variant Translocation 1 gene (PVT1, a long non-coding RNA

gene), the Melanocortin 5 Receptor (MC5R) gene and the WW Domain

Containing Oxidoreductase gene (WWOX), all associated with the occurrence

of sGvHD. Functional considerations support the observed associations.

Discussion: Thus, new genes were identified, potentially influencing the

outcome of HSCT.
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Introduction

Hematopoietic Stem Cell Transplantation (HSCT) was an

important breakthrough in the therapy of hematologic

malignancies with up to 9 HSCT per 100.000 inhabitants currently

being performed in Europe each year (1, 2). More than a million

HSCTs have been carried out since the first successful transplants in

1968. Transplant-related mortality (TRM) rates are decreasing from

about 50% in the 1970s to as low as 10% today (2). Human leukocyte

antigen (HLA) minor and major incompatibilities between HSC

donors and recipients can trigger allorecognition by T-cells. Relapse

and graft-versus-host disease (GvHD) are the two major reasons for

transplant (Tx) failure (3). A five-year rate of relapse after HSCT can

be as high as 45%-50% (2). Relapse can be treated e.g. by donor

lymphocyte infusion (DLI) or novel effective pharmacological

compounds, such as tyrosine kinase inhibitors (TKI),

hypomethylating agents or monoclonal antibodies (4, 5).

Acute GvHD (aGvHD) results from transplanted cells attacking

alloantigens on the recipient’s tissues. aGvHD affects up to 35%–

45% of HLA-matched siblings and 60%–80% of partly mismatched

unrelated donor transplant recipients (6). Host antigen presenting

cells are activated in response to damage-associated and pathogen-

associated molecular patterns (DAMPs and PAMPs) released in the

course of pretransplant conditioning and induce proliferation and

activation of alloreactive donor T-cells. Subsequently, these T-cells

mediate local tissue injury together with soluble inflammatory

agents (e.g. IFN-g, TNF-a) (3, 6). In contrast, chronic GvHD

(cGvHD) is characterized by the presence of alloreactive,

dysregulatory T- and B-cells. Almost every second HSCT

recipient develops cGvHD, either de novo, during progression or

after aGvHD. Furthermore, cGvHD is a major cause of late non-

relapse associated mortality following HSCT (7). Prophylaxis for

GvHD was introduced as an effective preventive action.

Unfortunately, the lower incidence of severe GvHD was offset by

high rates of relapse in malignancy.

During the past decade, a series of genomic variants have been

discussed to be associated with GvHD or other transplantation

(Tx)-related outcomes (8, 9). A first genome-wide association study

(GWAS) associated genotype mismatch at HLA-DPB1 (10) and

rs17473423 (12p12.1, now listed as rs1137282, located in the

Kirsten rat sarcoma virus (KRAS) gene encoding K-Ras, a part of

the RAS/MAPK pathway, were associated with GvHD in a Japanese

population (11). Combining GWAS on a Finnish and a Spanish

cohort with gene expression studies revealed further 51 genes

potentially associated with GvHD (12). However, despite

plausible molecular biological explanations, replication often fails,
Abbreviations: GWAS, genome wide association study; HSCT, hematopoietic

stem cell transplantation; Tx, transplant; GvHD, graft-versus-host disease; sGvHD,

severe GvHD; cGvHD, chronic GvHD; aGvHD, acute GvHD; OS, overall survival;

EFS, event-free survival time; NRGM, non-relapse-non-sGvHD-mortality; SNP,

single nucleotide polymorphism; MAF, minor allele frequency CSH, cause-specific

hazard (model) SDH, Fine‐Gary’s subdistribution hazard (model); HR, hazard

ratios; gwSNPs, genome-wide significant SNPs (p ≤ 10-7); suggSNPs, suggestively

significant SNPs (10-5≤p ≤ 10-7).
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often due to incompatibilities between patient and donor cohorts

with regards to HSCT treatment regimens and patient and donor

characteristics (9, 13–15).

One major challenge in searching for genetic associations with

post-Tx events are the different possible clinically relevant endpoints,

the competing behaviour of target events in addition to the inherent

differences between transplant cohorts (16, 17). Competing post-Tx

events are events which prevent the occurrence or modify the risk of

each other. These include the manifestation of relapse, or GvHD and

death, and need to be taken into account when assessing cause-

specific hazards, cumulative incidence, event-free or overall survival

(18, 19). Both previously reported GWAS used a case-control design,

meaning they compare, i.e., in the simplest case, the minor allele

frequency (MAF) between GvHD cases and GvHD-free controls.

