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Pesquisa, São Paulo, Brazil, 7Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil,
8Department of Hematology, Churchill Hospital, University of Oxford, Oxford, United Kingdom,
9Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital,
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Introduction: Dengue virus infection is a global health problem lacking specific

therapy, requiring an improved understanding of DENV immunity and vaccine

responses. Considering the recent emerging of new dengue vaccines, here we

performed an integrative systems vaccinology characterization of molecular

signatures triggered by the natural DENV infection (NDI) and attenuated

dengue virus infection models (DVTs).
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Methods and results: We analyzed 955 samples of transcriptomic datasets of

patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and

DVT3) using a systems vaccinology approach. Differential expression analysis

identified 237 common differentially expressed genes (DEGs) between DVTs and

NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue

vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting

across all three DVTs. Enriched biological processes of these genes included

type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell

differentiation. Principal component analysis based on 20 common DEGs

(overlapping between DVTs and our NDI validation dataset) distinguished

dengue patients by disease severity, particularly in the late acute phase.

Machine learning analysis ranked the ten most critical predictors of disease

severity in NDI, crucial for the anti-viral immune response.

Conclusion: This work provides insights into the NDI and vaccine-induced

overlapping immune response and suggests molecular markers (e.g., IFIT5,

ISG15, and HERC5) for anti-dengue-specific therapies and effective

vaccination development.
KEYWORDS

dengue, vaccine, transcriptional signature, immune response, systems vaccinology
1 Introduction

There is an urgent need for vaccines against neglected tropical

diseases, such as helminth infections, Chagas disease, zika, and dengue

fever (1–3). Among them, dengue poses a significant global health

problem, spreading to new regions, including Europe (4). Several live-

attenuated dengue vaccines are currently under research and

development (3, 5–7), reflecting the ongoing efforts to combat this

widespread infection. However, developing a dengue vaccine is still

challenging due to the associated pathophysiology (5, 7, 8). Although

some vaccines have been approved (9–11), the complex interaction

between dengue serotypes and the human immune system represents

a challenge for entirely safe and effective vaccines (12, 13). Hence, it is

necessary to better understand the immunological mechanisms

triggered by natural infection with DENV and their overlap with

the immune response elicited by dengue vaccines, finding specific

factors and signatures to monitor vaccine efficacy and guide the

development of more potent vaccines (14, 15).

Dengue is among the most prevalent vector-borne diseases

caused by the dengue virus (DENV), with an incidence of 100-

400 million infections yearly (16, 17). Four dengue virus serotypes

(DENV-1–4) have circulated throughout Asia, Africa, and the

Americas. However, despite being a major global health problem,

neither specific therapy nor a fully efficient vaccination protocol can

ameliorate dengue’s destructive impact worldwide (3, 7, 10). While

most infected individuals are asymptomatic (18), dengue can

progress from a mild, self-limited disease called dengue fever

(DF) to the more severe dengue hemorrhagic fever (DHF) during
02
the defervescence phase (4, 19). In some individuals, the infection

progresses to a life-threatening condition marked by acute vascular

permeability, which is named dengue shock syndrome (DSS) (20).

Therefore, a deeper understanding of the immunological

mechanisms triggered by natural DENV infection is imperative.

Moreover, elucidating how these mechanisms intersect with the

immune response elicited by dengue vaccines could have far-

reaching implications for vaccine design, effectiveness, and

deployment strategies.

This study is part of the growing research area of systems

vaccinology, which has successfully investigated the immune

response to several viruses, for instance, influenza (21), yellow

fever (22), and COVID-19 (23). So far, individual studies have

characterized the immune response of dengue-infected patients or

individuals enrolled in recent DENV vaccine trials (DVTs) (24–26).

By employing an integrative systems vaccinology approach, our

work aims to longitudinally characterize common immunological

signatures between attenuated dengue virus infection models

(herein called DVT) and their molecular overlap with natural

dengue infection (NDI). Furthermore, we assessed this standard

immunological signature in patients with different disease

outcomes. Thus, through this comprehensive analysis, our work is

part of a research field that has provided a global picture of the host

response to vaccination, identifying potential immunologic

signatures that can predict the immunogenicity of vaccines (27,

28). By understanding the interactions between natural infection

and vaccine-induced immunity, we seek to provide new insights

into dengue vaccine development.
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2 Materials and methods

2.1 Curation of global gene expression data
in dengue infection

We obtained publicly available transcriptomic data (RNAseq

and microarray) from the Gene Expression Omnibus (GEO) (29)

database. The studies included were selected using the following

search terms: RNA sequencing, microArray, transcriptome, dengue,

RNA sequencing, immune response, and “Homo sapiens”[porgn:

_txid9606]. We included studies published between April 2011 and

February 2022. Our inclusion criteria were: (1) studies with adult

patients infected with DENV; (2) studies of whole blood (WB) or

human peripheral blood mononuclear cells (PBMCs; (3) studies

reporting disease phase and/or severity; (4) a minimum of 10

individuals per group. Our exclusion criteria were data sets that

(1) included only children; (2) studies of in vitro infection; (3)

studies that included additional flavivirus besides the dengue virus.