Such comparisons may be biased if, for example, the time since Tx of

cases and controls differ, or patients are prone to both GvHD and

relapse, but the considered SNP is only associated with relapse (hence

in the presence of competing risks) (20).

Here, we aim to identify genomic markers, associated with any

of the relevant, post-Tx key events, death, relapse and GvHD, and

establish a joint GWAS using recipient DNA samples from three

transplantation centres. Complex survival analysis was carried out

taking competing risks into account, as previously recommended

(16, 17, 19).
Materials and methods

Study population

This observational study is a joint analysis of samples collected

in the Freeman Hospital of Newcastle (UK), the University Hospital

Regensburg (Germany) and the University Medical Centre

Göttingen (Germany). The patients were treated according to the

respective standard of clinical protocols, between the years 2001 and

2017. All recipient and donor data were collected at the

participating study centres in accordance with local standards and

with the approval of the local research ethics committee. Inclusion

criteria are provided in the Supplementary Material. All clinical data

originate from the comprehensive routine documentation of the

respective study centers. Patients were given the chance to follow

them for at least a year.
Sample preparation

Phenotype harmonization and quality control
Prior to data analysis, all phenotype data were cleaned from

incorrect, inaccurate, or inconsistent entries, and harmonised

between the study sites. Missing values and obvious errors have

been removed or corrected after query. All dates were considered in

days relative to the day of the 1st Tx. All medical causes of death

excluding relapse were considered as treatment-related. Survival

times with unknown or clearly non-medical/non-mental causes of

death were treated as censored observations. Missing values on

covariates were imputed taking known information on patient,
frontiersin.org
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donor and treatment for each study centre into account.

Notwithstanding subsequent harmonization of grading and

staging (21), aGvHD and cGvHD were graded according to

previously published criteria, as recorded in the study centres (22,

23). For this analysis, we jointly considered an acute GvHD of grade

III or IV or an extensive chronic GvHD as severe GvHD (further

noted as sGvHD), as the overall survival (OS) after onset of GvHD

differs significantly between aGvHD grade I, II and III/IV (p<0.001,

detail see Supplementary Material). We finally estimated a hazard

ratios (HR) of 2.31 (95%-CI: 1.84-2.89) for sGvHD compared to

aGvHD grade 1 or 2 (p<.0001), corresponding to a difference in the

median survival time (after onset of GvHD) of 3100 days (~8 yrs.)

versus 5664 days (~15 yrs.).

OncoArray genotyping and quality control
DNA samples of 1,392 patients of European ancestry were

available and shipped to the Research Unit of Molecular

Epidemiology of the Helmholtz Zentrum München (HGMU).

Genotyping was performed using the Infinium OncoArray 500K-

V1.0 (OA) from Illumina Inc. in three batches between 2015 and

2017. The genotypes were subjected to strict quality control (QC)

and harmonized between batches, including gender and ethnicity

checks. Further details on the genotyping, quality assurance and QC

are given in the Supplementary Material.

Overall, 499,563 markers could be genotyped. In total, 94,878

markers failed at least one of the QC-criteria. The most common

reasons for exclusion were a MAF<1% or a call rate<90% (fraction

of unsuccessful genotyping ≥10%) in at least one batch. After

quality control (QC), 404,685 markers entered the data analysis.

We used SNPnexus, dbSNP, dbGene, Ensemble, and Illumina

information files to assign markers to genes and other information

(24–27). Pairwise linkage disequilibrium (LD) between markers was

determined from Ldlink (28).
Statistical analysis

Competing key events post Tx
We considered the course after Tx characterised by the

following key events: death, or the clinical manifestation of a

relapse episode, or the clinical diagnosis of sGvHD (18, 29). At

least death and relapse are competing events. Other censoring

events were a 2nd Tx or loss-to-follow-up. Any information after

the first occurrence of one of these events was ignored, to prevent

therapeutic measures affecting any further post-HSCT course. If the

study site documentation did not record any of the key events, or

the absence of these key events was documented, we considered the

respective key event as “not occurred. When describing the sample,

the frequency of occurrence of a key event as the first event and the

cumulative incidence function (CIF) on days 90 and 180 (Kaplan-

Meier nonparametric) were reported.

Statistical analysis: CSH and SDH models
When evaluating time-to-event data, the hazard function is

usually modelled. A hazard is understood as the instantaneous risk
Frontiers in Immunology 03
that an undesirable event (e.g. relapse) will occur that has not

previously occurred. With competing risks, the hazards of several

events (e.g. death and relapse) are correlated, because e.g. the

occurrence of a relapse changes by the hazard to die. Competing

risks can mutually mask the occurrence of an other event; e.g. those

patients who died cannot subsequently suffer a relapse. The so-

called “at-risk group” includes all study participants who are at risk

for an event at time point t. How those who have experienced a

competing event prior to t are treated may vary.

We considered overall survival (OS) to be the time between Tx

and death, regardless of relapse or sGvHD. We defined event-free

survival time (EFS) by the duration between Tx and the first

occurrence of one of the key events. EFS and OS are considered

as composite endpoints and therefore to be “descriptive in nature”,

because key events are either ignored (OS) or undifferentiated (EFS)

(16). We complemented the modelling of EFS and OS with

considerations of cause-specific hazard (CSH) for sGvHD, relapse

and death (as non-relapse-non-sGvHD-mortality, NRGM), as

recommended (16, 19).

Cox proportional hazard regression was used as framework for

the analysis. Within this we investigated cause-specific hazard ratios

(HR) for all key events separately (30). In addition, we fitted Fine‐

Gray’s subdistribution hazard (SDH) models, that “cure the event of

interest from failure from other causes”, and allows the study of

effects that interfere the incidence of the event (31–33). In cause-

specific hazard (CSH) models with a key event as the outcome (e.g.

death), individuals who have experienced a competing event are

removed from the “risk set”. In subdistribution hazard (SDH)

models, these individuals remain in the “risk set”, albeit only

“partially” due to the overall survival function S(t). CSH

modelling is useful for aetiological research when one wants to

investigate the causal relationship between risk factors (here a SNP)

and a particular outcome (e.g. sGvHD). SDHmodelling is useful for

prognostic research when the aim is to predict the probability of an

event (e.g. sGvHD) at time t for an individual patient. The results of

the two models and for all the competing key events need to be

considered together in order to make a conclusive statement about a

SNP. For further details see (19, 34).

Therefore, for each SNP we fitted a total of 8 models to the data

(one each for OS and EFS, three each for CSH and SDH – one per

key event relapse, sGvHD and NRGM). These models were fitted

conditional on the study centre, adjusted for patient-, donor- or Tx-

related covariates (listed in Supplementary Table S1) and for 3

principal components (PCs, to adjust for population stratification),

as well as adjusted for PCs only (crude). To avoid over-adjustment,

relevant covariates were selected in a data-driven manner using the

Akaike information criterion (AIC). Modelling was performed

using PROC PHREG of SAS 9.4® (35).

Pre-modelling of limited adequacy
Due to intensive and time-consuming modelling, we pre-

selected SNPs in a fast but limited adequate modelling step, with

SurvivalGWAS_SV (36). This software tool for GWAS of “time-to-

event” outcomes does not allow conditioning on study centre or

fitting of SDH models; and limits the number of covariates.
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Therefore, covariates informative for OS and EFS were combined

into three scores: a “recipient score” (gender, age, previous

autologous hematopoietic cell transplantation (auto-HCT),

underlying condition, stage of disease, total body irradiation), a

“donor/centre score” (study centre, waiting-time, patient/donor

relationship, patient/donor gender-relationship), and a “Tx score”

(T-cell depletion, GvHD prophylaxis, stem cell source,

conditioning, reduced intensive conditioning). Details are

provided in the supplement (Supplementary Table S9).

Corresponding genomic inflation factors l are given in

Supplementary Table S10; they indicate that test results are

methodologically inflated if they are greater than one.

Genome-wide significant SNPs (p ≤ 10-7, gwSNPs) and blocks

of suggestively significant SNPs (10-5≤p ≤ 10-7; suggSNPs), as well

as SNPs assigned to the same genes as gw/suggSNPs, were then

reanalysed using the core statistical model described above.

Significance and reproducibility
The threshold for “genome-wide significance” was set at a level

of p=10−7, for “suggestive significance” at p=10−5, and for “nominal
Frontiers in Immunology 04
significance” at p=0.05. We additionally demanded consistency of

hazard ratios (HR; same direction and similar magnitude),

respectively subdistributional hazard ratios (sHR), between

subgroups and between crude vs. adjusted models. Most

importantly, we demanded consistency in direction of effects

(HRs) between all three study sites to demonstrate implicit

replication in independent samples of different source

populations. The subgroup analysis was performed in subsamples

of size ≤90% of the total sample, but ≥350 (e.g. by study centre, by

gender, underlying condition; in total 28 subsamples).