Additionally, we included one data set of a partially attenuated

DENV-2 recombinant virus, which is part of a DENV vaccine

challenge arm of a vaccine trial (DVT1, ClinicalTrials.gov

NCT02021968) and three data sets for validation: 1 of natural

dengue infection with different time points and severity groups

(GSE43777) and two attenuated dengue vaccine trials: DENV3 trial

(DVT2, ClinicalTrials.gov: NCT00831012; GSE98053) and

tetravalent chimeric DENV2 (DVT3, ClinicalTrials.gov:

NCT01224639; GSE146658). We obtained 955 transcriptome

samples from ten data sets derived from either PBMCs or

peripheral WB leukocytes described in detail in Supplementary

Table S1, including exposure (primary or secondary infection, time-

point, viral load, location, and serotype). After evaluating the study

design, the number of samples, and other relevant information

(disease phase and severity), we downloaded the transcriptome data

sets and followed the analysis workflow of publicly available RNA-

sequencing data sets as previously described (30). All R packages

and bioinformatics web tools for this study are listed in the Key

Resource Table (Supplementary Table S23).
2.2 Processing of RNA-seq data sets

Except for the data set GSE94892, which was available only as

raw sequencing data and needed to be preprocessed as described

below, all other transcriptomic data were available as non-

normalized processed tables. The quality control of the raw and

trimmed reads from the GSE94892 was performed using

FastQC v.0.11.8 (31). Trimming of the adapter content and

Quality trimming were performed using Trimmomatics v0.36

with the following settings: LEADING:20 TRAILING:20

SLIDINGWINDOW:4:25 MINLEN:31 (32). Kallisto v.46.0 (33)

program was used to build the Kallisto index with reference

transcriptome GRCh38 (Ensembl) with a k-mer length of 31 and

to quantify abundances of the transcripts through the Kallisto
Frontiers in Immunology 03
pseudo-alignment, which provides estimates of transcript level

counts. We used the tximport R package (34) to summarize count

estimates at the gene expression level (Supplementary Table S22).

The raw cell counts for dataset GSE152255 were obtained in the

original publication (26). Briefly, cell counts were obtained by

merging BAM files per sample using SAMtools (35). Immune-cell

proportions were analyzed with CIBERSORT (36) against LM22

gene signatures using the full expression matrix (Transcript Per

Million, TPM >10). Tissue-specific signatures like mast cells and

macrophages were excluded for whole blood application.
2.3 Differential expression analysis

Differential expression analysis (DEA) was applied to each

dataset individually, followed by consensus analysis to identify

common differentially expressed genes (DEGs) across the studies

as previously described (37). We obtained DEGs for the microarray

studies (GSE28405, GSE28988, GSE28991, GSE43777, GSE98053,

and GSE94892) through GEO2R (38) and RNAseq data sets

(GSE51808, GSE152255, and GSE146658) using Network Analyst

(39), applying the limma-voom statistical method (40) as recently

described (37, 41, 42). We applied the statistical cut-offs of adjusted

p-value < 0.05, log2 fold-change (logFC) > 1 (up-regulated), or < -1

(down-regulated) to determine the DEGs. Comparisons established

for each data set are available in the Supplementary Table S2.

Considering substantial differences in the temporal collection

points for each data set, we did not perform DEA by merging all

datasets and correcting for batch effects. Instead, we performed a

consensus analysis, treating individual studies as distinct and

heterogeneous entities and searching for common gene signatures

across the different studies.
2.4 Functional annotation and pathways
enrichment analysis of overlapping genes

The intersection of (common) DEGs between each infection

phase and disease severity was obtained using the web tool

Intervene (https://asntech.shinyapps.io/intervene/) (43) and

visualized by Upset graphics. We then performed functional

enrichment of these overlapping genes across the data sets using

Enrichr (https://maayanlab.cloud/Enrichr/) (44). In addition,

functional enrichment of the intersection between each phase of

natural infection was performed using the ClusterProfilerR package

(45). The gene expression patterns of common DEGs were

visualized through bubble heat maps with hierarchical clustering

(applying the Euclidian distance metric) using the web tool

Morpheus (https://software.broadinstitute.org/morpheus/) (46).

Circos plots were obtained using the Circos web tool (http://

circos.ca/) (47). An alluvial diagram was built to display the

enrichment of the NDI overlap with DVTs of validation using the

web tool SankeyMATIC (https://sankeymatic.com/) (48).
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2.5 Random forest classification

We used random forest (RF) (49) to rank DEGs as predictors of

dengue phases of the GSE43777 dataset using the R package

random Forest (version 4.6.14) as previously described (42, 50).

We applied the RF algorithm through five thousand trees, and the

number of variables resampled was equal to three. Follow-up

analysis used the Gini decrease, number of nodes, and mean

minimum depth as criteria to determine variable importance.

Interaction between pairs of variables was assessed using

minimum depth as a criterion. The adequacy of the RF model as

a classifier was evaluated by an out-of-bags error rate of less than

30% and receiver operating characteristic (ROC) curve analysis. For

cross-validation with bootstrap aggregating, we split the data set

into training and testing samples, using 75% of the observations for

training and 25% for testing.
2.6 Principal Component Analysis and data
visualization of stratifying genes

Principal Component Analysis (PCA) was performed with

NDI-DVTs genes (log2 transformed values) that were DEGs in

GSE43777, using the R functions prcomp and princomp, singular

value decomposition (SVD) and eigenvalue decomposition statistics

were applied. At the same time, biplots, clustering, and plotting

were obtained through factoextra (51) and FactoMineR package

(52). We also visualized DEGs belonging to NDI-DVTs gene sets in

GSEs 43777, 51808, 94892, and 152255 through boxplots using

ggplot2 package (53), applying the statistical Wilcoxon sum-rank

test to compare the distributions of DF, DHF, and DSS pared

independently. P values of less than 0.05 were considered significant

as previously described (42).
2.7 Interactome analysis

For protein–protein interaction (PPI) analyses, we queried

Integrated Interactions Database version 2021-05 (https://

ophid.utoronto.ca/iid) (54) to obtain the network of interacting

common DEGs between natural infection and vaccine challenge

data sets, as well as the specific DEGs of each. We used all

interaction sources. The network was annotated and visualized

using NAViGaTOR 3.0.17 (55) and exported in an SVG file. The

final figure was prepared with legends in Adobe Illustrator

version 26.3.1.
2.8 Statistical analysis

For gene expression data, we applied a base 2 logarithmic

function for each gene variable count data, herein called log2 gene

expression or log2 intensity values, for bulk RNA and microarray

sequencing, respectively. For the differential expression analysis, we

applied the limma-voom pipeline, where empirical Bayes analyses are
Frontiers in Immunology 04
performed to identify differentially expressed genes. Adjusted

P values of less than 0.05 were considered significant, and we

applied the statistical cut-offs of log FC > 1 or < -1 to determine

the upregulated and downregulated DEGs, respectively. We

considered terms with adjusted p-values less than 0.05 significant

for all enrichments.
3 Results

3.1 The longitudinal overlap between the
immune responses observed during
vaccination trials and natural
dengue infections

We performed a comprehensive multi-study analysis of

different dengue cohorts (Figure 1) to better understand

immunopathogenesis and characterize immunological signatures

that can establish the immunogenicity of vaccines. We obtained

nine datasets of DENV infection transcriptomes according to our

inclusion criteria described above. Concerning the serotypes

investigated in the studies, our analyses encompassed all or nearly

all serotypes within each dataset. This approach was taken because

the NDI studies did not limit their analyses to only one serotype at a

time (Supplementary Table S1).

By differential expression analysis, we identified DEGs across

dengue infection cohorts of samples collected at different time

points (Figure 2A; Supplementary Tables S1–S3). We found a

consistently higher number of DEGs in the NDI data sets

compared to the attenuated DENV infection studies (Figure 2B).

From these DEGs, we performed further integrative systems biology

analyses (Figure 1). It is worth noting the number of DEGs

identified here differs from what was reported in the original

publication of datasets (26, 56, 57) since we used a unique

pipeline for our consensus DEG analysis applied to each

dataset individually.

The DVT1 study (GSE152255; DENV2; ClinicalTrials.gov:

NCT02021968), a human dengue vaccine challenge trial using the

partially attenuated dengue serotype 2 (rDEN2D30) virus, included
11 individuals and provided transcriptome samples from day 0

(before infection), days 8, and 28 after attenuated infection. When

comparing the different time points, DVT1 had 413 upregulated

(351 on day 8 vs. day 0; 57 on day 28 vs. day 8; 5 on day 28 vs. day 0)

and 709 downregulated DEGs (281 on day 8 vs. day 0; 292 on day 28

vs. day 8; 139 on day 28 vs. day 0) (Figure 3A; Supplementary Figure

S1; Supplementary Table S14). After excluding overlapping genes

across different timepoints, we identified 411 upregulated and 623

downregulated DEGS. We found 237 common DEGs during the

immune response against the attenuated dengue virus (DVT1 data

set, GEO152255) compared to the NDI data sets that lacked severity

information (GSE28991, GSE28988, and GSE28405). These

overlapping DEGs are highly associated with and enrich mainly

in biological processes (BPs) related to the immune system

response, metabolic processes, and cellular component

organization of biogenesis. We found 739 and 461 DEGs in the

NDI and DVT1 data sets, respectively, which enriched mainly
frontiersin.org
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similar BPs (Figure 3B). Overall, there were no striking differences

in the distribution of cell numbers along with the DVT1 time

points, i.e., there are similar cell frequencies, displayed as raw

counts, across time (Figure 3C), underscoring the transcriptional

changes during the immune response against the attenuated

dengue virus.
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Of note, during the initial phase (time 1) of sample collection,

we found 117 overlapping DEGs (Figure 4A) between the DVT1

(GEO152255) and NDI (GSE28991, GSE28988, and GSE28405)

data sets. However, those DEGs were often regulated in the opposite

direction (DEGs upregulated in DVT1 are downregulated in NDI

and the other way around) (Figure 4C). While this regulation
BA

FIGURE 2

Dynamics of dengue infection and disease progression, and differentially expressed genes across the study cohorts. (A) Schematic overview of
dengue phases and progression over time, showing the immunological processes and clinical manifestations1–3. (B) Graphic showing the number of
differentially expressed genes (DEGs) by all data sets included in our study. The data sets are shown according to their Gene Expression Omnibus
(GEO) IDs. Time points of sample collection and disease severity groups are shown for each data set according to the original studies.
FIGURE 1

Study workflow. Overview of study workflow and results obtained. NDI, natural DENV infection; DVT, Dengue vaccine trial; DF, dengue fever; DHF,
dengue hemorrhagic fever; DSS, Dengue Shock Syndrome.
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variance was prominent in time point 1, we found at time point 2 a

more constant common upregulation of DEGs between NDI and

DVT1. A possible explanation for this observation consists in the

fact that while the DVT1 study compared samples collected during

the acute (day 8) infection with those obtained before infection (day

0) and day 8 versus convalescence (day 28) after infection, all NDI

data sets have comparisons between late (days 4-7) versus early

(days 0-3) as well as acute and late acute versus convalescent (2-5

weeks) phases. Hence, since these studies have different start points

of sample collection, future investigations require longitudinal

comparisons synchronizing study time points. Nevertheless, these

117 overlapping DEGs enrich 13 most relevant BPs, based on

adjusted P-value, excepted redundant BPs, including defense
Frontiers in Immunology 06
responses to the virus, platelet degranulation, and several

interferon (IFN)-related BPs (Figure 4A; Supplementary Table S4).