Figure 1 displays a schematic of the research/study strategy.
Results

Sample description

The genotyped study cohort included n=1,392 recipients of

European ancestry who underwent a HSCT between January 2001

and July 2017. Of these recipients, n=548 (39%) were treated in
FIGURE 1

Schematic representation of the research/study strategy. * year of Tx (transplant), QC quality control, OS overall survival time, EFS event-free survival
time, sGvHD severe graft-versus-host disease, NRGM non-relapse-non-sGvHD-mortality, 3 prin. comp. Three principal components of the genomic
architecture to adjust for population stratification, gwSNP genome-wide significant SNPs (p ≤ 10-7), suggSNP suggestively significant SNPs (10-5

≤p ≤ 10-7).
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Göttingen, n=258 (19%) in Newcastle, and n=586 (42%) in

Regensburg. At Tx, they were 15 to 78 years old (median 50 yrs.)

and n=869 (63%) were male. The underlying disease was leukaemia

in n=882 cases (63%) and lymphoma in n=473 cases (34%). In

n=524 (38%) cases, the disease was in complete remission (CR), in

n=340 (24%) cases in partial remission (PR), while n=189 (14%)

recipients had progressive or resistant underlying disease. Most

recipients (n=952, 68%) received stem cells from HLA-matched

unrelated donors, with approximately 30% from HLA-matched

related donors (mainly siblings) while HLA-mismatches were

only present in 7% of the donors. In >90% the grafts were

peripheral blood stem cells (PBSC), in 83% cases cytostatic drugs

were used for conditioning, with the majority of cases (68%)

receiving a reduced intensive conditioning (RIC). About 95% of

recipients received GvHD prophylaxis, about 77% underwent T-cell

depletion (ATG in vivo was applied in Regensburg und Göttingen,

in Newcastle CliniMACS device® TCRab-Biotin system, the

CliniMACS® CD34 Reagent system and ATG in vivo was used).

Survival (time Tx to death) was fully recorded in 277 patients.

aGvHD occurred as the first key event in 98 patients (7%, CIF-90

days: 8%, CIF-180 days: 9%), cGvHD in 128 patients (9%, CIF-90

days: 3%, CIF-180 days: 18%), relapse in 113 patients (8%, CIF-90

days: 5%, CIF-180 days: 12%), and NRGM in 93 patients (8% of all

patients, 33% among those whose survival is fully known, CIF-90

days: 9%, CIF-180 days: 13%). More details are tabled in the

Supplementary Material (Supplementary Tables S1–6).

Table 1 summarises some patient and donor characteristics,

more details are in the Supplementary Material.

OS and EFS, genetic substructure

We observed a median EFS of 172 days (~1/2 year; 95% CI: 162-

181 days) and a median OS of 789 days (~2 1/6 year, 95% CI: 662-

890 days). OS and EFS rates one year after therapy were 62% and

30%, respectively; five years after therapy, 39% and 13%,

respectively. Survival curves are presented in the Supplementary

Figure S1, survival time are listed in Supplementary Table S1. We

detected no genomic subclusters within recipients. However, the

first principal component appeared to cover a minimal north-south

gradient (see Supplementary Figure S1). Also, survival functions

differ between the study centres (pEFS=4.6 10-6; see Supplementary

Figure S3). Therefore, survival models were fitted conditional to

study centres to avoid batch effects and minimize residual effects

due to data collection methods, definitions of clinical endpoints,

and patient management between the study sites.
Refined analysis (candidate SNPs)

Overall, 511 SNPs (58 gwSNPS, 123 suggSNPS, listed in

Supplementary Tables S12 and 2, and 330 SNPs near them),

selected by the fast pre-modelling of limited adequacy, were

subjected to a more adequate analysis (proper adjustment for

selected covariables, conditioned on study centre; SDH
Frontiers in Immunology 05
TABLE 1 Selected patient and donor characteristics.