At the late time point of sample collection (DVT1: day 28 vs.

day 8; NDI: 2-5 weeks vs. days 4-7 [time 2] of NDI), we found a

transcriptional overlap of 50 DEGs (Figure 4B) between DVT1

(GEO152255) and NDI (GSE28991, GSE28988, and GSE28405).

Most common DEGs were longitudinally upregulated in DVT1 and

NDI (Figure 4C). Functional enrichment analysis of these 50 DEGs

resulted in 12 statistically significant gene ontology BPs (Figure 4B;

Supplementary Table S5), ranging from defense response to the

virus (the most significantly enriched BP) to negative regulation of

CD8-positive/alpha-beta T cell activation. Among these BPs, there

are also several interferon-related signaling pathways.
B C

A

FIGURE 3

General transcriptional overlap between natural dengue infection and dengue vaccine trial. (A) The vaccine challenge design scheme shows the
number of patients, days of sample collection, and the number of differentially expressed genes (DEGs) found in each comparison; (B) Protein-
protein interaction network of common (overlap) DEGs between NDI and DVT1 (largest network) as well as specific DEGs of NDIs (in common
across 3 NDI data sets) and the DVT1; (C) Heatmap of cell counts at different times of the DVT1 data set. Each column represents an individual, and
rows indicate different cell populations. Bcells, B cells; pb, plasmablasts; sm_Bcells, switched memory B cells; n_Bcells, naïve B cells; c_mono,
classical monocytes; i_mono, intermediate monocytes; nc_mono, non-classic monocytes; NKT, NK T cells; r_NK, resting NK; ea_NK, early activated
NK; ADCCNK, ADCC NK; NK4, CD3–CD56intCD16– NK activated; NK5, CD3–CD56–CD16+ NK post-activation; DC, Dendritic Cells; act_DC,
Activated DCs; Tcells, T cells; Tregs, regulatory T cells; CD4Tnaive, naïve CD4 T cells; CD4Tcm, central memory CD4 T cells; CD4Tem, effector
memory CD4 T cells; CD4Temra, effector memory re-expression CD45RA CD4 T cells; homeo_CD4, homeostatic CD4 T cells; cyto_CD4, cytotoxic
CD4 T cells; act_CD4, activated CD4 T cells; CD8Tnaive, naïve CD48 T cells; CD8Tcm, central memory CD8 T cells; CD8Tem, effector memory
CD8 T cells; CD8Temra, effector memory re-expression CD45RA CD8 T cells; homeo_CD8, homeostatic CD8 T cells; cyto_CD8, cytotoxic CD8 T
cells; act_CD8, activated CD8 T cells; CD4_AIM, AIM+ CD4 T cells; old_CD4_AIM, old AIM+ CD4 T cells.
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3.2 Interferon-associated signature marks
the overlap of the acute phase in severe
natural dengue infection and the
vaccination trial

To further understand the DVT1 and NDI intersection, we

characterized the common DEGs, including data sets with acute

dengue phases (late x early acute, GSE28991, GSE28988, and

GSE28405) and disease severity (GSE51808: DF and DHF)

information (Figure 5A). We found 212 common DEGs between the
Frontiers in Immunology 07
NDI data sets (Figure 5; Supplementary Table S6). Among them are

164 upregulated DEGs, enriching cell cycle-associated BPs such as

DNA replication, DNA conformation change, chromosome

segregation, and cell cycle checkpoints (Supplementary Figure S2A;

Supplementary Table S7). Furthermore, there were 48 common

downregulated DEGs, enriching BPs such as myeloid cell

differentiation, negative regulation of phosphorylation, neutrophil

degranulation leukocyte chemotaxis, and neutrophil migration

(Supplementary Figure S2B; Supplementary Table S8). Consequently,

these BPs are upregulated at the beginning of the infection. Figure 5B
B

C

A

FIGURE 4

Longitudinal transcriptional overlap between the natural dengue infection and the dengue vaccine trial. Upset plots displaying overlapping
differentially expressed genes (DEGs) from the comparison of the (A) initial (total of 117 DEGs; only 100 are exhibited in the circos plot) or (B) late
(total of 50 DEGs) days of sample collection in NDI data sets [(A) GSE28405, (B) GSE28988, (C) GSE28991] and the DVT1 data set [(D) GSE152255].
Circos plots illustrate the functional relationships (shown by edges) between the DEGs and biological processes (BPs), denoted by letters. Colors
denote up- (red) and downregulation (blue) of DEGs. The complete list of enriched BPs is provided in Supplementary Tables S4A, S5. (C) The graphic
provides an overview of whether DEGs are up or downregulated (by relative log FC on the y-axis) during the initial (Time 1) or late (Time 2) days of
sample collection. Variables = genes.
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displays the gene expression profile of the 48 DEGs associated with the

most significantly enriched BPs, either up (the first most enriched) or

downregulated (the ten most enriched) (Supplementary Tables S7, S8).

These DEGs are expressed in the same direction, i.e., consistently

upregulated or downregulated across the NDI data sets.

Using the same data sets across NDI and DVT1 sets (GSES

28405, 28988, 28991, 51808, and 152255), we found a total of

21common DEGs (Figure 5C; Supplementary Table S6). These 21
Frontiers in Immunology 08
DEGs enrich BPs such as type I IFN-related BPs (e.g., cellular

response to type I IFN, type I IFN signaling pathway, regulation of

type I interferon production) as well as regulation of cytokine

production, cytokine-mediated signaling pathway, negative

regulation of the viral life cycle, and regulation of RNA metabolic

processes (Figure 5D; Supplementary Table S9), indicating a

consistent interferon-associated signature that marks the overlap

of the acute infection of NDI and DVT1.
B

C

D

A

FIGURE 5

The transcriptional overlap between NDI at acute phase with disease severity and DVT1 information. (A) The upset plot showing the transcriptional
intersection among all datasets of the NDI acute phase is as follows. GSE28988 and GSE28405: late acute (4-7 days or d) vs. early acute (0-3d);
GSE51808: DF or DHF acute (2-9d) vs. healthy controls; GSE28991: late acute (4-7d) vs early acute (0-3d); GSE152255 (DVT1): first days of infection
(8d) vs (day 0). DF, dengue fever; DHF, dengue hemorrhagic fever. The dataset GSE94892 was not included in this comparison because there is no
information on time points for the different disease severity states (DF, DHF, and DSS) (Supplementary Table S6). (B) Bubble heatmap showing 48
common genes enriching the top 11 (1 term, 31 genes, from upregulated common DEGs enrichment and 10 terms, 17 genes, from downregulated
common DEGs enrichment, based on adjusted p-value and number of genes, Supplementary Tables S7, S8) gene ontology (GO) biological
processes (BP) among the NDI datasets. (C) Bubble heatmap of 21 common genes across all datasets. The color of the circles corresponds to log2
fold change (log2FC), and their size is proportional to the -log10 of the adjusted p-value. (D) Circos plot indicating the relationships between 7 of
the 21 genes [shown in (C)] and statistically significant BPs (denoted by letters) resulting from enrichment analysis of the 21 genes using Enrich R4.
The size of the rectangles in the outer circles is proportional to the involvement of each gene in multiple pathways. The size of rectangles forming
the inner circle represents genes and pathways with more connections to each other. Colors (chosen randomly to discriminate each variable) on the
outer circles denote pleiotropy and gene-pathway associations. A, cellular response to type I interferon; B, type I interferon signaling pathway; C,
regulation of nuclease activity; D, negative regulation of viral genome replication; E, negative regulation of viral life cycle; F, regulation of viral
genome replication; G, regulation of type I interferon production; H, regulation of cytokine production; I, cytokine-mediated signaling pathway; J,
regulation of RNA metabolic process; K, negative regulation of type I interferon production; L, positive regulation of type I interferon production; M,
interferon-gamma-mediated signaling pathway. The complete list of enriched BPs is provided in Supplementary Table S9.
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3.3 The transcriptional response during
severe natural infection differs from that of
the attenuated phase when the host
returns to immune homeostasis

We next evaluated the transcriptional intersection between the

DVT1 and NDI at the convalescent phase compared to day 0 in

DVT1 and the early acute phase in the NDI data sets. We found 606

common DEGs between the NDI data sets (GSE28405, GSE28988,

and GSE28991) (Figure 6A; Supplementary Table S10). During the

convalescent phase, upregulated DEGs across all NDI datasets

enriched several regulatory mechanisms involved in protein

production and RNA expression (Figure 6B; Supplementary Table

S11). Meanwhile, functional enrichment analysis of downregulated

DEGs suggested the return of the immune system to its homeostatic

phase after more than two weeks (Figure 6C; Supplementary Table

S12). Figure 6D displays the expression pattern and clusters of

common upregulated and downregulated DEGs, enriching the most

significantly affected BPs (Supplementary Tables S11, S12).

Of note, only eight DEGs from the DVT1 data set overlapped

with all NDI data sets. This small number of overlapped genes is

expected once DVT1 compares day 0 as pre-infection, where the

immune response had not been initiated yet, while NDI compares

early and late acute phases (Figure 6E; Supplementary Table S13).

Despite having a small number of common DEGs, we found

several common BPs between the DVT1 and all NDI data sets,

enriched by the total number of DEGs from acute phase

comparisons of these studies (Supplementary Figure S3A;

Supplementary Table S15). For instance, these BPs include

cytokine-mediated signaling pathways, type I interferon signaling

pathways, interferon-gamma-mediated signaling pathways, and

inflammatory responses. These findings suggest that the immune

responses to attenuated dengue virus and natural dengue infection

elicit similar functional processes during the acute phase. During

the convalescent stage, there were less common BPs, e.g., cytokine-

mediated signaling pathways, cytoplasmic translation, and RNA

processing), suggesting different returns to immune homeostasis of

DVT1 and NDI. (Supplementary Figure S3B; Supplementary

Table S16).
3.4 Different dengue vaccination trials
share common DEGs with the natural
dengue immune response