Total (N=1,392) n %

Patient gender

male 869 63%

female 516 37%

Underlying condition (disease)

lymphoma 473 34%

leukaemia 882 63%

others 5 <1%

unknown 32 2%

Stage of disease at 1st Tx

Complete remission (CR) 524 38%

Partial remission (PR) 340 24%

Progressive/resistant Disease (PD/RD) 189 14%

belonging to CML/MPS/MPN 74 5%

belonging to MDS 52 4%

other 213 15%

previously auto-transplant

yes 149 11%

Stem cell (graft) source

PBSC 1,246 90%

Reduced Intensity Conditioning

yes 944 68%

Total-body irradiation

yes 226 16%

T-cells depletion

yes 1,065 77%

GvHD Prophylaxis

yes 1,323 95%

Conditioning

cytostatics 3,285 83%

immunosuppressants 11 <1%

antibodies 608 15%

Donor lymphocyte infusion (DLI)

yes 133 10%

Patient/Donor relationship

HLA-matched unrelated donor 952 68%

HLA-matched related donor 204 15%

siblings 203 15%

(Continued)
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modelling). With this we achieved one genome-wide and 10

suggestive significant signals in the total sample (see Table 2).

Genome-wide significant SNPs
The marker rs17154454, located at 7q21.11 intronic of

SEMA3C, was genome-wide significantly associated with sGvHD

(p=7.5x10-8) and to EFS (p=7x10-8) in the crude model (see

Table 3). We estimated a hazard ratio of HR=2.68 (95% CI: 1.43-

5.03, p=0.002) for sGvHD, adjusted for clinical features, which was
Frontiers in Immunology 06
comparable but less significant. The adjusted HR for EFS was

slightly smaller (1.89, 95% CI: 1.22-2.93, p=0.004). Moreover, in

most considered subgroups, we achieved similar HR estimates for

EFS and sGvHD (see Figure 2). However, rs17154454 is an

infrequent variant (MAF=3.2%) and hence only few recipients

carry a minor allele. Thus, the sHR estimate of the SDH model

was lower (adjusted: 1.40, 95% CI: 0.77-2.56, p=0.262). Therefore,

the prognostic content of rs17154454 for sGvHD is limited.

Suggestive significant SNPs
We further achieved suggestive significant associations for

markers assigned to the genes RBFOX1, STK38L, PXN, WWOX,

POLR3A,MC5R, ABCB5 and GABRG3; as well as for rs17207650 (a

rare SNP in the intergenic region on 6p21.33/HLA region).

As in the screening step, we observed the common SNPs

rs1151832 and rs4767886, located intronic of PXN and in high

LD to eachother, as (suggestively) associated to NRGM. E.g. for

rs4767886 the adjusted hazard ratio was HR=2.19 (95% CI: 1.59-

3.01). In general, HR estimates were comparable between these

markers, adjusted and crude modelling, and between subgroups.

However, the effect was smaller and not significant in the subsample

of Newcastle (e.g. adjusted: HR=1.38, 95% CI: 0.27-7.00, p=0.695).

The p-values of an association to EFS or OS are <0.05 for both

markers, but not to sGvHD or relapse. We also observed suggestive
TABLE 1 Continued

Total (N=1,392) n %

HLA mismatch

no 1,275 92%

Patient/Donor gender-relation

female donor to male recipient 232 17%

Patient-Donor CMV status at 1st Tx

either or both unknown/borderline 47 3%

both negative 467 34%

either patient or donor positive 878 63%
TABLE 2 Most significant findings in the total sample.

* marker (SNP) MAF location gene p-value key event model type of model

genome- wide significant

1 rs17154454 3.2% 7q21.11
SEMA3C
(intronic)

7.0x10-8 EFS crude EFS

suggestive significant (10-7)

2 rs17207650 2.1% 6p21.33 ig* 1.3x10-7 sGvHD adjusted SDH

3 rs17142828 2.1% 16p13.3
RBFOX1
(intronic)

6.6x10-7 EFS crude EFS

4 rs7959382 2.3% 12p11.23
STK38L
(intronic)

7.7x10-7 sGvHD crude CSH

5a rs1151832 12.7% 12q24.23
PXN
(intronic)

9.9x10-7 NRGM adjusted CSH

suggestive significant (10-6)

5b rs4767886 12.5% 12q24.23
PXN
(intronic)

1.3x10–6 NRGM adjusted CSH

6 rs9927016 5.8% 16q23.1
WWOX
(intronic)

1.7x10-6 sGvHD crude SDH

8 rs34588967 1.3% 10q22.3
POLR3A
(coding)

1.9x10-6 NRGM crude SDH

9 rs11080686 19.1% 18p11.21
MC5R
(3’UTR)