To further explore the overlap between the DVT1 and NDI data

sets, we assessed the intersection of these DEGs in the other 2 DVT

trials, indicated here as DVT2 (GSE98053; DENV3; attenuated

dengue vaccine rDEN3D30/31–7164, TV003; ClinicalTrials.gov:
NCT00831012) and DVT3 (GSE146658; DENV-2-1, DENV2,

DENV2-3, DENV2-4; attenuated dengue virus serotype-2 strain,

DENVax-2; ClinicalTrials.gov: NCT01224639). Supplementary

Figure S4 illustrates the design of DVT2 and DVT3 studies. The
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DVT2 data set presented 26 and 11 common DEGs at acute (Time

1) and convalescent phases (Time 2), respectively, with the NDI/

DVT1 data sets, resulting in 28 unique common DEGs (Figure 7A;

Supplementary Table S17). These genes form four expression

clusters, which enrich several BPs related to IFN, anti-viral, and

cytokine-mediated immune responses (Supplementary Figure S5A;

complete enrichment in Supplementary Table S18). The DVT3

dataset shared 45 and 25 common DEGs with NDI/DVT1 at times 1

and 2 (Figure 7B; Supplementary Table S19), respectively. These

genes enrich related biological processes compared to the NDI/

DVT1-DVT2 overlap (Supplementary Figure S5B; complete

enrichment in Supplementary Table S20).
3.5 DEGs distinguishing dengue severity
are consistently regulated across dengue
vaccination trials

Further analysis revealed 20 common DEGs across all DVT

(DVT1/DVT2/DVT3) and the NDI data sets – DDX60, OAS3,

ISG15, IFI27, SPATS2L, CXCL10, GBP1, IFIH1, IFI44L, IFIT3,

IFI44, HERC5, HELZ2, LAMP3, IFIT1, IFIT2, IFIT5, and IFIT2 –

(Figure 8A). To associate this overlap with disease severity, we used

the NDI data set GSE43777. Sixteen (DDX60, OAS3, ISG15, IFI27,

SPATS2L, CXCL10, GBP1, IFIH1, IFI44L, IFIT3, IFI44, HERC5,

LAMP3, IFIT1, IFIT5, and IFIT2) of these 20 common DEGs were

present and downregulated when comparing late acute with early

acute phases from the same disease severity group (DF versus DF or

DHF versus DHF) while upregulated when comparing DHF versus

DF for late, early, and convalescent phases (Figure 8B;

Supplementary Table S21). Accordingly, PCA based on these 16

DEGs distinguished dengue patients by disease severity (DHF

versus DF) and stratified patients mainly at late acute DHF and

late acute DF from the other groups (early acute and convalescent

patients) (Figure 8C). Furthermore, we carried out RF modeling, a

machine learning method, to rank these 16 genes as predictors of

disease severity when comparing DF and DHF patient groups in the

data set GSE43777. The model resulted in an OOB error rate of

27.03%, class error rates of 33.33% for group 1 (DF) and 21.05% for

group 2 (DHF), respectively (Figure 8D), and a high true positive

rate as shown by 95.92% area under the curve of the receiver

operating characteristics curve (Figure 8E). Among the ten

strongest predictors of dengue severity, IFIT5, ISG15, and HERC5

(Figure 8F) were the three most important variables. These ten

genes, mostly downregulated in the late acute phase relative to the

early acute phase in GSE43777, enrich biological processes related

to interferon and viral immune responses (Figure 8G). Of note,

although these ten most predictors of dengue severity in the data set

GSE43777 were heterogeneously expressed across other data sets

containing dengue patients with different disease severity statuses

(Supplementary Figure S6), their expression pattern was constantly

increased at late acute time points of the DVT1, DVT2, and DVT3

data sets (Supplementary Figures S6A–C).
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3.6 Comparative analysis across other viral
diseases unveils partially shared interferon-
associated signatures

Identifying an interferon-associated signature marking the

overlap of the acute phase in NDIs and the DVTs (Section 3.2.)

raised important questions about the specificity of these findings

compared to other viral infections. To address this issue, we

examined the expression of IFN-related genes across different

datasets, comparing dengue, COVID-19, and influenza (Figure 9).

Several IFN-related genes, such as SPATS2L, OAS2, ISG15, ZBP1,

and IFI44L, exhibited similar patterns of upregulation across both

dengue and COVID-19 datasets, while others, such as AIM2 and

RTP4, showed distinct regulation.

Moreover, despite the differences in the nature and structure of

DENV and influenza virus, patients infected by these two viruses

shared the upregulation of several IFN-related genes, such as ISG15,

OAS2, IFI44, and IFI44L. On the other hand, there are notable

differences in specific genes, such as MAP3K7CL and MSR1

(Figure 9), which were downregulated in dengue but not in

influenza. These observations suggest a partially shared IFN

signature among dengue, COVID-19, and influenza.
4 Discussion

As the demand for safe and efficacious dengue vaccination rises,

ongoing development efforts (3), and recent approvals in certain

countries (58), contribute to the expanding array of available

vaccines. In this context, the results of our analysis, characterizing

the overlap of several NDI and DVT data sets, will contribute to

future investigations into creating a safe and effective attenuated

vaccine (59). Using a systems vaccinology approach, we identified

genes that are not only regulated by natural dengue infection but are

consistently expressed across infections with attenuated DENV.