2.3x10-6 sGvHD adjusted CSH

10 rs138553412 1.7% 7p21.1
ABCB5
(intronic)

2.6x10-6 EFS adjusted EFS

11 rs17137725 2.4% 15q12
GABRG3
(intronic)

2.6x10-6 relapse adjusted CSH
OS, overall survival; EFS, event free survival, sGvHD, severe graft-versus-host disease, NRGM, non-relapse-non-sGvHD-mortality, adjusted adjusted for patient-, donor- or Tx-related covariates
and for 3 principal components, crude adjusted for 3 principal components only; all models were fit conditional for study centre, ig* intergenic between NEU1, SNHG32.
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associations of both markers in the SDH model (e.g. rs4767886

adjusted: 1.87, 95% CI: 1.41-2.46). This together with a MAF of

12.7% indicates that PXN genotypes may have some prognostic

value for NRGM.

We could suggestively associate the marker rs11080686, located

at 19p11.21 downstream (3’UTR) of the gene MC5R, with the

appearance of sGvHD (adjusted HR 1.54, 95% CI: 1.28-1.84,
Frontiers in Immunology 07
p=2.3x10-6). No association was seen with NRGM, relapse or OS.

All hazard ratio estimates were comparable between crude and

adjusted modelling, as well as between subgroups. Interestingly, the

hazard ratio estimated in lymphoma patients (1.13, 95% CI: 0.81-

1.57, p=0.442) was not significant and smaller than the estimate in

leukemia patients (1.67, 95% CI: 1.33-2.09, p=7.9x10-6). We also

achieved a suggestive p-value for the key event sGvHD in the SDH
FIGURE 2

Hazard ratio (HR) estimates of rs17154454 (SEMA3C) for sGvHD by subsamples. CSH, cause-specific hazard; HR, hazard ratio, 95% CI 95%
confidence interval; sGvHD, severe graft-versus-host disease; GvHD-PPX, GvHD prophylaxis; P/D, patient-to-donor relationship; FdMp, female
donor-to-male recipient relationship; mDorfP, male donor-or-female recipient relationship; PBSC, peripheral blood stem cells; adjusted model
adjusted for patient-, donor- or Tx-related covariates and for 3 principal components, crude adjusted for 3 principal components only.
TABLE 3 Hazard ratio (HR) estimates of rs17154454 (SEMA3C) by key events.

adjusted crude

p-value (s)HR 95% CI p-value (s)HR 95% CI

CSH sGvHD 0.002 2.68 1.43-5.03 7.5x10-8 2.68 1.87-3.84

NRGM 0.083 2.58 0.88-7.59 0.271 1.46 0.74-2.91

relapse 0.736 0.75 0.15-3.77 0.668 1.19 0.53-2.65

EFS EFS 0.004 1.89 1.22-2.93 7.0 x10-8 1.86 1.48-2.34

OS OS 0.302 1.34 0.76-2.36 0.277 1.17 0.87-1.56

SDH sGvHD 0.262 1.40 0.77-2.56 0.0010 1.63 1.22-2.19

NRGM 0.802 1.15 0.37-3.55 0.817 0.93 0.55-1.59

relapse 0.818 1.11 0.42-2.91 0.438 0.80 0.46-1.39
fro
CSH, cause-specific hazard model; SDH, subdistributional hazard model; (s)HR, (subdistributional) hazard ratio; OS, overall survival; EFS, event free survival, sGvHD, severe graft-versus -host
disease, NRGM, non-relapse-non-sGvHD-mortality, adj. adjusted for patient-, donor- or Tx-related covariates and for 3 principal components, crude adjusted for 3 principal components only;
all models were fit conditional for study centre.
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model (p=3.7x10-6). Together with a MAF of 19.1%, this indicates

that MC5R genotypes may have some prognostic value for sGvHD.

For the marker rs9927016, located at 16q23.1 (spanning

FRA16D, one of the most active common fragile sites in the

human genome) within the gene WWOX, we observed a

suggestive significant association with sGvHD (adjusted

sHR=1.59, 95% CI: 1.22-1.84) in the SDH model (37). For the

crude association we achieved a p=1.7x10-6, but adjusted for clinical

features of p=0.0006 only. However, the adjusted hazard ratio

estimates in the subsamples of Newcastle and Regensburg (both

HR=1.69) and the crude estimate of Göttingen (HR=1.41) were

consistently close.

Finally, for the marker rs17137725, located at 15q12 within the

GABRG3 gene, we observed a suggestive significant association with

relapse (adjusted HR=3.80, 95% CI 2.18-6.65, p=2.6x10-06), but

neither for sGvHD nor for NRGM. Although the direction of

hazard ratio estimates is the same in all considered subgroups,

there is some inhomogeneity in the magnitude between the study

centres. Interestingly, larger hazard ratios were also observed within

HLA-unrelated recipient/donor-pairs (HR=6.11, 95% CI 2.79-13.3)

and in the subgroup “male donor or female patient” (HR=5.60, 95%

CI 3.10-10.1).

The remaining findings of suggestive evidence (rs17207650

(intergenic, sGvHD); rs17142828 (RBFOX1, EFS/sGvHD);

rs7959382 (STK38L, sGvHD); rs34588967 (POLR3A, NRGM);

and rs138553412 (ABCB5, EFS)) belonged to rare markers and

results did not prove to be robust between crude and adjusted

modelling or between subgroups. They should therefore be viewed

with caution (details can be seen in the Supplementary Material).
Discussion

We performed GWAS on post-Tx course with sGvHD, relapse,

or death as the key events. Because these events compete, it is not

advisable to focus on any one of these events alone, or examine

composite endpoints (like EFS) or strongly simplified endpoints

(like OS). In order to understand or biologically explain an observed

association of a genomic marker, one needs to know which

endpoint it is associated with and which one it is not. This is not

possible, if only EFS, OS or one simple event is considered. Instead,

we fitted models for aetiological and prognostic research, and for all

competing key events to obtain an overall view of each SNP. We did

not prioritize individual SNPs, nor did we include previous findings

or speculation about a SNP in our analysis.

In general, identifying genes associated with the post-Tx events

remains challenging due to disease- and treatment-related

confounding, competing key events, multiple tests, among others.

Examination of rare markers (MAF <5%) in the post-Tx course of

HSCT is difficult and prone to inexplicably low p-values.

However, we found interesting genome-wide and suggestive

significant signals for several genes as described below:

The gene SEMA3C was found to be positively associated with

EFS or sGvHD in the final analysis, with genome-wide significance.

Many types of cancer cells express class 3 semaphorins, to inhibit
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tumour angiogenesis and growth. In contrast, expression of

SEMA3C is potentiating tumour progression in several cancer

types. Subsequently, SEMA3C displays pro- and anti-

tumorgenetic characteristics (38–40). Due to its role in

neurodevelopmental processes which are frequently dysregulated

in cancer, inhibiting SEMA3C signalling is proposed as therapeutic

strategy to improve cancer control (39). SEMA3Cmay contribute to

drug-induced resistance of cancer cells (27, 41). Interestingly,

semaphoring C has also been shown to be involved in

angiogenesis, and angiogenesis has been reported as a pathogenic

factor in early GvHD, and it will be of interest to see whether there

is a direct interaction of semaphoring C and endothelial repair in

the context of allogeneic SCT (42–46). Another semaphoring

Sema4D has been linked with T cell function in the setting of

GvHD, but the mechanisms may be different form our

observation (47).

The gene PXN was the only one that appeared at least

suggestively significant regarding NRGM at the screening step

and in the refined analysis. Paxillin functions as a docking protein

for binding signalling molecules to a specific cellular compartment.

As a central protein of focal adhesion, it is a common target of many

different oncoproteins and involved in numerous processes. PXN is

considered a susceptibility gene for many types of tumours,

including large B-cell lymphoma (48, 49). Upregulated PXN

expression was linked to poor OS in acute myeloid leukaemia

(50) and has been associated with prediction of relapse in chronic

myeloid leukaemia (51). Therefore, PXN seems to play a role in the

post-Tx course, but for which key event remains unclear.

We were able to detect three further genes that are associated

with the occurrence of severe GvHD: Plasmacytoma Variant

Trans lo ca t i on 1 (PVT1) , WW Domain Con ta in ing

Oxidoreductase (WWOX) and Melanocortin 5 receptor (MC5R).