Among them are DEGs that are upregulated at acute time points

across DVT1, DVT2, and DVT3 data sets (e.g., IFIT5, ISG15, and

HERC5) and downregulated across NDI datasets in the late acute

phase relative to the early acute phase, thus are potential predictors

of disease severity being essential players of the anti-viral immune

responses, including type I and II IFN signaling (60). Of note,

mechanistic studies performed by others support our integrative

systems vaccinology findings. For instance, these mechanistic

studies demonstrate the critical role of IFITs, ISG15, and HERC5

as mediators of IFN-induced inhibition of viral (e.g., DENV)

replication and protection of host cells from apoptosis (61–63).

Thus, our work reinforces the potential of attenuated DENV

vaccines to solve the growing public health problem caused by

DENV infections while suggesting disease severity markers to

monitor vaccine efficacy (3) and to assist clinicians to early

stratify patients for in depth follow-up.

In addition, secondary dengue infection may promote DHF and

DSS due to antibody-dependent enhancement (ADE) by

contributing to increased virus entry into host cells (e.g.,
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macrophages), upregulation of IL-10, and inhibition of type 1

IFN production (8, 64, 65). For instance, while the tetravalent

attenuated dengue vaccine (Dengvaxia) has shown a high rate of

protection for seropositive individuals, i.e., those who already had

experienced a previous dengue infection, known as secondary

dengue, there was an increased incidence of hospitalization of

those who were seronegative when immunized due to Dengvaxia-

induced ADE (5). This issue needs to be addressed by future

studies and compare immunological signatures of vaccinated

individuals who either develop or do not develop severe dengue

due to ADE. Such an analysis will contribute to our understanding

of this phenomenon and identify biomarkers of ADE for

therapeutic exploration.

The NDI/DVT overlap of gene expression involves, among

others, the activation of several IFN-associated pathways, which are

critical to the anti-viral immune response (60). In addition, we

ranked common IFN-associated DEGs by random forest analysis as

predictors of dengue severity. IFNs are rapidly induced during viral

infections and function as central mediators of the response to

DENV (66, 67). The IFN system is essential during the acute phase

of DHF in lowering virus production and protecting the host (68).

For instance, the binding of IFN-a/IFN-b to their receptors,

IFNRA1/IFNRA2, triggers the activation of multiple downstream

signaling pathways. For example, the activation of the canonical

signal transducer and activator of transcription 1 (STAT1)–

STAT2–IFN-regulatory factors (IRFs) signaling complex, which

binds to IFN-stimulated response elements (ISREs) in gene

promoters, leads to the expression of IFN-stimulated genes (ISGs)

(69). In agreement with the NDI/DVT overlap, other transcriptome

studies of dengue patients not included here have also identified the

IFN system as a significant mechanism elicited in response to

DENV (56, 68, 70). In line with our findings, the downregulation

of ISGs is associated with reduced production of IFN in DHF and

DSS patients compared to DF patients during the acute phase,

underscoring the role of IFN-associated pathways for the outcomes

of dengue (68, 71, 72). Notably, linear and mechanistic studies (63,

73, 74) corroborate these high throughput investigations.

The shared upregulation of IFN-related genes between dengue,

COVID-19, and influenza infections presented here implies a

commonality in the host immune response against diverse viral

pathogens. This observation suggests a fundamental strategy

employed by the host to combat viral infections, emphasizing the

well-known importance of the interferon system in antiviral defense

(75–77). The implications of these findings for vaccine development

are substantial. This shared response could be leveraged to develop

broad-spectrum antiviral strategies targeting conserved interferon

pathway elements. However, the notable differences in the distinct

regulation of genes, highlight the nuanced nature of host-virus

interactions, promoting the need for specific approaches.

Understanding the unique signatures of each viral infection is

crucial for the design of vaccines that elicit precise and

compelling immune responses.

While the interferon antiviral pathways may represent an early

defense, their complex biological functions set the stage for

developing robust adaptive immunity. Genes such as OAS2,
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ISG15, AIM2, OAS1, SIGLEC1, IFI6, IFI44L, IFIH1, and IFI44,

identified in our integrative systems study, play pivotal roles in

orchestrating various aspects of the adaptive immune response.

For instance, OAS2 and OAS1 has antiviral functions (78), while
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ISG15 restricts virus replication (62, 79). AIM2 activates the

inflammasome (80), initiating pro-inflammatory responses

crucial for effective antiviral defense. SIGLEC1 participates in

immune cell interactions, facilitating antigen presentation and
B

C

D

E

A

FIGURE 6

The transcriptional divergence between NDI and DVT1 during the convalescent phase. Data sets (GSE28405, GSE28988, and GSE28991). Since the
GSE51808, which contains information regarding disease severity, did show only four DEGs during the convalescent phase, it was not included here.
(A) Upset plot shows the intersections between datasets of the convalescent phase from the NDI data sets (DEGs obtained from the comparison
between 3-5 weeks vs. 0-3 days) and the vaccine trial (DVT1) (sample collected 28 vs 0 day) (Supplementary Table S10). (B) Dotplots of BPs enriched
by upregulated (Supplementary Table S11) and (C) downregulated common genes (Supplementary Table S12) across NDI datasets. (D) Bubble
heatmap showing clusters of up- and downregulated genes enriching the most significant BPs shown in (B, C) (based on adjusted p-value and
number of genes). The circle sizes and color are proportional to the log fold change (log FC) and -log10 adjusted p-value (-log10 adj. p-value),
respectively. (E) Circos plot indicating the relationship between the 8 common DEGs across all NDI and DVT1 data sets [shown in (A)] and statistically
significant BPs enriched by these genes. The complete list of enriched BPs is provided in Supplementary Table S13.
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adaptive immune recognition (81, 82). Interferon-inducible, IFI6,