PVT1 is considered as a candidate oncogene, and was associated

e.g. with Hodgkin lymphoma (HL) (27). PVT1 is closely located in

the genome to theMYC gene, an universal amplifier of transcription

associated with e.g. leukaemia or Burkitt lymphoma (52). They are

considered “tween players among [some] haematological

malignancies.” (53) Up-regulation of PVT1, mediated by MYC, is

thought to confer a proliferation advantage to malignant cells, e.g.

in acute myeloid leukaemia (AML), acute promyeloid leukaemia

(APL), or multiple myeloma (MM) (53). PVT1 and the

circularization of the exon 2 of the PVT1 gene (circPVT1), an

alternative transcript, have been reported to enhance malignant

cells and hinder the immune response to the tumour during cancer

progression (53). Further, two independent variants of PVT1

(rs13255292 and rs4733601) were associated with diffuse large B-

cell lymphoma (DLBCL), with genome-wide significance (54).

These two markers, which were significant in our cohort, are in

low LD to each other (D’ ≤ 0.357).

WWOX is a gene with many faces. Being located at a common

fragile site (16q23.3) at the genome, it is considered a tumor

suppressor gene. An increased incidence of lymphomas was

observed in mouse experiments (55). However, WWOX is

involved in several biologic functions interacting with many

proteins (56). WWOX is involved in, inter alia, TGFb1- and
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TNF-mediated cell death. WWOX inhibits Wnt-signaling and may

control genotoxic stress-induced cell death synergistically with p53/

TP53 (27, 57). WWOX has already been associated with severe

aGvHD in a previous GWAS (p=1.75x10−7) (58). Defects in the

gene WWOX are associated further with multiple types of cancer,

i.a. hematopoietic malignancies (37, 59).

The protein encoded by MC5R is a receptor for melanocyte-

stimulating and adrenocorticotropic hormones. It seems to play a

role in sebum generation, but little is known about its involvement

of tumorigenesis (27). In a small mouse experiment, MC5R was

found as the only melanocortin receptor mediating the a-
melanocyte-stimulating hormone (a-MSH) that promotes

myelopoiesis, which in turn has been associated with GvHD in

other animal models (60, 61).

Two other markers intronic of KCNS3 and LINC02570 were of

genome-wide significance with respect to OS, but only at the

screening step. The lack of a reasonable functional explanation

and the lack of significance in the refined analysis limit the evidence

for this finding.

Finally, the gene GABRG3 appeared suggestively significant

related to relapse. The protein (a gamma-aminobutyric acid

receptor) encoded by GABRG3 is the major inhibitory

neurotransmitter in the mammalian brain (27). It contains the

benzodiazepine binding site. Benzodiazepine use during HSCT was

associated with adverse effects, as is the case in non-transplant

patients (62, 63).. The GABAergic system is involved in immune

cell functions, inflammatory conditions and diseases in peripheral

tissues (64, 65). It was found that GABA protects human islet cells

against the deleterious effects of immunosuppressive drugs and

exerts immunoinhibitory effects (66).

Although we used all available data collected over a long period

within three transplantation centres, the sample size is rather small

for a GWAS considering three competing key events, due to the

problem of multiple testing. We found it necessary to fit many and

rather complex models in order to adequately apply Cox’s

proportional hazard models to investigate the impact of

individual SNPs on the course on the post-transplant outcome.

While this is time-consuming and computationally expensive, it is

the only way to separately assess their impact on key events while

examine them in their entirety. Appropriate adjustment for clinical

covariates appears to be another key to reliable estimation results.

Thus, we were unable to run a single genome-wide analysis in

suitable time with feasible use of computer resources. It is likely,

that potentially associated markers were not selected during the

screening step. We also restricted our investigation to recipient

genotypes. A further differentiation between GvHD of different

stages would be desirable, but only advisable in larger samples.

Although we conducted some subgroup analyses, we did not fully

investigate the interaction with clinical or environmental factors.

The observed suggestive association of a GABRG3 marker and

relapse could be due to the administration of benzodiazepine during

HSCT. Since the use of narcotic analgesics and psychotropic drugs
Frontiers in Immunology 09
was not considered as clinical covariate (data not available), the

association, although unlikely, may be caused by residual

confounding. If this is the case, it justifies the need for an

appropriate adjustment when studying associations between gene

and HST outcomes.
Conclusion

We found the recipient SNP rs17154454 of SEMA3C to be

associated with EFS and severe GvHD. In addition recipient SNPs

in the genes PXN, PVT1, MC5R and WWOX potentially influence

the outcome of HSCT. All discovered genes are directly or indirectly

involved in molecular pathways that could affect GvHD, relapse or

other key events after HSCT. However, identifying genes associated

with the post-Tx events remains challenging due to disease- and

treatment-related confounders, competing key events, and

multiple tests.
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