IFI44L, and IFI44, are implicated in apoptotic modulation and

antiviral defense (83, 84). IFIH1 is a crucial sensor for viral RNA,

shaping adaptive responses to RNA viruses (85). IFIT5 and

HERC5 are known for their roles in IFN-mediated inhibition of

viral replication (86). Therefore, the set of relevant genes

identified in our study underscore the intricate link between
Frontiers in Immunology 12
initial antiviral pathways and subsequent adaptive immune

processes, pointing out their significance as potential molecular

markers for monitoring vaccination efficacy and directing the

development of targeted anti-dengue therapies, including

immunomodulatory drugs.

In conclusion, our work demonstrates gene expression

correlations between natural dengue infection and vaccination
B

A

FIGURE 7

Validation of transcriptional overlap and immune response dynamics between NDI and DVT1 using two additional vaccine trials (GSE98053 and
GSE146658). (A) Venn diagrams (upper graphics) showing the intersections of common differentially expressed genes (DEGs) from NDI/DVT1 and
DVT2 datasets at acute (Time 1) and convalescent phases (Time 2). Complex heatmap (lower graphics) with hierarchical clustering (using Euclidian
distance metric) of expression intensity values (GSE98053) of 28 genes that overlap between NDI/DVT1 and DVT2 data sets through time 1 (T1, from
0 to 5 days), time 2 (T2, from 6 to 9 days), and time 3 (T3, 12 or more days), respectively, resulting in 4 clusters (Cluster A to D). (B) Venn diagrams
(upper graphics) showing the intersection of common DEGs from NDI/DVT1 and DVT3 data sets at acute (Time 1) and convalescent phases (Time 2).
Complex heatmap (lower graphic) with hierarchical clustering (using Euclidian distance metric) of log2 counts (GSE146658) of 60 genes that overlap
between NDI/DVT1 and DVT3 data sets at different time points as described in (A).
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and supports ongoing international efforts to develop protective

and safe attenuated vaccines against dengue (9, 26). This is

highlighted by including the gene expression dataset of Takeda’s

live attenuated tetravalent dengue vaccine candidate TAK-003

(Qdenga) that showed efficacy over time against dengue virus of

70% for asymptomatic and mild dengue and lowered the risk of
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severe cases, including hospitalization and death, by 80–90% (87–

89). Nevertheless, additional studies are needed to demonstrate

detailed gene expression correlations with viral load and dengue

associated NS1 expression during the infection. Since no NS1 or

viral load information was available for all datasets, we could not

address this issue.
B C

D E
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FIGURE 8

GSE43777 validates NDI-DVTs overlap and predicts important genes for distinguishing disease severity and establishing host protection through a
machine learning model. (A) Venn diagram showing the intersection (20 genes) between common genes from NDI/DVT1-DVT2 and NDI/DVT1-
DVT3 overlaps. (B) Bubble heatmap with hierarchical clustering using Euclidian metric of 16 of these 20 genes, which were differentially expressed
genes (DEGs) when comparing groups of disease phases (yellow cluster) and severities (green cluster) of the data set GSE43777. The colors of the
circles are proportional to log FC, indicating downregulation(blue) or upregulation(red) of each gene. (C) Principal component analysis (PCA) from
the 16 DEGs stratifying late acute phases from the other disease phases (n=10 patients in each group). (D) Stable curve showing the number of trees
and an error rate of random forest model for ranking predictors of disease severity in GSE43777 with out-of-the-bag (OOB) of 27.03% and class
error of 33,33% and 21,05% for group 1 (DF) and group 2 (DHF), respectively. (E) Receiver operating characteristics (ROC) curve of the random forest
model with an area under the curve (AUC) of 95,92% for two groups of severity. (F) Variable predictors scores plot for classification of dengue
infection according to severity. The variables are shown according to minimal depth and number of trees. The color scale bar ranges from 0 to 6
and represents the minimal and maximum minimal depth. The small dark vertical bars represent the mean of minimal depth for each variable.
(G) Lollipop graph showing biological process gene ontology (GO) terms enriched by the 10 genes classified as most predictors of dengue severity.
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4.1 Study limitations

However, this study has limitations, such as the absence of

primary and secondary infection information and serotype

variations in some datasets included here. Hence, future

investigations are required to address the impact of primary versus

secondary infections and serotype variations in the overlapping

signature between dengue vaccination and natural infection.

Furthermore, this study focused on PBMCs, and it would be highly

relevant to evaluate the gene signatures in other leukocytes. Notably,

DENV activates neutrophils, thereby inducing neutrophil

extracellular trap (NET) formation (90, 91). Future studies

addressing how the expression of DEGs involved in this process is

associated with dengue severity will shedding light on dengue

immunopathology. Additionally, while our study suggests a set of

DEGs useful to screen potentially efficacious dengue vaccines in early

phases of clinical trials, future studies are required to validate at the

protein level which DEGs are relevant to monitor anti-dengue

vaccines and their capacity to provide long term effective

protection, as well as for monitoring different DENV serotypes and

individuals with or without pre-existing anti-DENV immunity.
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